CN114157542B - 一种基于直流分量分离的ce-ofdma***信号收发方法 - Google Patents

一种基于直流分量分离的ce-ofdma***信号收发方法 Download PDF

Info

Publication number
CN114157542B
CN114157542B CN202111432412.9A CN202111432412A CN114157542B CN 114157542 B CN114157542 B CN 114157542B CN 202111432412 A CN202111432412 A CN 202111432412A CN 114157542 B CN114157542 B CN 114157542B
Authority
CN
China
Prior art keywords
signal
user
dft
modulation
qam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111432412.9A
Other languages
English (en)
Other versions
CN114157542A (zh
Inventor
顾新杰
但黎琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111432412.9A priority Critical patent/CN114157542B/zh
Publication of CN114157542A publication Critical patent/CN114157542A/zh
Application granted granted Critical
Publication of CN114157542B publication Critical patent/CN114157542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03535Variable structures
    • H04L2025/03541Switching between domains, e.g. between time and frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明属于无线通信技术领域,具体涉及一种基于直流分量分离的CE‑OFDMA***信号收发方法。本发明主要是将调制后生成的调制信号按照共轭对称格式放置,然后进行映射,并且映射完的频域数据仍要满足共轭对称格式,再通过相位调制后得到发射信号。本发明提出一种应用于上行链路的基于直流分量分离CE‑OFDMA***的信号收发方法,且发射机可以解决各用户载频功率聚集于载频频点导致各用户信息丢失的问题,保证最终各用户的BER性能。

Description

一种基于直流分量分离的CE-OFDMA***信号收发方法
技术领域
本发明属于无线通信技术领域,具体涉及一种基于直流分量分离的CE-OFDMA(Constant Envelope Orthogonal Frequency Division Multiple Access,恒包络正交频分多址)***信号收发方法。
背景技术
正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)是无线数字通信中一种常用的多址接入技术,可以在严重多径衰落的恶劣无线信道上高速率的传输数据。然而,OFDMA的主要缺点是调制波形具有高幅度波动,从而产生较大的峰均功率比(Peak to Average Power Ratio,PAPR)。高PAPR使得OFDMA对发射机功率放大器(PowerAmplifier,PA)引起的非线性失真非常敏感,如果没有足够的功率回退,***的频谱将会展宽,并因此导致性能下降,而用增加功率回退来解决这一问题会降低PA效率。不同于下行链路中每个用户的发送功率受基站的总发送功率以及其他各个用户的发送功率影响,上行链路中每个用户的发送功率只是受到其设备的最大的发送功率影响。所以PA效率问题对于功率消耗有严格要求的上行链路来说更为严峻,可见高效放大是在未来超高频段运行的未来***的关键因素。
恒包络正交频分多址(CE-OFDMA)***发射端基带信号具有最低PAPR=0dB的恒包络特性,使得信号可通过饱和放大器传输且无幅度失真和频谱再生。除此之外,相较于OFDM信号,CE-OFDM通过相位调制产生子载波之间的相关性,可获得一定多径衰落的分集增益,当调制指数大于1时产生更优的误码率性能。但是,相较于OFDMA,CE-OFDMA用户间子载波存在干扰,且所有用户的直流分量在接收端完全叠加,对多用户检测带来新的问题。
现有CE-OFDMA***基本为下行多用户设计,并主要采用多用户联合检测。
发明内容
本发明针对上行链路的CE-OFDMA***,提出了一种基于直流分量分离的信号收发方法,解决了CE-OFDMA每个用户的直流分量在载波频点聚集使得用户信息丢失的问题,提高了***的误码率性能。
本发明的技术方案为:
一种基于直流分量分离的CE-OFDMA上行信号收发方法,设定所述的CE-OFDMA***中,用户数为U,调制指数为2πh,数字调制方式为M-QAM,循环前缀长度为NCP,总子载波数为NDFT,各用户子载波数为Ni=NDFT/U,则各用户可传输数字调制为NQAM=(NDFT/U-2)/2,其中i=1,2,...,U,表示第i个用户。
所述的***,包括:
发射端,如图1:
S1、调制与映射:
第i个用户比特数据bi(n),n=1,2,...,NQAMlog2M经过M-QAM调制后生成调制信号Xi[k],k=1,2,...,NQAM,然后按照如下共轭对称格式放置:
Xi[k]=[0,X[1],X[2],…,X[NQAM],0,X*[NQAM],…,X*[2],X*[1]]
然后对调制数据进行子载波映射;然后经过NDFT点长度的IFFT变换,经过并\串变换后生成时域信号:
Figure BDA0003380575930000021
其中
Figure BDA0003380575930000022
为归一化因子;
S2、相位调制:
将时域信号乘以调制指数2πh调制,并经过相位调制生成用户i的相位调制信号si
si(n)=Aexp[j2πhxi(t)]
其中A为CE-OFDM信号的幅值参数。最后,将相位调制信号***保护前缀得到:
sCP_i(n)=[si(NDFT-NCP),si(NDFT-NCP+1),...,si(NDFT-1),si(0),si(1),...,si(NDFT-1)]
然后将信号sCP_i(n)发送。
接收端,如图2:
S3、设时域接收信号yCP(n)为:
yCP(n)=[yCP(0),yCP(1),...,yCP(NDFT+NCP-1)]
移除循环前缀及串并变换得到y(n):
y(n)=[y(0),y(1),...,y(NDFT-1)]
S4、信道均衡:
经过FFT模块将其变成频域信号Y:
Figure BDA0003380575930000031
然后对其进行信道均衡,均衡方法为迫零均衡或最小均方误差均衡。均衡后信号表示为
Figure BDA0003380575930000032
S5、多用户信号分离:
根据子载波映射位置分离出各用户信号
Figure BDA0003380575930000033
将频域信号经过IFFT模块转换到时域,得到时域信号/>
Figure BDA0003380575930000034
计算用户信号
Figure BDA0003380575930000035
的平均功率/>
Figure BDA0003380575930000036
Figure BDA0003380575930000037
计算功率变化因子λ:
Figure BDA0003380575930000038
根据
Figure BDA0003380575930000039
和λ,计算各用户直流分量Ci
Figure BDA00033805759300000310
根据直流分量更新时域信号:
Figure BDA0003380575930000041
S6、相位解调:
时域更新信号经过相位解调器得到相位信息:
Figure BDA0003380575930000042
其中
Figure BDA0003380575930000043
和/>
Figure BDA0003380575930000044
分别是/>
Figure BDA0003380575930000045
的实部分量与虚部分量。
S7、获取传输比特:
将相位解调后的信号经过FFT模块得到频域信号
Figure BDA0003380575930000046
最后对经过数字调制的数据进行M-QAM解调后得到各用户发送的比特数据。
本发明的有益效果为,提出一种应用于上行链路的基于直流分量分离CE-OFDMA***的信号收发方法,且发射机可以解决各用户载频功率聚集于载频频点导致各用户信息丢失的问题,保证最终各用户的BER性能。
附图说明
图1是上行链路CE-OFDMA***发射端框图。
图2是上行链路CE-OFDMA***接收端框图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
实施例
本例中用户数为U=2,调制指数为2πh=0.5,数字调制方式为QPSK(4-QAM),循环前缀长度为NCP=3,总子载波数为NDFT=64,各用户子载波数为N1=N2=32,则各用户可传输数字调制符号数为NQAM=15,信道参数为EVA信道,采用MMSE均衡,理想信道估计为例。
发射端:
步骤1-1:确定要选择的***的参数,即确定用户数为U=2,调制指数为2πh=0.5,数字调制方式为QPSK,总子载波数为NDFT=64,各用户子载波数为N1=N2=32,则各用户可传输数字调制符号数为NQAM=15,信号幅值参数A=1。然后根据公式计算出各用户需传输的比特数。
步骤1-2:OFDM调制。先对两个用户的比特信息进行QPSK调制,然后按照共轭对称的格式按集中式分布映射到对应子载波位置:
用户1:X1[k]=[0,X1[1],X1[2]…,X1[15],01×32,0,X1 *[15],…,X1 *[1]],k=1,2,...,64
用户2:X2[k]=[01×16,X2[1],X2[2]…,X2[15],0,X2 *[15],…,X2 *[2],X2 *[1],01×16],k=1,2,...,64
然后经过64点长度的IFFT变换,经过并\串变换后生成时域信号:
Figure BDA0003380575930000051
其中
Figure BDA0003380575930000052
步骤1-3:相位调制。将时域信号乘以调制指数2πh=0.5调制,并经过相位调制生成用户i的相位调制信号si,假设用户1与用户2是等功率发射:
Figure BDA0003380575930000053
最后,将相位调制信号***保护前缀得到:
sCP_i(n)=[si(61),si(62),si(63),si(0),si(1),...,si(63)]
然后将信号sCP_i(n)发送。
接收端:
步骤2-1:设时域接收信号yCP(n)为:
yCP(n)=[yCP(0),yCP(1),...,yCP(NDFT+NCP-1)]
步骤2-2:信道均衡。移除循环前缀及串并变换得到y(n):
y(n)=[y(0),y(1),...,y(NDFT-1)]
经过FFT模块将其变成频域信号Y:
Figure BDA0003380575930000061
然后根据理想信道估计所得信道参数
Figure BDA0003380575930000062
Figure BDA0003380575930000063
然后对其进行信道均衡,均衡方法为破零均衡。均衡后信号表示为
Figure BDA0003380575930000064
Figure BDA0003380575930000065
其中{·}H为共轭对称转置变换。
步骤2-3:多用户信号分离。根据子载波映射位置分离出各用户信号
Figure BDA0003380575930000066
用户1:
Figure BDA0003380575930000067
用户2:
Figure BDA0003380575930000068
然后将频域信号经过IFFT模块转换到时域,得到时域信号
Figure BDA0003380575930000069
/>
计算用户信号
Figure BDA00033805759300000610
的平均功率/>
Figure BDA00033805759300000611
P1=P2=1
计算功率变化因子λ:
λ=1.77
根据
Figure BDA00033805759300000612
和λ,计算各用户直流分量Ci
C1=C2=0.885e-1/8
根据直流分量更新时域信号:
Figure BDA0003380575930000071
Figure BDA0003380575930000072
步骤4-1:相位解调。时域更新信号经过相位解调器得到相位信息:
Figure BDA0003380575930000073
Figure BDA0003380575930000074
其中
Figure BDA0003380575930000075
和/>
Figure BDA0003380575930000076
分别是/>
Figure BDA0003380575930000077
的复数形式即/>
Figure BDA0003380575930000078
的实部分量与虚部分量。
步骤4-2:获取传输比特。将相位解调后的信号经过FFT模块得到频域信号
Figure BDA0003380575930000079
Figure BDA00033805759300000710
最后对经过数字调制的数据进行M-QAM解调后得到各用户发送的比特数据。
本发明提出一种应用于上行链路的基于直流分量分离CE-OFDMA***的信号收发方法,该方法根据CE-OFDM信号基带0dB PAPR的优势将其应用于上行链路中,并且发射机可以解决各用户载频功率聚集于载频频点导致各用户信息丢失的问题,保证最终各用户的BER性能。

Claims (1)

1.一种基于直流分量分离的CE-OFDMA***信号收发方法,所述CE-OFDMA***中,用户数为U,调制指数为2πh,数字调制方式为M-QAM,循环前缀长度为NCP,总子载波数为NDFT,各用户子载波数为Ni=NDFT/U,则各用户可传输数字调制阶数为NQAM=(NDFT/U-2)/2,其中i=1,2,...,U,表示第i个用户;其特征在于,包括:
S1、调制与映射:
第i个用户比特数据bi(n),n=1,2,...,NQAM log2 M经过M-QAM调制后生成调制信号Xi[k],k=1,2,...,NQAM,M为调制阶数,然后按照如下共轭对称格式放置:
Xi[k]=[0,X[1],X[2],…,X[NQAM],0,X*[NQAM],…,X*[2],X*[1]]
然后对调制数据进行子载波映射;然后经过NDFT点长度的IFFT变换,经过并\串变换后生成时域信号:
Figure FDA0004073313800000011
其中
Figure FDA0004073313800000012
为归一化因子;
S2、相位调制:
将步骤S1得到的时域信号乘以调制指数2πh,并经过相位调制生成用户i的相位调制信号si
si(n)=Aexp[j2πhxi(t)]
其中A为CE-OFDM信号的幅值参数;将相位调制信号***循环前缀得到发射信号:
sCP_i(n)=[si(NDFT-NCP),si(NDFT-NCP+1),...,si(NDFT-1),si(0),si(1),...,si(NDFT-1)]
然后将发射信号sCP_i(n)进行发送;
S3、设时域接收信号yCP(n)为:
yCP(n)=[yCP(0),yCP(1),...,yCP(NDFT+NCP-1)]
移除循环前缀及串并变换得到y(n):
y(n)=[y(0),y(1),...,y(NDFT-1)]
S4、信道均衡:
经过FFT模块将y(n)变成频域信号Y:
Figure FDA0004073313800000021
然后对其进行信道均衡,均衡后信号表示为
Figure FDA0004073313800000022
S5、多用户信号分离:
根据子载波映射位置分离出各用户信号
Figure FDA0004073313800000023
将频域信号经过IFFT模块转换到时域,得到时域信号/>
Figure FDA0004073313800000024
计算用户信号
Figure FDA0004073313800000025
的平均功率/>
Figure FDA0004073313800000026
Figure FDA0004073313800000027
计算功率变化因子λ:
Figure FDA0004073313800000028
根据
Figure FDA0004073313800000029
和λ,计算各用户直流分量Ci
Figure FDA00040733138000000210
根据直流分量更新时域信号:
Figure FDA0004073313800000031
S6、相位解调:
时域更新信号经过相位解调器得到相位信息:
Figure FDA0004073313800000032
其中
Figure FDA0004073313800000033
和/>
Figure FDA0004073313800000034
分别是/>
Figure FDA0004073313800000035
的实部分量与虚部分量;
S7、获取传输比特:
将相位解调后的信号经过FFT得到频域信号
Figure FDA0004073313800000036
最后对经过数字调制的数据进行M-QAM解调后得到各用户发送的比特数据。/>
CN202111432412.9A 2021-11-29 2021-11-29 一种基于直流分量分离的ce-ofdma***信号收发方法 Active CN114157542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111432412.9A CN114157542B (zh) 2021-11-29 2021-11-29 一种基于直流分量分离的ce-ofdma***信号收发方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111432412.9A CN114157542B (zh) 2021-11-29 2021-11-29 一种基于直流分量分离的ce-ofdma***信号收发方法

Publications (2)

Publication Number Publication Date
CN114157542A CN114157542A (zh) 2022-03-08
CN114157542B true CN114157542B (zh) 2023-03-31

Family

ID=80454941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111432412.9A Active CN114157542B (zh) 2021-11-29 2021-11-29 一种基于直流分量分离的ce-ofdma***信号收发方法

Country Status (1)

Country Link
CN (1) CN114157542B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001918B (zh) * 2022-07-25 2023-05-26 电子科技大学 一种恒包络正交频分复用***多址接入方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107181706A (zh) * 2017-05-31 2017-09-19 北京邮电大学 一种恒包络正交频分复用***中基于前导符号的频偏估计及补偿方法
CN110138700A (zh) * 2019-04-04 2019-08-16 西安电子科技大学 一种基于门限判决的连续相位调制低复杂度解调方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936121B1 (fr) * 2008-09-15 2010-11-05 Commissariat Energie Atomique Methode d'estimation aveugle de parametres de modulation ofdm selon un critere de maximun de vraisemblance.
CN102684819B (zh) * 2011-03-15 2015-06-03 华为技术有限公司 一种数据传输方法及相关设备、***
US10897388B2 (en) * 2017-12-08 2021-01-19 Panasonic Intellectual Property Corporation Of America Transmitter, receiver, transmission method, and reception method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107181706A (zh) * 2017-05-31 2017-09-19 北京邮电大学 一种恒包络正交频分复用***中基于前导符号的频偏估计及补偿方法
CN110138700A (zh) * 2019-04-04 2019-08-16 西安电子科技大学 一种基于门限判决的连续相位调制低复杂度解调方法

Also Published As

Publication number Publication date
CN114157542A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
Cimini et al. Clustered OFDM with transmitter diversity and coding
US8660197B2 (en) Method of and equipment for compensating carrier frequency offset in an orthogonal frequency division multiplexing wireless radio transmission system
KR100968665B1 (ko) 적응 무선/변조 장치, 수신 장치, 무선통신 시스템 및무선통신 방법
CN1913515B (zh) 基于正交频分多址的数据通信方法
US20050238110A1 (en) Apparatus and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing communication system
KR20080026896A (ko) 이동통신 시스템에서 은닉 학습 신호를 이용하여 채널을 추정하기 위한 장치 및 방법
WO2008135936A1 (en) Fft spreading among selected ofdm sub-carriers
CN101394385B (zh) 基于时域处理联合信道估计的提高正交频分复用***性能的方法
CN107317784B (zh) 一种多带并行滤波混合载波传输方法
CN114157542B (zh) 一种基于直流分量分离的ce-ofdma***信号收发方法
CN101141167A (zh) 一种dft-cdma***中单载波频域均衡方法和***
CN108768914B (zh) 联合正交与非正交的高效频分复用传输方法及传输***
Patel et al. A comparative performance analysis of OFDM using MATLAB simulation with M-PSK and M-QAM mapping
CN115001918B (zh) 一种恒包络正交频分复用***多址接入方法
CN116488967A (zh) 一种上行多址接入链路的低papr解调参考信号传输方法
US20050007946A1 (en) Multi-carrier transmission
Aboharba et al. Performance analysis of a low-complexity detection for OFDM Index Modulation over Nakagami-m fading
CN107949060A (zh) 一种用于混合循环前缀正交频分多址的功率分配方法
Roy et al. Performance of SC-FDMA for LTE uplink under different modulation schemes
CN101895485A (zh) 一种多用户和白噪声干扰抑制ifdma***接收方法
Kobayashi et al. Proposal of single carrier OFDM technique with adaptive modulation method
CN112994745A (zh) 一种适用于中压载波***的功率分配优化方法
Gong et al. A low-PAPR hybrid NOMA based on constant envelope OFDM
KR20080112578A (ko) 직교 주파수 분할 다중 전송 방식의 주파수 효율 증가 장치및 방법
Patel et al. LTE-advanced system based on MIMO-OFDM for rayleigh channel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant