CN114976372A - 一种电池储能***及电动汽车 - Google Patents

一种电池储能***及电动汽车 Download PDF

Info

Publication number
CN114976372A
CN114976372A CN202110199884.8A CN202110199884A CN114976372A CN 114976372 A CN114976372 A CN 114976372A CN 202110199884 A CN202110199884 A CN 202110199884A CN 114976372 A CN114976372 A CN 114976372A
Authority
CN
China
Prior art keywords
module
channel
space
battery
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110199884.8A
Other languages
English (en)
Inventor
蒙浩
周贺
陈君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Digital Power Technologies Co Ltd
Original Assignee
Huawei Digital Power Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Digital Power Technologies Co Ltd filed Critical Huawei Digital Power Technologies Co Ltd
Priority to CN202110199884.8A priority Critical patent/CN114976372A/zh
Publication of CN114976372A publication Critical patent/CN114976372A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种电池储能***及电动汽车。该电池储能***包括壳体、电池模组、温控组件及导流部。壳体内部设置有将壳体内部空间分隔成相互独立的第一空间和第二空间的阻流板。电池模组包括模组壳体和电芯,模组壳体的两端分别具有与第一空间连通的第一开口和与第二空间连通的第二开口,模组壳体设置在阻流板上。温控组件设置在壳体上,温控组件内部具有温控通道和位于温控通道内部的换热装置,温控通道的两端分别具有与第一空间连通的第一流通口和与第二空间连通的第二流通口,第一空间、模组壳体内部空间、第二空间和温控通道构成循环通道。导流部设置在循环通道内,用于引导循环通道内的换热介质沿第一方向或者第二方向流动。

Description

一种电池储能***及电动汽车
技术领域
本申请涉及电池储能技术领域,尤其涉及一种电池储能***及电动汽车。
背景技术
电池储能具备高灵活性、高可靠性、高能量密度的特点,随着电池成本的快速下降,在用电侧和发电侧都得到了快速发展,其中比较显著的是装机容量得到大幅提升,续航能力日益增强。在大规模的商用储能中,为了追求产品的高功率密度,必然会压缩散热空间。在电池***中体现为多个电池模组堆叠布置,电池模组内部电芯也堆叠布置,这就会存在不可避免的热累积,导致电池模组内部电芯之间温差过大。长期工作后,高温的电芯与低温的电芯的电池健康度(state of health,SOH)会存在明显差异,而电池模组的容量受制于其内部电池健康度最低的电芯,这就导致电池模组的可使用容量降低,进而导致电池***的整体收益随之下降。
发明内容
本申请提供了一种电池储能***及电动汽车,以降低电池模组内部电芯之间的温度差异。
第一方面,本申请提供了一种电池储能***,包括壳体、电池模组、温控组件及导流部;壳体内部设置有阻流板,阻流板将壳体内部空间分隔成相互独立的第一空间和第二空间;电池模组包括模组壳体和设置于模组壳体内部的电芯,模组壳体的两端分别具有第一开口和第二开口,模组壳体设置在阻流板上,第一开口与第一空间连通,第二开口与第二空间连通;温控组件设置在壳体上,温控组件内部具有温控通道和换热装置,换热装置位于温控通道内部,温控通道的两端分别具有第一流通口和第二流通口,第一流通口与第一空间连通,第二流通口与第二空间连通,第一空间、模组壳体内部空间、第二空间和温控通道构成循环通道;导流部设置在循环通道内,导流部用于引导循环通道内的换热介质沿第一方向或者第二方向流动,第一方向与第二方向相反。
本申请提供的技术方案,换热介质流进模组壳体内部空间,与模组壳体内部电芯换热,实现对模组壳体内部电芯的温度调控,换热介质的流动方向在导流部的带动下可变,导流部可使换热介质在循环通道内的流动方向为第一方向,第一方向具体可为依次流经“温控通道-第一空间-模组壳体内部空间-第二空间-温控通道”的方向,也可使换热介质在循环通道内的流动方向为第二方向,第二方向与第一方向相反,第二方向具体可为依次流经“温控通道-第二空间-模组壳体内部空间-第一空间-温控通道”的方向,也就是说,换热介质在导流部的带动下在循环通道内可以变换向为相反的方向流动,能够增强对电池模组内部电芯整体的降温效果,有效降低电池模组内部电芯之间的温度差,提升电芯之间的温度均匀性,减轻高温电芯热累积,从而延长电芯使用寿命,提升电池模组生命周期内的容量,保证电池***整体的储能收益。
在一个具体的可实施方案中,导流部设置在温控通道内。导流部可以比较直接地引导换热介质流出或流入温控通道,加快换热介质流经温控通道的速度,快速地为电池模组提供换热介质,提高电池模组内部电芯的换热效率。
在一个具体的可实施方案中,导流部设置在第一开口处。导流部可以比较直接地引导换热介质流出或流入模组壳体内部空间,加快换热介质流经模组壳体内部空间的速度,快速地为电芯提供换热介质,能够使得电芯的换热效率得到有效提高。
在一个具体的可实施方案中,第一流通口和第二流通口位于阻流板的同一侧;电池储能***还包括导流通道,导流通道的一端与第一流通口连通,另一端与第一空间连通。温控通道的第一流通口和第一空间分别位于阻流板的不同侧时,通过导流通道能够将温控通道的第一流通口与第一空间连通,导流通道的设置,使得第一流通口和第二流通口可以位于阻流板的同一侧,便于温控通道连同换热装置及其他相关构件一并设计为侧装式空调的结构形式。
在具体设置导流通道时,导流通道包括至少一个导流板,至少一个导流板围成通道状结构,导流通道便于成型;或/和,一个以上导流板与壳体内壁围成通道状结构,导流板可以与壳体内壁共同构成导流通道,能够节省导流板用料量,还能够与壳体结构灵活结合。
除了上述设置导流部的方式外,还可以采用其他的方式,如导流部设置在导流通道内。导流部可以比较直接地引导换热介质流出或流入第一空间,能够提高电池模组内部电芯的换热效率。
在一个具体的可实施方案中,第一流通口和第二流通口分别位于阻流板的两侧。便于温控通道连同换热装置及其他相关构件一并设计为顶装式空调的结构形式。
在一个具体的可实施方案中,电池模组的数量为多个,能够提升电池储能***整体容量,多个电池模组间隔排列,电池模组之间的散热干扰较小。
在具体设置模组壳体内部结构时,模组壳体内部设置有第一模组通道、第二模组通道和第三模组通道;第一模组通道的一端与第一空间连通,另一端封闭;第二模组通道的一端与第二空间连通,另一端封闭,第二模组通道与第一模组通道平行设置;第三模组通道的两端分别与第一模组通道和第二模组通道连通,第三模组通道设置于相邻电芯之间。第一模组通道、第二模组通道和多个第三模组通道形成模组壳体内部的换热通道网络,流进每个第三模组通道的换热介质温度相对接近,能够减小电芯之间的温差。
除了上述设置模组壳体内部结构的方式外,还可以采用其他的方式,如模组壳体内部设置有第四模组通道,第四模组通道的两端分别与第一空间和第二空间连通,第四模组通道设置于相邻电芯之间。第四模组通道的设置有利于换热介质的快速流动,能够减小模组壳体第一端附近与模组壳体第二端附近的换热介质温差,从而减小靠近模组壳体第一端的电芯与靠近模组壳体第二端的电芯之间的温差。
在一个具体的可实施方案中,电池储能***还包括控制部和温度检测装置;温度检测装置设置于模组壳体内部,用于检测位于模组壳体两端的电芯之间的温差;控制部设置在壳体上,控制部与温度检测装置连接,用于根据电芯之间的温差控制导流部引导循环通道内的换热介质沿第一方向或者第二方向流动。温度检测装置可以检测位于模组壳体两端的电芯之间的温差,控制部可以接收温度检测装置所检测的温差信息,并根据预设条件控制导流部正转或反转,引导循环通道内的换热介质沿第一方向或者第二方向流动,实现对模组壳体内部电芯的主动控温,提升电池储能***的智能化程度。
第二方面,本申请提供了一种电动汽车,包括如前述的电池储能***,以及动力***,电池储能***用于为动力***供电,动力***用于驱动电动汽车行驶。电池储能***的容量稳定,使用寿命长,能够可靠地为动力***供电,提升电动汽车工作的可靠性、安全性。
附图说明
图1为本申请实施例提供的电池储能***的结构示意图;
图2为本申请实施例提供的电池储能***中的第一开口的结构示意图;
图3为本申请实施例提供的电池储能***中的第一开口的另一结构示意图;
图4为本申请实施例提供的电池储能***的换热介质流动方向示意图;
图5为本申请实施例提供的电池储能***的换热介质另一流动方向示意图;
图6为本申请实施例提供的电池储能***的另一结构示意图;
图7为本申请实施例提供的电池储能***的另一结构示意图;
图8为本申请实施例提供的电池储能***的另一结构示意图;
图9为本申请实施例提供的电池储能***的另一结构示意图;
图10为本申请实施例提供的电池储能***的另一结构示意图;
图11为本申请实施例提供的电池储能***的另一结构示意图;
图12为本申请实施例提供的电池储能***的侧视结构示意图;
图13为本申请实施例提供的电池储能***的另一结构示意图;
图14为本申请实施例提供的电池储能***的换热介质另一流动方向示意图;
图15为本申请实施例提供的电池储能***中的模组壳体的内部结构示意图;
图16为本申请实施例提供的电池储能***的换热介质在模组壳体内部的流动方向示意图;
图17为本申请实施例提供的电池储能***中的模组壳体的另一内部结构示意图。
附图标记:
100-壳体;200-阻流板;300-模组壳体;400-温控组件;500-导流部;600-导流通道;700-电芯;800-控制部;101-第一空间;102-第二空间;301-第一开口;302-第二开口;303-第一模组通道;304-第二模组通道;305-第三模组通道;306-第四模组通道;401-第一流通口;402-第二流通口;403-温控通道;404-换热装置;405-转向板;601-导流板。
具体实施方式
为了方便理解,首先说明本申请实施例涉及的电池储能***的应用场景。本申请实施例提供的电池储能***可应用于电动汽车领域,为电动汽车整车提供电能,实现电动汽车行驶。为了提高功率密度,电池储能***通常包括多个电池模组,且多个电池模组堆叠布置,每个电池模组内部又包括多个堆叠布置的电芯,***的散热空间相对被压缩,这就不可避免地存在热量的级联效应,由此导致不同的电芯之间出现温差。由于热量累积,随着时间推移,高温电芯的温度将持续升高,高温电芯与低温电芯之间的温差不断加大,高温电芯与低温电芯在电池健康度方面的差异愈发明显。电池模组的可使用容量受电池健康度最低的电芯所制约,从而使得电池模组的可使用容量下降,导致电池储能***整体的容量降低。
基于此,本申请实施例提供了一种电池储能***,该电池储能***可以降低电池模组内部电芯之间的温度差异,进而缩小各个电芯健康度的差异,保证电池模组在生命周期内的容量。下面将结合附图,对本申请实施例进行详细描述。
首先参考图1,图1示出了本申请实施例提供的电池储能***的结构示意图。如图1所示,本实施例提供的电池储能***包括壳体100,在壳体100的内部设置阻流板200,阻流板200将壳体100内部空间分隔成相互独立的第一空间101和第二空间102。阻流板200上设置有一个或多个电池模组,电池模组包括模组壳体300和设置在模组壳体300内部的电芯。模组壳体300的第一端可设置有第一开口,模组壳体300的第二端可设置有第二开口,模组壳体300内部空间通过第一开口和第二开口与模组壳体300外部空间连通,具体实施时,第一开口可以与第一空间101连通,第二开口可以与第二空间102连通。
继续参考图2和图3,图2示出了本申请实施例提供的电池储能***中的第一开口的结构示意图,图3示出了本申请实施例提供的电池储能***中的第一开口的另一结构示意图。如图2所示,模组壳体300上的第一开口301可以具有孔状结构。或者,如图3所示,第一开口301可以具有网格状结构。可以理解,第一开口301还可具有能够使换热介质流通的其他结构。第二开口也可以具有孔状结构或网格状结构等。上述的孔状,或者网格状结构等,可通过去除材料的工艺方式在模组壳体300上成型。具体实施时,可使第一开口301位于第一空间内,第二开口位于第二空间内,从而第一空间和第二空间能够通过模组壳体300内部空间互相连通。模组壳体300上还可以设置除第一开口301和第二开口以外的其他开口,以增大换热介质流通量,其他开口可以设置在模组壳体300上靠近模组壳体300端部的侧面,且其他开口或是位于第一空间内,或是位于第二空间内。
再次参考图1,本实施例的阻流板200可以竖向设置在壳体100内,使第一空间101和第二空间102分别位于阻流板200的左右两侧。阻流板200上设置有多个电池模组时,多个电池模组可以沿阻流板200的长度方向或宽度方向间隔排列,此外,多个电池模组可以排列成一列,也可以排列成相互间隔的多列。例如,当阻流板200竖向设置在壳体100内时,多个电池模组可以在竖向上层叠排列成一列,或者层叠排列成相互间隔的多列。
电池模组可以通过安装支架安装在壳体100内部,阻流板200可以设置在安装支架上,即阻流板200与安装支架集成,阻流板200与安装支架配合作用,将壳体100内部空间分隔成相互独立的第一空间101和第二空间102。在具体实施中,安装支架可以采用柱状结构,柱状的安装支架可以紧邻排布,以将壳体100内部空间分隔成相互独立的第一空间101和第二空间102,此时可不必再单独另设阻流板200;或者,安装支架可以采用板状结构,板状的安装支架将壳体100内部空间分隔成相互独立的第一空间101和第二空间102,此时也可不必再单独另设阻流板200。
本实施例的壳体100上还设置有温控组件400,温控组件400内部具有温控通道403,温控通道403的第一端可设置有第一流通口401,温控通道403的第二端可设置有第二流通口402。具体实施时,第一流通口401可与第一空间101连通,第二流通口402可与第二空间102连通,从而第一空间101和第二空间102能够通过温控通道403互相连通。结合上述的第一空间101和第二空间102能够通过模组壳体300内部空间互相连通,整体而言,第一空间101、模组壳体300内部空间、第二空间102和温控通道403一起构成了封闭的循环通道。循环通道内填充有换热介质,换热介质可以在循环通道内流通。
其中,壳体100是封闭的,温控通道403也是封闭的,从而循环通道整体是封闭的。循环通道不与外界连通,能够提升换热可靠性,降低换热能耗,另外还可以避免外界的脏污杂质等进入循环通道,影响电芯的性能。换热介质可为空气,或者其他气体,或者空气与其他气体的混合气。换热介质为气体时,导流部500可以采用可反转的轴流风扇等。
本实施例的温控通道403内设置有换热装置404,换热装置404可以具备制冷功能,也可以同时具备加热功能。制冷功能用于冷却换热介质,进而使换热介质在循环流动时对电池模组内部电芯进行降温。加热功能用于加热换热介质,进而使换热介质在循环流动时对电池模组内部电芯进行升温,比如外界环境温度较低时,如果电池模组静置了一段时间,则电池模组内部电芯的温度较低,电池模组内部电芯经过适当加热后能够更可靠地工作。在具体实施中,当换热介质为气体时,换热装置404可以采用蒸发器、热电制冷装置等。温控通道403内的换热装置404可以为多个,多个换热装置404可以根据电芯的温度状况选择性开启,例如,当电芯的温度很高时,可以开启其中多个或全部换热装置404对电芯进行降温,当电芯的温度相对较高时,可以开启其中一个或几个换热装置404对电芯进行降温,从而在保证换热效果的前提下,降低电池***整体能耗。
在一些实施例中,温控通道403可以固定连接在壳体100的侧面,温控通道403的第一流通口401和第二流通口402可以位于阻流板200的同一侧,例如,第一流通口401和第二流通口402均位于第二空间102内,其中,第一流通口401可以通过导流通道600与第一空间101连通,第二流通口402则可以与第二空间102直接连通。具体实施时,温控通道403连同换热装置404以及其他相关构件,可以一并设计为空调模块,与壳体100集成。结合温控通道403在壳体100上的设置位置,当温控通道403固定连接在壳体100的侧面时,温控通道403连同换热装置404及其他相关构件可以一并设计为侧装式空调。
本实施例的导流通道600可以为通道状结构,导流通道600可以由一个或多个导流板601围成,导流通道600也可以由一个或多个导流板601与壳体100内壁共同围成,导流通道600还可以是部分区段由一个或多个导流板601围成,部分区段由一个或多个导流板601与壳体100内壁共同围成。具体实施时,导流板601可以选用钣金材质等。
需要说明的是,导流通道600还可以采用封闭管路,温控组件的第一流通口401与电池模组的第一开口可以通过封闭管路直接连接,电池模组的与温控组件的第二流通口也可以通过封闭管路直接连接,使得温控通道通过封闭管路直接与电池模组内部空间连通,温控通道、封闭管路和电池模组内部空间形成封闭的循环通道,换热介质不流经第一空间101及第二空间102,能够提高对电池模组内部电芯的换热效率及换热强度。
本实施例的循环通道内设置有导流部500,导流部500可设置在循环通道内的任意位置,导流部500工作时能够带动换热介质在循环通道内流动。换热介质流进模组壳体300内部空间,流经电芯之间的空隙,与模组壳体300内部电芯换热,实现对模组壳体300内部电芯的温度调控。此外,导流部500对换热介质的带动是可变向的,使换热介质在循环通道内的流动方向可为第一方向,第一方向具体可为依次流经“温控通道403-第一空间101-模组壳体300内部空间-第二空间102-温控通道403”的方向,可定义换热介质的这种流动方向为正向;导流部500使换热介质在循环通道内的流动方向也可为第二方向,第二方向具体可为依次流经“温控通道403-第二空间102-模组壳体300内部空间-第一空间101-温控通道403”的方向,可定义换热介质的这种流动方向为反向,即换热介质在导流部500的带动下在循环通道内可正向流动,也可反向流动。相较于换热介质只能单向流动的设计,本实施例中换热介质可换向流动的方案,能够避免处于换热介质流动方向下游的电芯始终不能得到有效换热的缺陷。由此,能够增强对电池模组内部电芯的降温效果,有效降低电池模组内部电芯之间的温度差,提升电芯之间的温度均匀性,减轻高温电芯热累积,从而延长电芯寿命。
可以理解,当阻流板200上设置的电池模组数量为多个时,同样能达到降低电池模组内部电芯之间温度差的目的。若温控组件400的温控条件相同,降低电池模组内部电芯之间的温度差,能够提升电池模组生命周期内的容量,有效保证电池***整体的储能收益;若保证电池模组生命周期内的容量基本不变,降低电池模组内部电芯之间的温度差,能够降低电池模组能耗,进而降低电池***整体能耗,并降低初始投资。
在一些实施例中,导流部500可以设置在模组壳体300上。具体实施时,导流部500可以设置在模组壳体300的第二开口处。导流部500更靠近模组壳体300内部电芯,能够较为有效、直接地引导换热介质正向或反向流经模组壳体300内部空间,与模组壳体300内部电芯进行换热。
在一些实施例中,电池储能***还包括控制部800及温度检测装置,控制部800设置在温控组件400、壳体100或电池模组上,温度检测装置设置在模组壳体300内部或循环通道内。温度检测装置可以检测换热介质温度,控制部800接收温度检测装置所检测的温度信息,并根据预设条件控制导流部500正转或反转,引导循环通道内的换热介质正向或反向流动,实现主动控温。
在具体实施中,当温度检测装置设置在模组壳体300内部时,温度检测装置还可以用于检测电芯温度,此时可以在模组壳体300的两端同时设置温度检测装置,从而实时监测靠近模组壳体300两端的电芯之间的温差,当温差大于预设值时,控制部800控制导流部500动作,改变换热介质的流动方向。例如,当换热介质在循环通道内正向流动对模组壳体300内部电芯进行降温时,在导流部500的作用下,换热介质可由模组壳体300的第一端流向模组壳体300的第二端,由于靠近模组壳体300的第一端的电芯处于换热介质流动方向的上游,换热介质先对靠近模组壳体300的第一端的电芯进行冷却,流动至靠近模组壳体300的第二端时温度已经相对升高,对靠近模组壳体300的第二端的电芯的冷却效果将减弱,故靠近模组壳体300第二端的电芯的温度会高于靠近模组壳体300第一端的电芯;基于设置于模组壳体300的第一端和第二端的温度检测装置所检测的温度信息,控制部800计算得出靠近模组壳体300的第一端和第二端的电芯之间的温差,并判断温差是否大于预设值时,当温差大于预设值时,控制部800控制导流部500反转,使换热介质在循环通道内反向流动,也即,换热介质的流动方向变为由模组壳体300第二端流向模组壳体300第一端,从而实现对温差的控制。
如图4所示,图4示出了本申请实施例提供的电池储能***的换热介质流动方向示意图。换热介质在循环通道内正向流动时,可以由温控通道403的第一流通口401流入第一空间101,流经模组壳体300内部空间,与模组壳体300内部的电芯进行热交换,使电芯升温或降温,热交换之后的换热介质再流入第二空间102,然后由温控通道403的第二流通口402流回温控通道403,换热介质在换热装置的作用下被冷却或加热,完成一次循环。
如图5所示,图5示出了本申请实施例提供的电池储能***的换热介质另一流动方向示意图。换热介质在循环通道内反向流动时,可以由温控通道403的第二流通口402流入第二空间102,流经模组壳体300内部空间,与模组壳体300内部的电芯进行热交换,使电芯升温或降温,热交换之后的换热介质再流入第一空间101,然后由温控通道403的第一流通口401流回温控通道403,换热介质在换热装置的作用下被冷却或加热,完成一次循环。
继续参考图6,图6示出了本申请实施例提供的电池储能***的另一结构示意图。如图6所示,在一些实施例中,导流部500可以设置在温控通道403内,导流部500可以较为直接地引导换热介质流出或流入温控通道403。具体实施时,温控通道403内部靠近第一流通口401区域可以设置有转向板405,转向板405可与第一流通口401成夹角设置,且转向板405可与第一流通口401之间具有一定距离,以形成转向空间,起到调整换热介质流向的作用,保证换热介质能够顺畅地流经第一流通口401。导流部500设置在温控通道403内时,导流部500可以设置在转向板405与第一流通口401所成的夹角区域内。
继续参考图7,图7示出了本申请实施例提供的电池储能***的另一结构示意图。如图7所示,在一些实施例中,导流部500还可以设置在导流通道600内,采用这种设置,导流部500也可以较为直接地引导换热介质流出或流入第一空间101。
应当理解的是,当导流部500设置于温控通道403、导流通道600或者模组壳体300其中之一时,导流部500可以选用相对强力的机型,以有效克服流阻,使换热介质能够可靠地流经模组壳体300内部空间,从而能够可靠地与模组壳体300内部电芯进行换热。此外,导流部500的数量可以为多个,多个导流部500可以并行排布,以加强导流作用,例如,当导流部500采用上述的可反转轴流风扇时,多个轴流风扇并行排布形成风扇墙。
在其他一些实施例中,循环通道构成部件中的多者可以同时设置有导流部,例如:
参考图8,图8示出了本申请实施例提供的电池储能***的另一结构示意图。该实施例中,导流部500的数量可以为多个,其中,部分导流部500可以设置在模组壳体上,另外部分导流部500可以设置在温控通道403内;
参考图9,图9示出了本申请实施例提供的电池储能***的另一结构示意图。该实施例中,导流部500的数量可以为多个,其中,部分导流部500可以设置在模组壳体300上,另外部分导流部500可以设置在导流通道600内;
参考图10,图10示出了本申请实施例提供的电池储能***的另一结构示意图。该实施例中,导流部500的数量可以为多个,其中,部分导流部500可以设置在温控通道403内,另外部分导流部500可以设置在导流通道600内;
参考图11,图11示出了本申请实施例提供的电池储能***的另一结构示意图。该实施例中,导流部500的数量可以为多个,其中,部分导流部500可以设置在模组壳体300上,另外部分导流部500可以分别设置在温控通道403内和导流通道600内。循环通道内多处设置有导流部500时,能够加强对换热介质的引导作用,提高换热介质的流动效率,还能够使得换热介质的换向流动快速实现。
此外,当模组壳体300的第二开口处设置有导流部500时,模组壳体300的第一开口处也可以同时设置有导流部500,以着重引导换热介质流经模组壳体300内部空间,强化对模组壳体300内部电芯的换热。
继续参考图12,图12示出了本申请实施例提供的电池储能***的侧视结构示意图。如图12所示,温控组件400可以为多个,以增强对电池模组内部电芯的温控能力。本实施例中,多个温控组件400可以共用构成上述循环通道的第一空间、模组壳体300内部空间和第二空间。具体实施时,多个温控组件400的第一流通口401可以并联接入第一空间,多个温控组件400的第二流通口402并联接入第二空间。当第一流通口401通过导流通道与第一空间连通时,多个温控组件400的第一流通口401可以并联接入导流通道。
继续参考图13,图13示出了本申请实施例提供的电池储能***的另一结构示意图。在一些实施例中,如图13所示,温控通道403可以固定连接在壳体100的上方,第一流通口401和第二流通口402可以分别位于阻流板200的两侧,第一流通口401可以直接与第一空间101连通,第二流通口402可以直接与第二空间102连通。具体实施时,当温控通道403固定连接在壳体100的上方时,温控通道403连同换热装置及其他相关构件可以一并设计为顶装式空调。
图13中示出了换热介质的一种流动方向,换热介质可以由温控通道403的第一流通口401流入第一空间101,流经模组壳体300内部空间,而后流入第二空间102,再由温控通道403的第二流通口402流回温控通道403。图14示出了本申请实施例提供的电池储能***的换热介质另一流动方向示意图。如图13所示,换热介质可以由温控通道403的第二流通口402流入第二空间102,流经模组壳体300内部空间,而后流入第一空间101,再由温控通道403的第一流通口401流回温控通道403。
关于换热介质在模组壳体内部空间的流动情况,进行以下说明:
换热介质流进模组壳体内部空间,流经电池模组内部电芯之间的空隙。在具体实施中,换热介质可以直接流经电芯表面,直接与电芯换热。或者,电芯之间的空隙设置有模组通道,模组通道与电芯表面抵接,换热介质在模组通道内流过,通过模组通道与电芯换热。
参考图15,图15示出了本申请实施例提供的电池储能***中的模组壳体的内部结构示意图。在一些实施例中,如图15所示,模组壳体300内部可以设置有由模组壳体300第一端向第二端延伸的第一模组通道303,还可以设置有第二模组通道304,第二模组通道304可以与第一模组通道303平行排布。其中,第一模组通道303的第一端与第一空间连通,第一模组通道303的第二端封闭;第二模组通道304的第一端封闭,第二模组通道304的第二端与第二空间连通。此外,第一模组通道303与第二模组通道304可以通过第三模组通道305连通,第三模组通道305可以为多个,每个第三模组通道305的两端分别与第一模组通道303和第二模组通道304连接,当换热介质由第一空间流进第一模组通道303时,换热介质在第一模组通道303内分流,流经多个第三模组通道305,在第二模组通道304内汇合,再流进第二空间,也就是说,第一空间和第二空间通过第一模组通道303、第二模组通道304及第三模组通道305连通。由此,第一模组通道303、第二模组通道304和多个第三模组通道305形成模组壳体300内部的换热通道网络,流进每个第三模组通道305的换热介质温度相对接近,能够减小电芯700之间的温差,例如减小靠近模组壳体300第一端的电芯700与靠近模组壳体300第二端的电芯700之间的温差,实现电芯700之间均温。
图15中示出了换热介质在模组壳体内部的一种流动方向,换热介质可以由模组壳体300第一端流进模组壳体300内部空间,依次流经第一模组通道303、第三模组通道305和第二模组通道304,与电芯700换热,而后由模组壳体300第二端流出。图16示出了本申请实施例提供的电池储能***的换热介质在模组壳体内部的另一种流动方向示意图,换热介质可以由模组壳体300第二端流进模组壳体300内部空间,依次流经第二模组通道304、第三模组通道305和第一模组通道303,与电芯700换热,而后由模组壳体300第一端流出。
本实施例的第一模组通道303可以排布于模组壳体300第一侧内壁和电芯700之间的空隙,第二模组通道304可以排布于模组壳体300第一侧对侧内壁和电芯700之间的空隙,第三模组通道305可以排布于电芯700与电芯700之间的空隙。具体实施时,第一模组通道303和第二模组通道304均可以通过销钉等安装结构件安装在模组壳体300内壁上,或者,可以采用焊接、粘接的安装方式,第一模组通道303的第一端可以与第一开口301对接,第二模组通道304的第二端可以与第二开口302对接。当模组壳体300内部电芯700堆叠排布成多层时,可以每层对应设置一组上述的换热通道网络,以将换热介质引导至各层电芯700,实现换热介质同时与全部电芯700进行换热,使得不同层电芯700之间能够达到相近的换热效果,减小不同电芯700之间的温差。可以理解,多层换热通道网络的第三模组通道305可以共用一个第一模组通道303和一个第二模组通道304,通过第三模组通道305的分层排布来实现与多层电芯700同时换热。
参考图17,图17示出了本申请实施例提供的电池储能***中的模组壳体的另一内部结构示意图。在其他一些实施例中,如图17所示,模组壳体300内部可以设置有由模组壳体300第一端向第二端延伸的第四模组通道306,第四模组通道306的两端分别与第一空间和第二空间连通。换热介质由第一空间流进第四模组通道306,与模组壳体300内部电芯700进行换热,继续由第四模组通道306流进第二空间,第四模组通道306的设置有利于换热介质的快速流动,能够减小模组壳体300第一端附近与模组壳体300第二端附近的换热介质温差,从而减小靠近模组壳体300第一端的电芯700与靠近模组壳体300第二端的电芯700之间的温差。第四模组通道306可以排布于电芯700与电芯700之间的空隙,此外,第四模组通道306可为多个,以增大同一时刻进入电池模组内部的换热介质流量,提升换热效果,减小电芯700之间的温差。具体实施时,第四模组通道306可以焊接、粘接或采用杆类安装结构件安装在模组壳体300内壁上,第四模组通道306的两端可以分别与模组壳体300的第一开口301和第二开口302对接,实现与第一空间及第二空间连通,并且,第四模组通道306可为多个,供换热介质同时流过。当模组壳体300内部电芯700堆叠排布成多层时,各层电芯700均可以布置有第四模组通道306,以将换热介质引导至各层电芯700,实现换热介质同时与各层电芯700进行换热,减小不同层电芯700之间的温差。
上述方案中的第一模组通道303、第二模组通道304、第三模组通道305及第四模组通道306,均可以采用管道状结构,其形状及规格可以根据所安装位置而具体确定。
需要说明的是,换热介质可以为液体介质,例如水、机油等,相对应地,导流部500可以采用可反转的轴流叶轮等,换热装置可以采用板式换热器等液冷装置及***。具体实施中,当换热介质为非绝缘液体时,须保证换热介质不会与电芯直接接触,故模组壳体300内部须采用上述的第一模组通道303、第二模组通道304、第三模组通道305及第四模组通道306的结构形式,且各个模组通道须采用封闭管路,从而在模组壳体300内部隔离换热介质和电芯,此外,当模组壳体300采用除第一开口301和第二开口302以外还具有其他开口的非封闭结构时,温控通道须通过封闭管路与上述的模组通道连接,使得换热介质不直接流经第一空间和第二空间,从而在模组壳体300外部也隔离换热介质和电芯,可以理解,当模组壳体300采用封闭结构时,换热介质则可以直接流经第一空间和第二空间。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

1.一种电池储能***,其特征在于,包括:
壳体,所述壳体内部设置有阻流板,所述阻流板将所述壳体内部空间分隔成相互独立的第一空间和第二空间;
电池模组,所述电池模组包括模组壳体和设置于所述模组壳体内部的电芯,所述模组壳体的两端分别具有第一开口和第二开口,所述模组壳体设置在所述阻流板上,所述第一开口与所述第一空间连通,所述第二开口与所述第二空间连通;
温控组件,所述温控组件设置在所述壳体上,所述温控组件内部具有温控通道和换热装置,所述换热装置位于所述温控通道内部,所述温控通道的两端分别具有第一流通口和第二流通口,所述第一流通口与所述第一空间连通,所述第二流通口与所述第二空间连通,所述第一空间、所述模组壳体内部空间、所述第二空间和所述温控通道构成循环通道;
导流部,所述导流部设置在所述循环通道内,所述导流部用于引导所述循环通道内的换热介质沿第一方向或者第二方向流动,所述第一方向与所述第二方向相反。
2.如权利要求1所述的电池储能***,其特征在于,所述导流部设置在所述温控通道内。
3.如权利要求1或2所述的电池储能***,其特征在于,所述导流部设置在所述第一开口处。
4.如权利要求1~3任一项所述的电池储能***,其特征在于,所述第一流通口和所述第二流通口位于所述阻流板的同一侧;
所述电池储能***还包括导流通道,所述导流通道的一端与所述第一流通口连通,另一端与所述第一空间连通。
5.如权利要求4所述的电池储能***,其特征在于,所述导流通道包括至少一个导流板,至少一个所述导流板围成通道状结构,或/和,一个以上所述导流板与所述壳体内壁围成通道状结构。
6.如权利要求4或5所述的电池储能***,其特征在于,所述导流部设置在所述导流通道内。
7.如权利要求1~3任一项所述的电池储能***,其特征在于,所述第一流通口和所述第二流通口分别位于所述阻流板的两侧。
8.如权利要求1~7任一项所述的电池储能***,其特征在于,所述电池模组的数量为多个,多个所述电池模组间隔排列。
9.如权利要求1~8任一项所述的电池储能***,其特征在于,所述模组壳体内部设置有第一模组通道、第二模组通道和第三模组通道;
所述第一模组通道的一端与所述第一空间连通,另一端封闭;
所述第二模组通道的一端与所述第二空间连通,另一端封闭,所述第二模组通道与所述第一模组通道平行设置;
所述第三模组通道的两端分别与所述第一模组通道和所述第二模组通道连通,所述第三模组通道设置于相邻所述电芯之间。
10.如权利要求1~8任一项所述的电池储能***,其特征在于,所述模组壳体内部设置有第四模组通道,所述第四模组通道的两端分别与所述第一空间和所述第二空间连通,所述第四模组通道设置于相邻所述电芯之间。
11.如权利要求1~10任一项所述的电池储能***,其特征在于,所述电池储能***还包括控制部和温度检测装置;
所述温度检测装置设置于所述模组壳体内部,用于检测位于所述模组壳体两端的所述电芯之间的温差;
所述控制部设置在所述壳体上,所述控制部与所述温度检测装置连接,用于根据所述电芯之间的温差控制所述导流部引导所述循环通道内的换热介质沿第一方向或者第二方向流动。
12.一种电动汽车,其特征在于,包括如权利要求1~11任一项所述的电池储能***,以及动力***,所述电池储能***用于为所述动力***供电,所述动力***用于驱动所述电动汽车行驶。
CN202110199884.8A 2021-02-22 2021-02-22 一种电池储能***及电动汽车 Pending CN114976372A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110199884.8A CN114976372A (zh) 2021-02-22 2021-02-22 一种电池储能***及电动汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110199884.8A CN114976372A (zh) 2021-02-22 2021-02-22 一种电池储能***及电动汽车

Publications (1)

Publication Number Publication Date
CN114976372A true CN114976372A (zh) 2022-08-30

Family

ID=82954603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110199884.8A Pending CN114976372A (zh) 2021-02-22 2021-02-22 一种电池储能***及电动汽车

Country Status (1)

Country Link
CN (1) CN114976372A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924259A (zh) * 2010-08-24 2010-12-22 上海中科深江电动车辆有限公司 具有温差控制功能的动力电池双循环风冷散热方法和装置
CN103682522A (zh) * 2012-09-07 2014-03-26 现代自动车株式会社 电池***
JP2014235900A (ja) * 2013-06-03 2014-12-15 株式会社デンソー 電池冷却装置
US20150010802A1 (en) * 2013-07-04 2015-01-08 Denso Corporation Battery temperature adjustment apparatus
JP2015032429A (ja) * 2013-08-01 2015-02-16 株式会社デンソー 電池冷却装置
JP2015072741A (ja) * 2013-10-01 2015-04-16 株式会社デンソー 電池パック
JP2015079598A (ja) * 2013-10-15 2015-04-23 株式会社デンソー 電池パック
CN105518929A (zh) * 2013-09-06 2016-04-20 日产自动车株式会社 电池组冷却***
CN105633508A (zh) * 2014-10-31 2016-06-01 比亚迪股份有限公司 电池***及其控制方法
CN107331920A (zh) * 2017-08-18 2017-11-07 上海蔚来汽车有限公司 具有换热功能的电池包壳体和电池包
CN207938756U (zh) * 2018-03-01 2018-10-02 威马智慧出行科技(上海)有限公司 电池包热管理模组
WO2020165517A1 (fr) * 2019-02-15 2020-08-20 Novares France Unité de batterie et véhicule automobile équipé d'au moins une telle unité
CN212113818U (zh) * 2020-05-28 2020-12-08 蜂巢能源科技有限公司 集装箱储能***

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924259A (zh) * 2010-08-24 2010-12-22 上海中科深江电动车辆有限公司 具有温差控制功能的动力电池双循环风冷散热方法和装置
CN103682522A (zh) * 2012-09-07 2014-03-26 现代自动车株式会社 电池***
JP2014235900A (ja) * 2013-06-03 2014-12-15 株式会社デンソー 電池冷却装置
US20150010802A1 (en) * 2013-07-04 2015-01-08 Denso Corporation Battery temperature adjustment apparatus
JP2015032429A (ja) * 2013-08-01 2015-02-16 株式会社デンソー 電池冷却装置
CN105518929A (zh) * 2013-09-06 2016-04-20 日产自动车株式会社 电池组冷却***
JP2015072741A (ja) * 2013-10-01 2015-04-16 株式会社デンソー 電池パック
JP2015079598A (ja) * 2013-10-15 2015-04-23 株式会社デンソー 電池パック
CN105633508A (zh) * 2014-10-31 2016-06-01 比亚迪股份有限公司 电池***及其控制方法
CN107331920A (zh) * 2017-08-18 2017-11-07 上海蔚来汽车有限公司 具有换热功能的电池包壳体和电池包
CN207938756U (zh) * 2018-03-01 2018-10-02 威马智慧出行科技(上海)有限公司 电池包热管理模组
WO2020165517A1 (fr) * 2019-02-15 2020-08-20 Novares France Unité de batterie et véhicule automobile équipé d'au moins une telle unité
CN212113818U (zh) * 2020-05-28 2020-12-08 蜂巢能源科技有限公司 集装箱储能***

Similar Documents

Publication Publication Date Title
JP6032787B2 (ja) 燃料電池車両用冷却装置
JP2006128124A (ja) 二次電池モジュール
US8302427B2 (en) Evaporator
CN209626374U (zh) 液冷板、电池包及车辆
CN110247133B (zh) 一种动力电池模组用冷却板及液冷循环***
CN111403848A (zh) 一种基于极耳液冷方式的动力电池热管理***
CN211428311U (zh) 液冷板和用于新能源车辆的热管理***
CN115117514B (zh) 一种交错逆流式一体化冷却***及电动车
CN114976372A (zh) 一种电池储能***及电动汽车
KR20130130959A (ko) 배터리 모듈 냉각장치
CN217788542U (zh) 动力电池的换热器、电池包及车辆
CN215771222U (zh) 燃料电池的冷却***以及具有其的车辆
CN114641887B (zh) 电池热管理***及方法
CN113875073B (zh) 电池冷却***
CN113991209A (zh) 动力电池包的温控***及温控方法
CN113363611A (zh) 液冷板和用于新能源车辆的热管理***
CN111584968A (zh) 电池调温装置、具有该电池调温装置的电池模块以及交通工具
CN220733291U (zh) 电力模块散热结构
CN219534643U (zh) 动力电池温控板及车辆
CN220420613U (zh) 电池热管理***、热管理***、储能***和用电装置
CN218414754U (zh) 动力电池模组及具有其的新能源车辆
CN218769769U (zh) 液冷板、电池模组以及电池包
CN220914410U (zh) 电池换热组件、电池包和车辆
CN218603351U (zh) 变频器总成及冲压机
CN218497458U (zh) 液冷板、导流件及液冷服务器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination