CN115001918B - 一种恒包络正交频分复用***多址接入方法 - Google Patents

一种恒包络正交频分复用***多址接入方法 Download PDF

Info

Publication number
CN115001918B
CN115001918B CN202210874982.1A CN202210874982A CN115001918B CN 115001918 B CN115001918 B CN 115001918B CN 202210874982 A CN202210874982 A CN 202210874982A CN 115001918 B CN115001918 B CN 115001918B
Authority
CN
China
Prior art keywords
fft
signal
user
frequency
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210874982.1A
Other languages
English (en)
Other versions
CN115001918A (zh
Inventor
但黎琳
胡元杰
季海梦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210874982.1A priority Critical patent/CN115001918B/zh
Publication of CN115001918A publication Critical patent/CN115001918A/zh
Priority to PCT/CN2023/096069 priority patent/WO2024021814A1/zh
Application granted granted Critical
Publication of CN115001918B publication Critical patent/CN115001918B/zh
Priority to US18/517,215 priority patent/US20240106685A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling
    • H04L25/0268Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling with modulation and subsequent demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明属于无线通信技术领域,涉及一种恒包络正交频分复用(Constant Envelope OFDM,CE‑OFDM)的多址接入方法。本发明提出了一种用户载波偏移的多址接入方法,在CE‑OFDMA***中,通过不同用户进行不同的相位旋转,降低了用户间的数据混叠,减少用户间干扰,提升***性能。

Description

一种恒包络正交频分复用***多址接入方法
技术领域
本发明属于无线通信技术领域,涉及一种基于相位旋转的恒包络正交频分复用(Constant Envelope Orthogonal Frequency Division Multiplexing,CE-OFDM)的多址接入方法。
背景技术
正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)将OFDM和频分多址(frequency division multiple access,FDMA)技术结合,具有良好的抗多径效应和多用户干扰能力,已成为第3代到第五代移动通信、无线局域网等无线通信***的物理层多址接入方案。但OFDMA***发送信号较单载波波形存在过高的峰值平均功率比(Peak to Average Power Ratio,PAPR),进而降低功率放大器的功率利用率,影响无线接入网络,特别是上行多址接入的有效覆盖范围。针对传统OFDM波形的高PAPR问题,CE-OFDM技术通过相位调制将OFDM时域符号进一步调制到恒包络载波信号的相位上,形成具有0dBPAPR特性的CE-OFDM基带发送波形,保证了功率放大器的工作效率。
虽然CE-OFDM中的相位调制操作降低了发送信号的PAPR波动,但非线性相位调制过程也破坏了子载波间的正交性,造成用户的子载波分量相互重叠,引入用户间干扰,从而导致***传输性能降低。针对用户间干扰问题,本发明提出了一种适用于CE-OFDM的新型多址接入方法。该方法通过改进用户载波偏移,缓解了用户间数据混叠,降低用户间干扰,可有效改善***传输性能。
发明内容
本发明提出了一种用户载波偏移的多址接入方法,不同用户通过不同的相位旋转,减少不同用户的子载波分量混叠,降低相位调制带来的用户间干扰,实现子带频分复用。
本发明的技术方案是:
在CE-OFDMA***中,其中子载波数为N,总用户数为U,过采样倍数为Q,每个用户所占用的子载波数为Ni=N/U,有效子载波数Nc=Ni/2,其中i=1,2,...,U表示第i个用户。所述方法包括以下步骤:
发射端:
a1.数字调制:将第i个用户的信息比特映射为M阶QAM调制后得到调制信号
Figure BDA0003762039530000021
表示为
Figure BDA0003762039530000022
a2.对称映射:将Xi按照如下共轭对称格式进行放置,得到长度为NFFT=NQ的频域符号
Figure BDA0003762039530000023
Figure BDA0003762039530000024
/>
其中,Nzp=N(Q-1),(·)*表示共轭,01×N表示一个一行N列的零向量;
a3.频域-时域变换:将
Figure BDA0003762039530000025
通过NFFT点IFFT变换生成第i个用户的时域OFDM符号
Figure BDA0003762039530000026
第i个用户第n个采样点上的信号xi[n]表示为:
Figure BDA0003762039530000027
a4.相位调制:将第i个用户的时域OFDM符号xi通过相位调制得到离散时域CE-OFDM信号
Figure BDA0003762039530000028
第i个用户第n个采样点上的信号si[n]表示为:
Figure BDA0003762039530000029
φi=2πhCNxi[n]
其中,A为载波信号幅值,2πh为调制指数;
Figure BDA00037620395300000210
为归一化常数因子,其中/>
Figure BDA00037620395300000211
此时信号si的相位φi的方差为(2πh)2
a5.时域-频域变换:将si通过NFFT点FFT变换生成第i个用户的频域信号
Figure BDA00037620395300000212
第i个用户第k个子载波上的信号Si[k]表示为:
Figure BDA00037620395300000213
a6.频域偏移:将Si向右偏移NSi=Ni(i-1)个子载波得到
Figure BDA00037620395300000214
表示为
Figure BDA00037620395300000215
a7.频域-时域变换:将S'i通过NFFT点IFFT变换得到时域信号
Figure BDA0003762039530000031
第i个用户第n个采样点上的信号s'i[n]表示为:
Figure BDA0003762039530000032
a8.加入循环前缀(CP)得到基带发送信号
Figure BDA0003762039530000033
Figure BDA0003762039530000034
其中,NCP为循环前缀长度;
接收端:
b1.时域-频域变换:将接收信号去除CP并通过NFFT点FFT变换得到频域接收信号Y=[Y(1),Y(2),…,
Figure BDA0003762039530000035
表示为
Y=H1S'1+H2S'2+…+HUS'U+W
b2.用户分离:将频域接收信号Y进行分离得到
Figure BDA0003762039530000036
表示为:
Figure BDA0003762039530000037
/>
其中,Ki=(i-2)Ni
b3.均衡偏移:将Yi通过均衡得到均衡符号
Figure BDA0003762039530000038
接着同发送端操作相反,将/>
Figure BDA0003762039530000039
向左偏移NSi个子载波得到/>
Figure BDA00037620395300000310
表示为:
Figure BDA00037620395300000311
接着通过IFFT变换到时域,再利用反正切函数进行相位解调并通过FFT变换得到
Figure BDA00037620395300000312
最后对第i个用户的有效数据进行判决得到该用户的检测结果/>
Figure BDA00037620395300000313
本发明的有益效果是:在CE-OFDMA***中,通过不同用户进行不同的相位旋转,降低了用户间的数据混叠,减少用户间干扰,提升***性能。
附图说明
图1为本发明的***框图;
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
实施例:
考虑一个上行CE-OFDM***,其中子载波数为N=32,总用户数为U=2,过采样倍数为Q=2,每个用户所占用的子载波数为Ni=N/U=16,有效子载波数Nc=Ni/2=8,其中i=1,2,采用QPSK调制。以用户2为例进行说明。所述方法包括以下步骤:
发射端:
1.数字调制:将用户2的发送比特序列映射为QPSK符号后得到调制信号
Figure BDA0003762039530000041
X(2)=[0,0.7+0.7j,0.7+0.7j,-0.7-0.7j,0.7+0.7j,0.7-0.7j,-0.7-0.7j,-0.7-0.7j]T
2.对称映射:将X(2)按照如下共轭对称格式进行放置,得到长度为NFFT=NQ=64的频域符号
Figure BDA0003762039530000042
Figure BDA0003762039530000043
3.频域-时域变换:将
Figure BDA0003762039530000044
通过NFFT=64点IFFT变换后生成第2个用户时域的OFDM符号
Figure BDA0003762039530000045
x(2)=[0.021,0.054,0.082,…,0.009,-0.005,-0.001]T
4.相位调制:将上述用户2的时域OFDM符号x(2)通过相位调制得到离散时域CE-OFDM信号
Figure BDA0003762039530000046
令A=1,2πh=0.7,计算得/>
Figure BDA0003762039530000047
CN=8.2624,则s(2)表示为
s(2)=[0.992+0.126j,0.950+0.310j,0.888+0.458j,…,0.998+0.055j,0.999-0.315j,1.00-0.007j]T
5.时域-频域变换:将s(2)通过NFFT=64点FFT变换后生成用户2的频域信号
Figure BDA0003762039530000048
S(2)=[7.56+0.019j,-0.472+0.615j,-0.446+0.446j,…,-0.547-0.486j,0.568+0.506j,0.472+0.369j]T
6.频域偏移:将S(2)向右偏移NS(2)=16个子载波得到
Figure BDA0003762039530000051
Figure BDA0003762039530000052
7.频域-时域变换:将S'(2)通过NFFT=64点IFFT变换得到时域信号
Figure BDA0003762039530000053
s'(2)=[0.124+0.015j,-0.038+0.118j,-0.111-0.057j,…,-0.007+0.124j,-0.124+0.003j,-0.001-0.125j]T
8.令NCP=2,加入循环前缀得到基带发送信号
Figure BDA0003762039530000054
s'cp (2)=[-0.124+0.003j,-0.001-0.125j,0.124+0.015j,-0.038+0.118j,,...,-0.124+0.003j,-0.001-0.125j]T
假设过高斯信道,不加噪声,则Y(2)=S'(2)
接收端:
此示例由于上述假设即可跳过步骤9和步骤10,直接进行步骤11操作。
11.均衡偏移:由于过高斯信道,则
Figure BDA0003762039530000055
那么/>
Figure BDA0003762039530000056
接着将/>
Figure BDA0003762039530000057
向左偏移NS(2)个子载波得到/>
Figure BDA0003762039530000058
Figure BDA0003762039530000059
接着通过IFFT变换到时域,再利用反正切函数进行相位解调并通过FFT变换得到
Figure BDA00037620395300000510
最后对第i个用户的有效数据进行判决得到该用户的检测结果/>
Figure BDA00037620395300000511
Figure BDA0003762039530000061
本发明中的方法通过不同用户进行不同的频域偏移,来降低用户间干扰。以本实施例为例,如果在步骤2时将不同用户映射到不同的频域,且步骤6不进行偏移,则为传统上行CE-OFDM多址接入方法,从步骤7能看出本发明中不同用户的直流分量被分开,同时相比传统上行CE-OFDM***,用户间的干扰更小。

Claims (1)

1.一种基于恒包络正交频分复用的多址接入方法,用于CE-OFDMA***,***中子载波数为N,总用户数为U,过采样倍数为Q,每个用户所占用的子载波数为Ni=N/U,有效子载波数Nc=Ni/2,其中i=1,2,…,U表示第i个用户,其特征在于,所述方法包括以下步骤:
发射端:
a1.数字调制:将第i个用户的信息比特映射为M阶QAM调制后得到调制信号
Figure FDA0003762039520000011
表示为
Xi=[0,Xi(1),Xi(2),…,Xi(Nc-1)]T
a2.对称映射:将Xi按照如下共轭对称格式进行放置,得到长度为NFFT=NQ的频域符号
Figure FDA0003762039520000012
Figure FDA0003762039520000013
其中,Nzp=N(Q-1),(·)*表示共轭,01×N表示一个一行N列的零向量;
a3.频域-时域变换:将
Figure FDA0003762039520000014
通过NFFT点IFFT变换生成第i个用户的时域OFDM符号
Figure FDA0003762039520000015
第i个用户第n个采样点上的信号xi[n]表示为:
Figure FDA0003762039520000016
a4.相位调制:将第i个用户的时域OFDM符号xi通过相位调制得到离散时域CE-OFDM信号
Figure FDA0003762039520000017
第i个用户第n个采样点上的信号si[n]表示为:
Figure FDA0003762039520000018
φi=2πhCNxi[n]
其中,A为载波信号幅值,2πh为调制指数;
Figure FDA0003762039520000019
为归一化常数因子,其中/>
Figure FDA00037620395200000110
此时信号si的相位φi的方差为(2πh)2
a5.时域-频域变换:将si通过NFFT点FFT变换生成第i个用户的频域信号
Figure FDA00037620395200000111
第i个用户第k个子载波上的信号Si[k]表示为:
Figure FDA0003762039520000021
a6.频域偏移:将Si向右偏移NSi=Ni(i-1)个子载波得到
Figure FDA0003762039520000022
表示为
Figure FDA0003762039520000023
a7.频域-时域变换:将S'i通过NFFT点IFFT变换得到时域信号
Figure FDA0003762039520000024
第i个用户第n个采样点上的信号s'i[n]表示为:
Figure FDA0003762039520000025
a8.加入循环前缀得到基带发送信号
Figure FDA0003762039520000026
/>
s'cp i=[s'i[NFFT-NCP+1],...,s'i[NFFT-1],s'i[0],s'i[1],...,s'i[NFFT-1]]T
其中,NCP为循环前缀长度;
接收端:
b1.时域-频域变换:将接收信号去除CP并通过NFFT点FFT变换得到频域接收信号
Figure FDA0003762039520000027
表示为
Y=H1S'1+H2S'2+...+HUS'U+W
b2.用户分离:将频域接收信号Y进行分离得到
Figure FDA0003762039520000028
表示为:
Figure FDA0003762039520000029
其中,Ki=(i-2)Ni
b3.均衡偏移:将Yi通过均衡得到均衡符号
Figure FDA00037620395200000210
接着同发送端操作相反,将/>
Figure FDA00037620395200000211
向左偏移NSi个子载波得到/>
Figure FDA00037620395200000212
表示为:
Figure FDA00037620395200000213
接着通过IFFT变换到时域,再利用反正切函数进行相位解调并通过FFT变换得到
Figure FDA00037620395200000214
最后对第i个用户的有效数据进行判决得到该用户的检测结果/>
Figure FDA00037620395200000215
/>
CN202210874982.1A 2022-07-25 2022-07-25 一种恒包络正交频分复用***多址接入方法 Active CN115001918B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210874982.1A CN115001918B (zh) 2022-07-25 2022-07-25 一种恒包络正交频分复用***多址接入方法
PCT/CN2023/096069 WO2024021814A1 (zh) 2022-07-25 2023-05-24 一种恒包络正交频分复用***多址接入方法
US18/517,215 US20240106685A1 (en) 2022-07-25 2023-11-22 Multiple-access constant envelope orthogonal frequency division multiplexing method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210874982.1A CN115001918B (zh) 2022-07-25 2022-07-25 一种恒包络正交频分复用***多址接入方法

Publications (2)

Publication Number Publication Date
CN115001918A CN115001918A (zh) 2022-09-02
CN115001918B true CN115001918B (zh) 2023-05-26

Family

ID=83021745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210874982.1A Active CN115001918B (zh) 2022-07-25 2022-07-25 一种恒包络正交频分复用***多址接入方法

Country Status (3)

Country Link
US (1) US20240106685A1 (zh)
CN (1) CN115001918B (zh)
WO (1) WO2024021814A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001918B (zh) * 2022-07-25 2023-05-26 电子科技大学 一种恒包络正交频分复用***多址接入方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634260A (zh) * 2013-12-06 2014-03-12 电子科技大学 一种基于sim调制的sc-ifdma通信方法
CN106453186A (zh) * 2016-09-23 2017-02-22 北京邮电大学 恒包络正交频分复用***中基于空闲子载波的频偏估计及补偿方法
US9729378B1 (en) * 2015-04-13 2017-08-08 The United States Of America As Represented By The Secretary Of The Navy Receiver architecture for constant envelope OFDM
US9853849B1 (en) * 2016-06-22 2017-12-26 Frontier Analytics, LLC Systems and methods to produce a cyclically generated, continuous phase, frequency shift keying waveform
CN110071890A (zh) * 2019-04-24 2019-07-30 哈尔滨工业大学(深圳) 一种低峰均比fbmc-oqam信号处理方法和***
CN112866838A (zh) * 2020-12-31 2021-05-28 海鹰企业集团有限责任公司 一种适用于通探一体化声纳的ce_ofdm信号设计方法
CN113612716A (zh) * 2021-08-09 2021-11-05 电子科技大学 基于恒定包络正交频分复用的多用户通信雷达一体化***
CN114157542A (zh) * 2021-11-29 2022-03-08 电子科技大学 一种基于直流分量分离的ce-ofdma***信号收发方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033947A (ko) * 2011-09-27 2013-04-04 한국전자통신연구원 데이터 송수신 장치 및 방법
US20130077714A1 (en) * 2011-09-27 2013-03-28 Electronics And Telecommunications Research Institute Apparatus and method for transmitting and receiving data
CN107426126A (zh) * 2017-07-28 2017-12-01 中国传媒大学 调频调制恒包络ofdm***
CN115001918B (zh) * 2022-07-25 2023-05-26 电子科技大学 一种恒包络正交频分复用***多址接入方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634260A (zh) * 2013-12-06 2014-03-12 电子科技大学 一种基于sim调制的sc-ifdma通信方法
US9729378B1 (en) * 2015-04-13 2017-08-08 The United States Of America As Represented By The Secretary Of The Navy Receiver architecture for constant envelope OFDM
US9853849B1 (en) * 2016-06-22 2017-12-26 Frontier Analytics, LLC Systems and methods to produce a cyclically generated, continuous phase, frequency shift keying waveform
CN106453186A (zh) * 2016-09-23 2017-02-22 北京邮电大学 恒包络正交频分复用***中基于空闲子载波的频偏估计及补偿方法
CN110071890A (zh) * 2019-04-24 2019-07-30 哈尔滨工业大学(深圳) 一种低峰均比fbmc-oqam信号处理方法和***
CN112866838A (zh) * 2020-12-31 2021-05-28 海鹰企业集团有限责任公司 一种适用于通探一体化声纳的ce_ofdm信号设计方法
CN113612716A (zh) * 2021-08-09 2021-11-05 电子科技大学 基于恒定包络正交频分复用的多用户通信雷达一体化***
CN114157542A (zh) * 2021-11-29 2022-03-08 电子科技大学 一种基于直流分量分离的ce-ofdma***信号收发方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Design of Offset Spatial Modulation OFDM;Linlin Dan et al.;《IEEE Transactions on Communications》;全文 *
On the design of offset spatial modulation with low PAPR;Hu Y et al.;《IEEE 95th Vehicular Technology Conference (VTC2022-Spring)》;全文 *
雷达与通信***一体化信号研究;杨柳丛;《中国优秀硕士学位论文全文数据库 信息科技辑》;全文 *

Also Published As

Publication number Publication date
CN115001918A (zh) 2022-09-02
US20240106685A1 (en) 2024-03-28
WO2024021814A1 (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
EP2835930B1 (en) OFDM communications methods and apparatus
US6654431B1 (en) Multicarrier personal access communication system
US8660197B2 (en) Method of and equipment for compensating carrier frequency offset in an orthogonal frequency division multiplexing wireless radio transmission system
US7583738B2 (en) Apparatus and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing communication system
JP2014526201A (ja) フィルタバンク・マルチキャリア・システムにおいてpaprを低減させるための方法および装置
JP4650104B2 (ja) 通信装置及び通信方法
JP2001060936A (ja) 直交周波数分割多重信号の送受信方法及びその装置
CN110138700B (zh) 一种基于门限判决的连续相位调制低复杂度解调方法
CN109462443B (zh) 一种5g多载波水声通信方法
CN115001918B (zh) 一种恒包络正交频分复用***多址接入方法
CN112511238A (zh) 一种基于im/dd的自适应偏置分层光ofdm方法
CN110071890B (zh) 一种低峰均比fbmc-oqam信号处理方法和***
JP4128867B2 (ja) 直交周波数分割多重方式のためのパーシャルレスポンスシグナリング
CN101123449A (zh) 干扰消除方法和装置
CN116488967A (zh) 一种上行多址接入链路的低papr解调参考信号传输方法
Patel et al. A comparative performance analysis of OFDM using MATLAB simulation with M-PSK and M-QAM mapping
Yadav Pulse Based GFDM Modulation Technique for Future Generation Communication Systems
CN108880777B (zh) 适用于ufmc波形的信道探测参考信号发送与接收方法
CN114157542B (zh) 一种基于直流分量分离的ce-ofdma***信号收发方法
CN109412995B (zh) 基于可变子载波带宽的多流准恒包络多载波传输方法
Khalifa et al. A comparative study for RNS coding scheme performance in OFDM and SC-FDMA Systems
KR101499250B1 (ko) 직교 주파수 분할 다중 전송 방식의 주파수 효율 증가 장치및 방법
CN115801528B (zh) 一种基于时延网格分组的otfs波形峰均比抑制方法
Akila et al. Performance analysis of filter bank multicarrier system for 5G networks
Abd El-Rahman et al. A new method to enhance SC-FDMA communication with channel estimation errors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant