CN115011489B - 一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用 - Google Patents

一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用 Download PDF

Info

Publication number
CN115011489B
CN115011489B CN202210630514.XA CN202210630514A CN115011489B CN 115011489 B CN115011489 B CN 115011489B CN 202210630514 A CN202210630514 A CN 202210630514A CN 115011489 B CN115011489 B CN 115011489B
Authority
CN
China
Prior art keywords
culture solution
degrading enzyme
poria cocos
culture
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210630514.XA
Other languages
English (en)
Other versions
CN115011489A (zh
Inventor
尹立伟
覃雯
杨春成
孙廷哲
武琳
黄祝
胡婷
宋晓贺
杨仕飞
周君
胡雅楠
车欣欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Yuelan Pharmaceutical Co ltd
Anqing Normal University
Original Assignee
Anhui Yuelan Pharmaceutical Co ltd
Anqing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Yuelan Pharmaceutical Co ltd, Anqing Normal University filed Critical Anhui Yuelan Pharmaceutical Co ltd
Priority to CN202210630514.XA priority Critical patent/CN115011489B/zh
Publication of CN115011489A publication Critical patent/CN115011489A/zh
Application granted granted Critical
Publication of CN115011489B publication Critical patent/CN115011489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/20Culture media, e.g. compost
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G18/00Cultivation of mushrooms
    • A01G18/40Cultivation of spawn
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/2488Mannanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01013Manganese peroxidase (1.11.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01014Lignin peroxidase (1.11.1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/0102Alpha-glucosidase (3.2.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01025Beta-mannosidase (3.2.1.25), i.e. mannanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Environmental Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种茯苓菌用木质纤维素降解酶培养液,其包括培养液A和培养液B;所述茯苓菌为茯苓菌(Wolfiporiacocos)YX1;其中,培养液A中含有外切β‑葡聚糖酶、内切β‑葡聚糖酶、β‑葡萄糖苷酶、α‑葡萄糖苷酶、木聚糖酶、甘露聚糖酶;培养液B中含有漆酶、锰过氧化物酶、木质素过氧化物酶。本发明还公开了上述茯苓菌用木质纤维素降解酶培养液的制备方法。本发明可以促进茯苓菌(Wolfiporiacocos)YX1的生长,缩短生长周期,提高产量。

Description

一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用
技术领域
本发明涉及茯苓菌技术领域,尤其涉及一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用。
背景技术
茯苓[Wolfiporia cocos(Schw.)],隶属于担子菌门(Basidiomycota),蘑菇亚门(Agaricomycotina)蘑菇纲(Agaricomycetes),多孔菌目(Polyporales),拟层孔菌科(Fomitopsidaceae),茯苓属(Wolfiporia)。茯苓是一种高温好气型腐生真菌,又称玉灵、茯灵、万灵桂、茯菟等,大多寄生在马尾松(Pinus massoniana)或赤松(P.densiflora)等树种根际生长居多,故野生茯苓较难采挖,形成不规则的团状菌核,是我国传统常用的药食兼用的中药材,是“中药八珍”之一,惯有“十方九苓”之说。茯苓主要成分有茯苓多糖和茯苓酸,主要功效有利水渗湿、宁心安神、抗癌等具有很好的保健和养生功效,也是昂贵的生物制品。
木质纤维素主要由纤维素、半纤维素和木质素组成。木质素在纤维素的降解中起到天然的屏障作用。木质素和半纤维通过共价键的形式连接,而纤维素被木质素和半纤维素屏蔽在里面,因此,要想利用纤维素必须先破坏木质素。
而茯苓大多寄生在马尾松(P.massoniana)或赤松(P.densiflora)等树种根际生长居多。树根际细胞壁的结构复杂,主要由纤维素、半纤维素、木质素及果胶聚合物和糖蛋白等组成,针叶树木质素以愈疮木基结构单元为主,紫丁香基结构单元和对羟苯基结构单元极少,结构单元之间以醚键(C-O-C)和碳-碳键(C-C)连结,其中木质素不含易水解的重复结构单元,因而不受水解酶的控制,很难被微生物所分解。木质纤维素难以被分解的问题限制了茯苓的生长,使得茯苓的生长周期较长、茯苓产量较低。
发明内容
基于背景技术存在的技术问题,本发明提出了一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用,本发明可以促进茯苓菌(Wolfiporia cocos)YX1的生长,缩短生长周期,提高产量。
木质纤维素降解酶是一个成分复杂的酶系,可以降解木质纤维素。但是对于不同种类的真菌来说,其所需要的木质纤维素降解酶系中酶的种类、酶活性各不相同,甚至不同种类的真菌中会含有一些特定的降解酶;例如:褐腐菌篱边粘褶菌(Gloeophyllumsaepiarium)能分泌淀粉酶、纤维素酶、半纤维素酶、木质素酶、果胶酶、蛋白酶、脂肪酶、麦芽糖酶、粘胶酶及尿素酶等二十多种酶,而其寄生基质中的复杂有机物的分解需要上述一系列复合酶的参与,才能表现出很强的协同作用,把极其复杂的植物细胞壁物质分解为简单的碳水化合物。
申请号为CN202111071773.5的申请文件中,公开了茯苓菌(Wolfiporia cocos)YX1,其保藏在中国典型培养物保藏中心,其保藏编号为CCTCC NO:M 2021434,中国典型培养物保藏中心的地址为中国武汉的武汉大学,保藏日期为2021年4月22日,其经济性状好、高产质优、遗传基因稳定。为了进一步缩短茯苓菌(Wolfiporia cocos)YX1的生长周期、提高产量,发明人先定性检测了茯苓菌(Wolfiporia cocos)YX1的木质纤维素降解酶活性,确定茯苓菌(Wolfiporia cocos)YX1具有一定的木质纤维素降解酶活性;然后发明人通过多次研究获得了一种茯苓菌用木质纤维素降解酶培养液,可以促进茯苓菌(Wolfiporiacocos)YX1的生长。
本发明提出了一种茯苓菌用木质纤维素降解酶培养液,其包括培养液A和培养液B;所述茯苓菌为茯苓菌(Wolfiporia cocos)YX1;
其中,培养液A中外切β-葡聚糖酶的活性为14.5-16.7U/ml、内切β-葡聚糖酶的活性为31.0-34.7U/ml、β-葡萄糖苷酶的活性为32.2-36.8U/ml、α-葡萄糖苷酶的活性为9.2-10.7U/ml、木聚糖酶的活性为20.9-37.3U/ml、甘露聚糖酶的活性为272.0-341.3U/ml;
培养液B中漆酶的活性为0.0006-0.03U/ml、锰过氧化物酶的活性为0.001-0.08U/ml、木质素过氧化物酶的活性为0.003-0.1U/ml。
上述培养液A和培养液B的体积比可以任一比例混合,根据实际茯苓菌的种植生长情况,调节合适比例;比如培养液A和培养液B的体积比可以为1:1等。
优选地,培养液A中外切β-葡聚糖酶的活性为16.5-16.7U/ml、内切β-葡聚糖酶的活性为32.1-34.7U/ml、β-葡萄糖苷酶的活性为33.1-36.8U/ml、α-葡萄糖苷酶的活性为9.3-10.7U/ml、木聚糖酶的活性为21.7-37.3U/ml、甘露聚糖酶的活性为281.9-341.3U/ml;
培养液B中漆酶的活性为0.001-0.03U/ml、锰过氧化物酶的活性为0.003-0.08U/ml、木质素过氧化物酶的活性为0.003-0.1U/ml。
茯苓菌(Wolfiporia cocos)YX1分泌的木质纤维素降解酶是一个成分复杂的酶系,本发明限定了外切β-葡聚糖酶、内切β-葡聚糖酶、β-葡萄糖苷酶、α-葡萄糖苷酶、木聚糖酶、甘露聚糖酶、漆酶、锰过氧化物酶和木质素过氧化物酶的活性,其还包括:多功能过氧化物酶、过氧化物酶、阿魏酸酯酶、芳醇氧化酶、芳香环开裂酶系、醌还原酶系等,经过合适的制备方法,获得培养液A和培养液B,其中的各成分相互配合,可以促进茯苓菌(Wolfiporiacocos)YX1的生长。
本发明还提出上述茯苓菌用木质纤维素降解酶培养液的制备方法,包括如下步骤:将茯苓菌(Wolfiporia cocos)YX1菌丝接种于第一培养基,进行培养,固液分离得到培养液A;将茯苓菌(Wolfiporia cocos)YX1菌丝接种于第二培养基,进行培养,固液分离得到培养液B;合并培养液A和培养液B得到茯苓菌用木质纤维素降解酶培养液;
其中,pH=6.8-7.2的1000mL第一培养基中包含蛋白胨8-12g、酵母膏13-17g、羧甲基纤维素钠8-12g、NaCl 4-6g、KH2PO40.8-1.2g、木质纤维素基质15-16g,溶剂为水;
pH=4.2-4.8的1000mL第二培养基中包含KH2PO40.1-0.3g、MgSO4·7H2O 0.4-0.6g、琥珀酸1.1-1.3g、CaCl2·2H2O 0.05-0.15g、氮溶液18-20mL、维生素溶液0.4-0.6mL、诱导剂0.8-1.2mL,溶剂为水;
第二培养基中的诱导剂为含有Mn2+、木质纤维素基质、2,6-二甲氧基苯酚中的至少一种的矿质溶液。
优选地,木质纤维素基质为松木屑。
优选地,诱导剂中Mn2+的浓度为2.5-2.8×10-3μmol/L。
优选地,诱导剂为木质纤维素基质时,每1000mL第二培养基中木质纤维素基质的用量为28-29g。
优选地,诱导剂中2,6-二甲氧基苯酚的浓度为8-12mmol/mL。
优选地,1000ml矿质溶液中包含:一水柠檬酸铁0.08-0.09g、ZnSO4·7H2O 0.08-0.12g、CoCl2·6H2O 0.08-0.12g、CuSO4·5H2O 0.005-0.015g,溶剂为水。
优选地,1000ml矿质溶液中包含:一水柠檬酸铁0.087g、ZnSO4·7H2O 0.1g、CoCl2·6H2O 0.1g、CuSO4·5H2O 0.01g,溶剂为水。
优选地,1000ml氮溶液中包含:L-天门冬素3-5g、NH4NO31.5-2.5g,溶剂为水。
优选地,1000ml氮溶液中包含:L-天门冬素4g、NH4NO32g,溶剂为水。
上述维生素溶液可以从市场购得,也可以按如下配方配制:
1000ml维生素溶液中包含:维生素H 0.002g、维生素M 0.002g、维生素B1 0.005g、维生素B2 0.005g、盐酸吡哆醇0.01g、维生素B12 0.0001g、烟酸0.005g、泛酸钙0.005g、对氨基苯甲酸0.005g、DL-6,8-硫辛酸0.005g,溶剂为水。
发明人通过筛选合适的培养基,并添加合适的诱导剂可以促进茯苓菌(Wolfiporia cocos)YX1分泌木质纤维素降解酶,提高酶系活性。
发明人还选用合适的培养条件使得各酶均能保持相对较高的酶活性。
优选地,每130mL的第一培养基,接种0.4-0.6mL茯苓菌(Wolfiporia cocos)YX1菌丝。
优选地,每70mL的第二培养基,接种1-5mL茯苓菌(Wolfiporia cocos)YX1菌丝。
优选地,第一培养基和第二培养基的培养温度均为24-40℃。
优选地,第一培养基的培养时间为4-8天。
优选地,当诱导剂为含有Mn2+、木质纤维素基质中的至少一种的矿质溶液时,第二培养基的培养时间为7-15天。
优选地,当诱导剂为含有2,6-二甲氧基苯酚的矿质溶液时,第二培养基的培养时间≥21天。
发明人选用了2种不同的种子培养基对茯苓菌(Wolfiporia cocos)YX1进行培养,可以为各种类酶的分泌提供最适宜的环境,提高酶活性。
优选地,茯苓菌(Wolfiporia cocos)YX1经活化和种子培养基培养后,分别接种于第一培养基、第二培养基中。
优选地,茯苓菌(Wolfiporia cocos)YX1菌丝接种于第一培养基时,使用的种子培养基为:pH=6.8-7.2的1000mL的种子培养基中包含蛋白胨18-22g、羧甲基纤维素钠8-12g、NaCl 4-6g、KH2PO40.8-1.2g。
优选地,茯苓菌(Wolfiporia cocos)YX1菌丝接种于第二培养基时,使用的种子培养基为:1000mL的种子培养基中包含去皮土豆180-220g、葡萄糖18-22g、蛋白胨2-4g、MgSO41-2g。
上述培养基中使用的水均为无菌水。
本发明还提出了上述茯苓菌用木质纤维素降解酶培养液在茯苓菌(Wolfiporiacocos)YX1种植中的应用。
有益效果:
本发明通过筛选合适的培养基和培养条件,促进茯苓菌(Wolfiporia cocos)YX1分泌木质纤维素降解酶,使得酶系中各个酶保持适宜的活性获得培养液,然后将培养液用于茯苓菌(Wolfiporia cocos)YX1的生长过程中,促进茯苓菌(Wolfiporia cocos)YX1的生长,缩短生长周期、提高产量。
附图说明
图1为木质纤维素降解酶的定性检测结果,其中,A为茯苓菌(Wolfiporia cocos)YX1,B为茯苓菌(Wolfiporia cocos)5.78。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明,但是应该明确提出这些实施例用于举例说明,但是不解释为限制本发明的范围。
以下培养基均经121℃高压灭菌30min处理。
实施例1木质纤维素降解酶的定性检测
取茯苓菌(Wolfiporia cocos)YX1的菌丝和茯苓菌(Wolfiporia cocos)5.78的菌丝,分别接种在刚果红定性培养基上,于28℃培养5d;然后分别用2g/L的刚果红染色剂浸染30min,再分别用适量的1mol/L的NaCl脱色30min,分别测量茯苓菌(Wolfiporia cocos)YX1和茯苓菌(Wolfiporia cocos)5.78的透明圈直径和菌落直径的比径A值。
备注:全国栽种茯苓农户普遍采用中国科学院微生物菌种保藏管理中心CGMCC茯苓菌(Wolfiporia cocos)5.78菌种进行广泛栽种。
结果如图1所示,图1为木质纤维素降解酶的定性检测结果,其中,A为茯苓菌(Wolfiporia cocos)YX1,B为茯苓菌(Wolfiporia cocos)5.78。
由图1可以看出,茯苓菌(Wolfiporia cocos)YX1有明显的透明圈,透明圈直径和菌落直径的比径A值为1.2cm;茯苓菌(Wolfiporia cocos)YX1具有一定的木质纤维素降解酶活性,且其活性比茯苓菌(Wolfiporia cocos)5.78好。
实施例2
培养液A的制备,包括如下步骤:
将茯苓菌(Wolfiporia cocos)YX1接种于装有固体PDA培养基(1000mL固体PDA培养基中包含去皮土豆200g、葡萄糖20g、琼脂粉17g、KH2PO43g、MgSO41.5g)的平板培养皿中,进行培养;
待菌丝即将长满平板培养皿时,用打孔器打孔取样,接种在种子培养基(pH=7的1000mL的种子培养基中包含蛋白胨20g、羧甲基纤维素钠10g、NaCl 5g、KH2PO41g)中,每瓶种子培养基中含5个直径为1cm菌饼,在恒温振荡培养箱内,于28℃、150rpm培养至菌丝生长成熟;
用移液枪吸取0.5mL种子培养基中的菌丝,接种至130mL的第一培养基(1000mL第一培养基中包含蛋白胨10g、酵母膏15g、羧甲基纤维素钠10g、NaCl 5g、KH2PO41g、松木屑15.4g,pH=7)中,于28℃培养12天,然后在超净工作台内13200rpm离心5min,取上清液得到培养液A。
对比例1
第一培养基中不含松木屑,其他同实施例2。
于第2、4、6、8、10、12天,分别取实施例2和对比例1的培养液A,检测培养液A中外切β-葡聚糖酶、内切β-葡聚糖酶、β-葡萄糖苷酶、α-葡萄糖苷酶、木聚糖酶、甘露聚糖酶的活性;结果如表1所示。
酶活性检测方法如下:
配置0.25-3.0mg/mL的葡萄糖标准溶液,0.4-2.5mg/mL的D木糖标准溶液,用酶标仪(Multiskan GO全波长酶标仪)于540nm测定各标准溶液的吸光度值,以光密度值为纵坐标y,葡萄糖浓度或D木糖浓度为横坐标x,获得线性回归方程,葡萄糖到回归方程为y=0.9344x-0.0763,R2=0.991;D木糖回归方程为y=0.6666x-0.0056,R2=0.9937。
外切β-葡聚糖酶活性检测方法为:取培养液A25μl与底物溶液(2%的微晶纤维素溶液)50μl混匀,放入50℃恒温水浴锅中水浴反应2h,加入DNS显色液75μl混匀终止反应,然后沸水浴5min,冷却后测定波长在540nm处的吸光度值,根据葡萄糖、D木糖的回归方程计算酶活性;酶活性单位定义为每分钟分解特定底物释放出1μmol还原糖所需的酶量;每次检测设置3个平行样。
内切β-葡聚糖酶活性检测方法为:取培养液A 50μl与底物溶液(1%的羧甲基纤维素钠溶液)25μl混匀,放入50℃恒温水浴锅中水浴反应30min,其他同外切β-葡聚糖酶活性检测方法。
β-葡萄糖苷酶活性检测方法为:取培养液A 50μl与底物溶液(1%的水杨苷溶液)25μl混匀,放入50℃恒温水浴锅中水浴反应30min,其他同外切β-葡聚糖酶活性检测方法。
木聚糖酶活性检测方法为:取培养液A 67μl与底物溶液(0.8%的木聚糖溶液)33μl混匀,放入50℃恒温水浴锅中水浴反应30min,加入DNS显色液100μl混匀终止反应,其他同外切β-葡聚糖酶活性检测方法。
甘露聚糖酶活性检测方法为:取培养液A 67μl与底物溶液(0.8%的甘露聚糖)33μl混匀,其他同木聚糖酶活性检测方法。
α-葡萄糖苷酶活性检测方法为:取培养液A 6.7μl与底物溶液(0.4%的pNPG溶液)60μl混匀,再加入甘氨酸-NaOH缓冲液(pH9.0)66.7μl,混匀后放入50℃恒温水浴锅中水浴反应60min,加入1M Na2CO3溶液66.67μl混匀终止反应,其他同外切β-葡聚糖酶活性检测方法。
表1培养液A检测结果
由表1可以看出:纤维素酶中,实施例2和对比例1的外切β-葡聚糖酶活性相差不大,均于第4天达到最大活性;实施例2和对比例1中内切β-葡聚糖酶、β-葡萄糖苷酶的最大活性相近,但是实施例2中内切β-葡聚糖酶、β-葡萄糖苷酶均于第8天达到最大活性,而对比例1于12天才达到最大活性,对比例1酶活性达到峰值的时间远低于实施例2;
半纤维素酶中,实施例2和对比例1中α-葡萄糖苷酶、木聚糖酶、甘露聚糖酶均于第8天达到的最大活性,但是实施例2中α-葡萄糖苷酶、木聚糖酶、甘露聚糖酶的活性均大于对比例1的活性;
由此可以看出,添加松木屑可以加快纤维素酶的分泌,并能提高半纤维酶的分泌量。
实施例3
培养液B的制备,包括如下步骤:
将茯苓菌(Wolfiporia cocos)YX1接种于装有固体PDA培养基(1000mL固体PDA培养基中包含去皮土豆200g、葡萄糖20g、琼脂粉17g、KH2PO43g、MgSO41.5g)的平板培养皿中,进行培养;
待菌丝即将长满平板培养皿时,用打孔器打孔取样,接种在种子培养基(1000mL的种子培养基中包含去皮土豆200g、葡萄糖20g、蛋白胨3g、MgSO41.5g)中,每瓶种子培养基中含5个孔径为1cm菌饼,在恒温振荡培养箱内,于28℃、150rpm培养至菌丝生长成熟;
用移液枪吸取1.3mL种子培养基中的菌丝,接种至70mL的第二培养基(KH2PO40.2g、MgSO4·7H2O 0.5g、琥珀酸1.18g、CaCl2·2H2O 0.1g、氮溶液19.4mL、维生素溶液0.5mL、诱导剂1mL,pH=4.5,其中,诱导剂为含有2.67×10-3μmol/L MnSO4·7H2O的矿质溶液)中,于28℃培养21天,然后在超净工作台内13200rpm离心5min,取上清液得到培养液B;
上述1000ml矿质溶液中包含:一水柠檬酸铁0.087g、ZnSO4·7H2O 0.1g、CoCl2·6H2O 0.1g、CuSO4·5H2O 0.01g,溶剂为水;
1000ml氮溶液中包含:L-天门冬素4g、NH4NO32g,溶剂为水;
1000ml维生素溶液中包含:维生素H 0.002g、维生素M 0.002g、维生素B1 0.005g、维生素B2 0.005g、盐酸吡哆醇0.01g、维生素B12 0.0001g、烟酸0.005g、泛酸钙0.005g、对氨基苯甲酸0.005g、DL-6,8-硫辛酸0.005g,溶剂为水。
实施例4
第二培养基中的诱导剂为含有松木屑的矿质溶液,70mL第二培养基中含有2g松木屑,其他同实施例3。
实施例5
第二培养基中的诱导剂为含有10mmol/mL 2,6-二甲氧基苯酚的矿质溶液,其他同实施例3。
对比例2
第二培养基中的诱导剂为不含MnSO4·7H2O、松木屑和2,6-二甲氧基苯酚的矿质溶液,其他同实施例3。
于第1、3、5、7、9、11、13、15、17、19、21天,分别取实施例3-5和对比例2的培养液B,检测培养液B中漆酶、锰过氧化物酶、木质素过氧化物酶的活性;结果如表2所示。
酶活性检测方法如下:
锰过氧化物酶(MnP)、漆酶(Laccase)、木质素过氧化物酶(LiP)活性的测定分别采用2,6-DMP、藜芦醇(VA)、2,2′-连氮-双(3-乙基苯并噻唑-6-磺酸)(简称ABTS)为底物,均设置为100μl反应体系,分别测定吸光度在470nm、420nm、310nm处3min内的变化值。酶活单位(U):上述条件下,每分钟催化1μmol底物所需的酶量;
计算公式为:U=(△A*V反总*106)/(ε*d2*V*T),其中,
V为培养液B的体积,ml;V反总为反应体系总体积,ml;d2为检测吸光度时,使用的比色皿光径,1cm,T为反应时间,min;△A为吸光度的变化值;ε为摩尔消光系数,2,6-DMP的ε470=49600(mol·L-1cm)-1,藜芦醇的ε420=36000(mol·L-1cm)-1,ABTS的ε310=9300(mol·L- 1cm)-1
表2培养液B的检测结果
由表2可以看出:比较实施例3-5和对比例2,漆酶的最大活性相差不大;添加锰元素和松木屑时,实施例3-4和对比例1中锰过氧化物酶达到最大活性所需时间相同,但是实施例3-4中锰过氧化物酶的最大活性均大于对比例2;实施例3-4中木质素过氧化物酶的最大活性和达到最大活性所需的时间均优于对比例2;
添加2,6-二甲氧基苯酚时,虽然实施例5中锰过氧化物酶、木质素过氧化物酶达到最大活性所需的时间比对比例2长,但是锰过氧化物酶、木质素过氧化物酶的最大活性均大于对比例2;添加诱导剂可以加快木质纤维素酶的分泌,或者提高木质纤维素酶的分泌量。
实施例6
按照实施例2方法培养8天获得培养液A,按照实施例3培养15天获得培养液B;
按照申请号为CN202111071773.5的申请文件实施例5记载的传统松木段栽培方法栽培茯苓菌(Wolfiporia cocos)YX1,其中,在400g的原种培养基中添加上述130mL的培养液A、70mL的培养液B;进行茯苓菌(Wolfiporia cocos)YX1栽培。
实施例7
培养液B为按照实施例4培养11天获得的,其他同实施例6。
实施例8
培养液B为按照实施例5培养21天获得的,其他同实施例6。
对比例3
按照申请号为CN202111071773.5的申请文件实施例5记载的传统松木段栽培方法栽培茯苓菌(Wolfiporia cocos)YX1,不使用培养液A和培养液B。
考察实施例6-8和对比例3茯苓的生长周期、菌核重量和大小,检测结果如表3所示。
表3检测结果
由表3可以看出:本发明制备的茯苓菌用木质纤维素降解酶培养液可以促进茯苓菌(Wolfiporia cocos)YX1的生长,缩短生长周期、提高菌核重量和大小,提高产量。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (18)

1.一种茯苓菌用木质纤维素降解酶培养液,其特征在于,其包括培养液A和培养液B;所述茯苓菌为茯苓菌(Wolfiporia cocos) YX1;
其中,培养液A中外切β-葡聚糖酶的活性为14.5-16.7U/ml、内切β-葡聚糖酶的活性为31.0-34.7U/ml、β-葡萄糖苷酶的活性为32.2-36.8U/ml、α-葡萄糖苷酶的活性为9.2-10.7U/ml、木聚糖酶的活性为20.9-37.3U/ml、甘露聚糖酶的活性为272.0-341.3U/ml;
培养液B中漆酶的活性为0.0006-0.03U/ml、锰过氧化物酶的活性为0.001-0.08U/ml、木质素过氧化物酶的活性为0.003-0.1U/ml;
茯苓菌(Wolfiporia cocos) YX1,其保藏在中国典型培养物保藏中心,其保藏编号为CCTCC NO:M 2021434。
2.一种如权利要求1所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,包括如下步骤:将茯苓菌(Wolfiporia cocos) YX1菌丝接种于第一培养基,进行培养,固液分离得到培养液A;将茯苓菌(Wolfiporia cocos) YX1菌丝接种于第二培养基,进行培养,固液分离得到培养液B;合并培养液A和培养液B得到茯苓菌用木质纤维素降解酶培养液;
其中,pH=6.8-7.2的1000mL第一培养基中包含蛋白胨8-12g、酵母膏13-17g、羧甲基纤维素钠8-12g、NaCl 4-6g、KH2PO4 0.8-1.2g、木质纤维素基质15-16g,溶剂为水;
pH=4.2-4.8的1000mL第二培养基中包含KH2PO4 0.1-0.3g、MgSO4·7H2O 0.4-0.6g、琥珀酸1.1-1.3g、CaCl2·2H2O 0.05-0.15g、氮溶液18-20mL、维生素溶液0.4-0.6mL、诱导剂0.8-1.2mL,溶剂为水;
第二培养基中的诱导剂为含有Mn2+、木质纤维素基质、2,6-二甲氧基苯酚中的至少一种的矿质溶液。
3.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,木质纤维素基质为松木屑。
4.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,诱导剂中Mn2+的浓度为2.5-2.8×10-3μmol/L。
5.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,诱导剂为木质纤维素基质时,每1000mL第二培养基中木质纤维素基质的用量为28-29g。
6.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,诱导剂中2,6-二甲氧基苯酚的浓度为8-12mmol/mL。
7.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,1000ml矿质溶液中包含:一水柠檬酸铁0.08-0.09g、ZnSO4·7H2O 0.08-0.12g、CoCl2·6H2O0.08-0.12g、CuSO4·5H2O 0.005-0.015g,溶剂为水。
8.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,1000ml氮溶液中包含:L-天门冬素3-5g、NH4NO3 1.5-2.5g,溶剂为水。
9.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,每130mL的第一培养基,接种0.4-0.6mL茯苓菌(Wolfiporia cocos) YX1菌丝。
10.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,每70mL的第二培养基,接种1-5mL茯苓菌(Wolfiporia cocos) YX1菌丝。
11.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,第一培养基和第二培养基的培养温度均为24-40℃。
12.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,第一培养基的培养时间为4-8天。
13.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,当诱导剂为含有Mn2+、木质纤维素基质中的至少一种的矿质溶液时,第二培养基的培养时间为7-15天。
14.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,当诱导剂为含有2,6-二甲氧基苯酚的矿质溶液时,第二培养基的培养时间≥21天。
15.根据权利要求2所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,茯苓菌(Wolfiporia cocos) YX1经活化和种子培养基培养后,分别接种于第一培养基、第二培养基中。
16.根据权利要求15所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,茯苓菌(Wolfiporia cocos) YX1菌丝接种于第一培养基时,使用的种子培养基为:pH=6.8-7.2的1000mL的种子培养基中包含蛋白胨18-22g、羧甲基纤维素钠8-12g、NaCl 4-6g、KH2PO4 0.8-1.2g。
17.根据权利要求15所述茯苓菌用木质纤维素降解酶培养液的制备方法,其特征在于,茯苓菌(Wolfiporia cocos) YX1菌丝接种于第二培养基时,使用的种子培养基为:1000mL的种子培养基中包含去皮土豆180-220g、葡萄糖18-22g、蛋白胨2-4g、MgSO4 1-2g。
18.一种如权利要求1所述茯苓菌用木质纤维素降解酶培养液在茯苓菌(Wolfiporia cocos) YX1种植中的应用。
CN202210630514.XA 2022-06-06 2022-06-06 一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用 Active CN115011489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210630514.XA CN115011489B (zh) 2022-06-06 2022-06-06 一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210630514.XA CN115011489B (zh) 2022-06-06 2022-06-06 一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN115011489A CN115011489A (zh) 2022-09-06
CN115011489B true CN115011489B (zh) 2023-08-29

Family

ID=83073546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210630514.XA Active CN115011489B (zh) 2022-06-06 2022-06-06 一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN115011489B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199543A (zh) * 2011-01-19 2011-09-28 成都医学院 一种新的茯苓菌株及其液体发酵方法
CN105624133A (zh) * 2016-01-20 2016-06-01 徐向群 一种液体深层发酵法生产桦褐孔菌木质纤维素降解酶的工艺
CN113796260A (zh) * 2021-09-14 2021-12-17 安庆师范大学 一种茯苓菌(Wolfiporia cocos)YX1及其培养基、栽培方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806223B1 (ko) * 2014-11-07 2017-12-07 한국과학기술연구원 리그닌-셀룰로오스 동시 분해 생촉매 및 이를 이용한 당화액과 바이오 연료의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199543A (zh) * 2011-01-19 2011-09-28 成都医学院 一种新的茯苓菌株及其液体发酵方法
CN105624133A (zh) * 2016-01-20 2016-06-01 徐向群 一种液体深层发酵法生产桦褐孔菌木质纤维素降解酶的工艺
CN113796260A (zh) * 2021-09-14 2021-12-17 安庆师范大学 一种茯苓菌(Wolfiporia cocos)YX1及其培养基、栽培方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
野生茯苓鉴定及其木质纤维素降解酶系研究;覃雯 等;《广西植物》;全文 *

Also Published As

Publication number Publication date
CN115011489A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
Elisashvili et al. Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia
CN101503659B (zh) 一种哈茨木霉菌株及其应用
Mikiashvili et al. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor
Gong et al. Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus, Monilia sp.
An et al. Sequential solid-state and submerged cultivation of the white rot fungus Pleurotus ostreatus on biomass and the activity of lignocellulolytic enzymes
Mountfort et al. Anaerobic growth and fermentation characteristics of Paecilomyces lilacinus isolated from mullet gut
VARMA et al. Utilization of cell-wall related carbohydrates by ericoid mycorrhizal endophytes
US8460897B1 (en) Methods of culturing fungi and producing cellulases and chitin
Ilić et al. Valorization of lignocellulosic wastes for extracellular enzyme production by novel Basidiomycetes: screening, hydrolysis, and bioethanol production
Mikiashvili et al. Lignocellulolytic enzyme activities of medicinally important basidiomycetes from different ecological niches
Ghosh et al. Production of extracellular enzymes by two Pleurotus species using banana pseudostem biomass
CN113512501B (zh) 一株草酸青霉菌xzh-2及其应用
CN117866830A (zh) 一株发酵粘液乳杆菌及其在酥梨渣中的应用
CN115011489B (zh) 一种茯苓菌用木质纤维素降解酶培养液及其制备方法、应用
Richhariya et al. Production and optimization of enzyme xylanase by Aspergillus flavus using agricultural waste residues
Kapoor et al. Effect of supplementation of wheat straw on growth and lignocellulolytic enzyme potential of Lentinus edodes
Kachlishvili et al. Screening of novel basidiomycetes for the production of lignocellulolytic enzymes during fermentation of food wastes
CN101638645A (zh) 一种固态机械发酵生产木聚糖酶方法
CN101999524A (zh) 棘孢木霉在发酵法转化利用中药渣中的应用
CN113122460B (zh) 一种水稻秸秆降解菌及其筛选方法和应用
Masngut et al. Bacteria isolation from landfill for production of industrial enzymes for waste degradation
Jagavati et al. Cellulase production by coculture of Trichoderma sp. and Aspergillus sp. under submerged fermentation
Kachlishvili et al. Elucidation of the Higher Basidiomycetes Enzyme Activity in Dependence on the Medicinal Mushroom Inoculum Form, Precultivation Medium, Age, and Size
CN110564629A (zh) 一株里氏木霉及其培养方法与应用
CN105567610B (zh) 一株耐高温园林废弃物分解菌st5及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant