CN114962036B - 一种混动车型发动机宽域氧传感器失效监测方法 - Google Patents

一种混动车型发动机宽域氧传感器失效监测方法 Download PDF

Info

Publication number
CN114962036B
CN114962036B CN202210643033.2A CN202210643033A CN114962036B CN 114962036 B CN114962036 B CN 114962036B CN 202210643033 A CN202210643033 A CN 202210643033A CN 114962036 B CN114962036 B CN 114962036B
Authority
CN
China
Prior art keywords
oxygen sensor
wide
difference
air
equivalent ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210643033.2A
Other languages
English (en)
Other versions
CN114962036A (zh
Inventor
秦龙
雷雪
杨柳春
雷言言
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfeng Motor Group Co Ltd
Original Assignee
Dongfeng Motor Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfeng Motor Group Co Ltd filed Critical Dongfeng Motor Group Co Ltd
Priority to CN202210643033.2A priority Critical patent/CN114962036B/zh
Publication of CN114962036A publication Critical patent/CN114962036A/zh
Application granted granted Critical
Publication of CN114962036B publication Critical patent/CN114962036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本发明公开了一种混动车型发动机宽域氧传感器失效监测方法,包括以下步骤:通过宽域氧传感器采集燃烧后排气管中排气的氧浓度信号;根据氧浓度信号计算空燃比,生成实际空燃比信号;根据空燃比信号,控制发动机喷油量和喷油正时调节空燃比,生成调节后的实际空燃比信号;根据理想空燃比、调节后的实际空燃比和预设的目标空燃比分别建立实际燃油当量比和目标燃油当量比;在满足所有工况条件和工况稳定条件后进入宽域氧传感器的劣化诊断,判断宽域氧传感器是否失效。本发明在稳态工况下监测不同程度空燃比控制过程中燃油当量比反映情况,验证了宽域氧传感器是否失效,以及各缸燃烧是否异常。

Description

一种混动车型发动机宽域氧传感器失效监测方法
技术领域
本发明属于发动机控制领域,具体涉及一种混动车型发动机宽域氧传感器失效监测方法。
背景技术
宽域氧传感器是作为空燃比闭环控制的重要传感器,其可精确输出空燃比的信号。
《轻型汽车污染物排放限值及测量方法(中国第六阶段)》中明确提出了对前氧传感器的诊断要求:OBD***应对前氧传感器(用于燃油控制的传感器,传统的开关型氧传感器和/或宽域或通用传感器)的故障进行监测,监测内容包括输出电压、响应速率和可能影响排放的参数。
混动车型(包含发动机和驱动电机、发电机)是目前较为流行的车型,混动车型包含发动机。混动车型中发动机运行工况范围和运行时间,相比传动汽油车而言,要窄的多,目的是改善燃油经济性、车辆驾驶性、排放性能和NVH等。
在宽域氧传感器出现性能故障时,如无法准确反映空燃比的浓稀变化时,需要及时诊断出来。在出现故障后,以便及时进行故障后处理,从而降低对燃油经济性、车辆驾驶性、排放性能和NVH等的影响。
发明内容
本发明的目的在于,提供一种混动车型发动机宽域氧传感器失效监测方法,在稳态工况下监测不同程度空燃比控制过程中燃油当量比反映情况,验证宽域氧传感器是否劣化失效,以及各缸燃烧是否异常。
为解决上述技术问题,本发明的技术方案为:一种混动车型发动机宽域氧传感器失效监测方法,包括以下步骤:
通过宽域氧传感器采集燃烧后排气管中排气的氧浓度信号;
根据氧浓度信号计算空燃比,生成实际空燃比信号;
根据空燃比信号,控制发动机喷油量和喷油正时调节空燃比,生成调节后的实际空燃比信号;
根据理想空燃比、调节后的实际空燃比和预设的目标空燃比分别建立实际燃油当量比和目标燃油当量比;其中,实际燃油当量比表示为调节后的实际空燃比与理想空燃比的比值,目标燃油当量比表示为目标空燃比与理想空燃比的比值;
在满足所有工况条件和工况稳定条件后进入宽域氧传感器的劣化诊断,判断宽域氧传感器是否失效。
所述的工况条件包括:
发动机转速小于或等于预设转速阈值;发动机转速的相关诊断无故障发生;
发动机未出现断油;
宽域氧传感器加热完成,即宽域氧传感器已经在正常工作温度内;宽域氧传感器加热诊断无故障发生;
油门未全开,且油门踏板开度在一定范围;油门开度传感器诊断无故障发生;
发动机冷却水温超过一定值;冷却温度传感器诊断无故障发生;
发动机进气歧管温度超过一定值;进气歧管温度传感器诊断无故障发生;
发动机运行时间超过一定值,此时发动机暖机成功;
进气气缸内的进气量在一定范围;用于监测或计算进气量的相关诊断无故障发生;
车速超过一定值;车速的相关诊断无故障发生;
无点火线圈故障;
当上述工况条件均满足后,允许进入宽域氧传感器的劣化诊断。
在工况条件满足后,进行工况稳定条件检测,所述的工况稳定条件包括:
发动机转速在一定范围内波动;
油门踏板开度在一定范围内波动;
车速在一定范围内波动;
进入气缸内的进气量在一定范围内波动;
在上述工况稳定条件和工况条件均满足后,进入宽域氧传感器的劣化诊断。
在工况稳定条件和工况条件均满足后,读取从1号缸即将进行的做功冲程缸号CntIgnition,周期性控制做功冲程缸号CntIgnition和下一个做功冲程缸号CntIgnition+1的目标燃油当量比,以第一预设时间TBase进行加浓操作,加浓操作包括:增加氧浓度,设置加浓目标燃油当量比为rFEQRRichBase大于1;然后以第一预设时间TBase进行减稀操作,减稀操作包括:减少氧浓度,设置减稀目标燃油当量比为rFEQRRLeanBase小于1;交替重复加浓操作和减稀操作各N0次,实时记录上游宽域氧传感器反馈的实际燃油当量比,计算出CntIgnition的实际燃油当量比的第一偏浓反映时间TRichResDn11和第二偏浓反映时间TRichResUp11;计算出CntIgnition的实际燃油当量比的第一偏稀反映时间TLeanResDn11和第二偏稀反映时间TLeanResUp11;其中TBase大于TMin
TRichResDn11起始计算时刻的判定方法为:当前采样周期中实际燃油当量比与rFEQRRichBase的差绝对值大于预设差异值ΔC,且上一个采样周期中实际燃油当量比与rFEQRRichBase的差绝对值大于或等于ΔC;
TRichResDn11结束计算时刻的判定方法为:当前采样周期中实际燃油当量比与1的差绝对值小于ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC;
TRichResUp11起始计算时刻的方法:当前采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值小于ΔC;
TRichResUp11结束计算时刻的方法:当前采样周期中实际燃油当量比与rFEQRRichBase的差绝对值小于或等于ΔC,且上一个采样周期中实际燃油当量比与rFEQRRichBase的差绝对值大于ΔC;
TLeanResDn11起始计算时刻的判定方法为:当前采样周期中实际燃油当量比与1的差绝对值小于预设差异值ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC;
TLeanResDn11结束计算时刻的判定方法为:当前采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值大于ΔC,且上一个采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值大于或等于ΔC;
TLeanResUp11起始计算时刻的方法:当前采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值小于或等于ΔC,且上一个采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值大于ΔC;
TLeanResUp11结束计算时刻的方法:当前采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值小于ΔC;
周期性控制做功冲程缸号和下一个做功冲程缸号的目标燃油当量比,以上述相同步骤顺次获取CntIgnition+1的实际燃油当量比的第一偏浓反映时间TRichResDn12和第二偏浓反映时间TRichResUp12;计算出CntIgnition+1的实际燃油当量比的第一偏稀反映时间TLeanResDn12和第二偏稀反映时间TLeanResUp12;直至得到q号缸CntIgnition+q-1的实际燃油当量比的第一偏浓反映时间TRichResDn1q和第二偏浓反映时间TRichResUp1q;计算出CntIgnition+q-1的实际燃油当量比的第一偏稀反映时间TLeanResDn1q和第二偏稀反映时间TLeanResUp1q时,视为一个采样周期结束,一周期内总计q个缸做功;在下一周期从1号缸进行周期性控制目标燃油量当量比,按上述相同步骤顺次的到其实际燃油当量比的第一偏浓反映时间、第二偏浓反映时间、第一偏稀反映时间和第二偏稀反映时间;直至得到第p个周期q号缸的实际燃油当量比的第一偏浓反映时间TRichResDn(p,q),第二偏浓反映时间TRichResUp(p,q),第一偏稀反映时间TLeanResDn(p,q)和第二偏稀反映时间TLeanResUp(p,q)
分别在TRichResDn、TRichResUp、TLeanResDn、TLeanResUp形成的数组中存在对应加浓操作次数的N0个元素,剔除初始2个元素和末尾2个元素,得到(N0-4)个元素,计算出(N0-4)个元素对应的平均值得到
当出现以下任一情况时,判断宽域氧传感器出现故障:
(1)中的任一时间大于/>则判断宽域氧传感器出现故障;其中/>为进入诊断后的平均气缸新鲜空气进气流量;d2,d1,d0分别为第二评价系数、第一评价系数和初始评价系数,其中d2,d1,d0在不同rFEQRRichBase下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(2)中的任一时间大于/>则判断宽域氧传感器出现故障;d5,d4,d3分别为第五评价系数、第四评价系数和第三评价系数,其中d5,d4,d3在不同的rFEQRRichBase下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(3)和/>之差绝对值至/>和/>之差绝对值均大于/>则判断宽域氧传感器出现故障;d7,d6分别为第七评价系数和第六评价系数,其中d7,d6在不同的/>下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(4)和/>之差绝对值至/>和/>之差绝对值均大于/>则判断宽域氧传感器出现故障;
(5)和/>之差绝对值至/>和/>之差绝对值均大于/>则判断宽域氧传感器出现故障;d9,d8分别为第九评价系数和第八评价系数,其中d9,d8在不同的/>下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(6)和/>之差绝对值至/>合/>之差绝对值均大于/>则判断宽域氧传感器出现故障;
在以上6种故障诊断中出现任一故障判断后,则本次驾驶循环不再进行劣化诊断。
当以上6中故障均未发生,则进行如下判断:
与/>至/> 与/>至/> 与/>至/> 与/>至/>分别作差得到对应差值,当对应差值的绝对值大于/>时,则判断对应缸号燃烧异常,判断该缸宽域氧传感器出现故障。
理想空燃比为14.3。
预设差异值ΔC为0.005。
缸数为4,p和q的取值范围均为{1,2,3,4}。
TBase其中,/>为进入劣化诊断后的平均发动机转速。
NO为10。
与现有技术相比,本发明的有益效果为:
本发明在稳态工况下监测不同程度空燃比控制过程中燃油当量比反映情况,能验证宽域氧传感器是否失效,以及各缸燃烧是否异常。
附图说明
图1为本发明实施例的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明的技术方案为:一种混动车型发动机宽域氧传感器失效监测方法。
该控制***包含发动机控制器EMS、宽域氧传感器智能驱动芯片和宽域氧传感器。
宽域氧传感器用于向发动机控制器EMS提供当前燃烧后排气管中排气中氧浓度信号;
宽域氧传感器智能驱动芯片将宽域氧传感器监测到的氧浓度信号采集处理,转化为空燃比相关信号,且加热宽域氧传感器,保证氧传感器在正常温度下工作;
发动机控制器EMS根据宽域氧传感器智能芯片处理后的排气管中空燃比相关信号,通过控制发动机喷油量、喷油正时等对发动机缸内空燃比进行调节。
排气管中氧浓度过低,称为“过浓”;排气管中氧浓度过高,称为“过稀”;
宽域氧传感器向发动机控制器EMS提供当前排气管中空气的浓度,使用过量空气系数λ的倒数,即燃油当量比进行表征,本实施方式中以FEQR指代燃油当量比:
氧传感器反映实际
那么设置目标空燃比可以通过设置目标FEQ,则有目标
“实际燃油”是指单位时间内进入气缸的实际燃油量,“实际空气”是指单位时间内进入气缸的实际新鲜空气量,“目标燃油”是指单位时间内进入气缸的目标燃油量,“目标空气”是指单位时间内进入气缸的目标新鲜空气量,“理想空气”是指单位时间内进入气缸的理想新鲜空气量,“理想燃油”是指单位时间内进入气缸的理想燃油量。“目标”不等于“理想”,目标值可以根据发动机工况进行主动改变,但理想值由油品决定。
发动机断油时,FEQR为0;“过浓”时,FEQR大于1;“过稀”时,FEQR小于1;FEQR等于1时,当前处于理想空燃比(FEQR等于1,是指实际空气量与实际燃油量的比值,和理想空气量与理想燃油量的比值相等。本实例中理想空燃比取14.3)。
宽域氧传感器故障诊断需要在一定工况条件下进行;
1.发动机转速不超过一定阈值;发动机转速相关的诊断(曲轴信号和凸轮信号诊断)无故障发生;在发动机转速较高时曲轴运转较快,对于信号的读取处理时间较短,可能会出现失效无法准确监测的情况。本实例发动机转速不超过6000rpm。
2.发动机未出现断油;
3.氧传感器加热完成,即氧传感器已经在正常工作温度内;氧传感器加热诊断无故障发生;
4.油门未全开(油门全开进行全油门下的空燃比加浓,以改善全油门的扭矩能力),且油门踏板开度在一定范围(≤95%);油门开度传感器诊断无故障发生;
5.发动机冷却水温超过一定值;冷却温度传感器诊断无故障发生;
6.发动机进气歧管温度超过一定值;进气歧管温度传感器诊断无故障发生;
7.发动机运行时间超过一定值,此时发动机暖机成功;
8.进气气缸内的进气量在一定范围;用于监测或计算进气量的相关诊断(如进气歧管压力、节气门传感器和节气门电机等)无故障发生;
9.车速超过一定值;车速相关的诊断无故障发生;
10.无点火线圈故障。
在工况条件满足后,则允许进入宽域氧传感器的劣化诊断,但在诊断过程中,需要保证工况稳定:
1.发动机转速在一定范围内波动;本实例取±10rpm;
2.油门踏板开度在一定范围内波动;本实例取±2%;
3.车速在一定范围内波动;本实例取±2kmph;
4.进入气缸内的进气量在一定范围内波动。本实例取±2mgpl;
在所有的工况条件和工况稳定条件满足后,则进入宽域氧传感器的劣化诊断。
在宽域氧传感器故障诊断的任一过程中,如果出现以上工况条件任一条(除实际空燃比的条件外)不满足或者工况稳定的任一条(除实际空燃比的条件外)不满足,则终止诊断,待下一次工况条件满足后再重新进入诊断。
在所有的工况条件和工况稳定条件满足后,读取即将做功冲程缸号CntIgnition(进气,压缩,做功和排气四个冲程,本实例为4缸机,做功冲程的顺序为1-3-4-2,即1号缸做功后下一个做功缸号为3号缸,接着是4号缸,再接着是2号缸,如此反复。),紧接着,做功冲程缸号分别为CntIgnition+1,CntIgnition+2,CntIgnition+3,即做功冲程缸号CntIgnitio,CntIgnition+1,CntIgnition+2,CntIgnition+3,CntIgnition,CntIgnition+1,CntIgnition+2,CntIgnition+3…,如此反复。
周期性控制做功冲程缸号CntIgnitio和下一个做功冲程缸号CntIgnition+1的目标FEQR,即加浓控制空燃比时间TBase(时间TBase与发动机转速有关,本实例取其中/>为进入诊断后的平均发动机转速,设置目标FEQR为rFEQRRichBase大于1),然后紧接着减稀控制空燃比预设时间TBase(设置目标FEQR为rFEQRLeanBase小于1),如此反复控制N0次(本实例可取10,即10个周期性控制FEQR),实时记录上游宽域氧传感器反馈的实际FEQR,计算出实际FEQR偏浓反映时间TRichResDn11和TRichResUp11,计算出实际FEQR偏稀反映时间TLeanResDn11和TLeanResUp11
TRichResDn11起始计算时刻的方法:当前采样周期(该值方法的所有采样周期取)rFEQRRichBase与实际FEQR之差绝对值大于ΔC(本实例ΔC取0.005),且上一个采样周期实际FEQR与rFEQRRichBase的差绝对值不小于ΔC。
TRichResDn11结束计算时刻的方法:当前采样周期实际FEQR与1的差绝对值小于ΔC,且上一个采样周期实际FEQR与1的差绝对值不小于ΔC。
TRichResUp11起始计算时刻的方法:当前采样周期实际FEQR与1的差绝对值不小于ΔC,且上一个采样周期实际FEQR与1的差绝对值小于ΔC。
TRichResUp11结束计算时刻的方法:当前采样周期rFEQRRichBase与实际FEQR之差不大于ΔC(本实例ΔC取0.005),且上一个采样周期实际FEQR与rFEQRRichBase的差绝对值大于ΔC。
TLeanResDn11起始计算时刻的方法:当前采样周期实际FEQR与1的差绝对值小于ΔC,且上一个采样周期实际FEQR与1的差绝对值不小于ΔC。
TLeanResDn11结束计算时刻的方法:当前采样周期rFEQRRichBase与实际FEQR之差绝对值大于ΔC(本实例ΔC取0.005),且上一个采样周期实际FEQR与rFEQRRichBase的差绝对值不小于ΔC。
TLeanResUp11起始计算时刻的方法:当前采样周期rFEQRRichBase与实际FEQR之差不大于ΔC(本实例ΔC取0.005),且上一个采样周期实际FEQR与rFEQRRichBase的差绝对值大于ΔC。
TLeanResUp11结束计算时刻的方法:当前采样周期实际FEQR与1的差绝对值不小于ΔC,且上一个采样周期实际FEQR与1的差绝对值小于ΔC。
然后周期性控制做功冲程缸号CntIgnition+1和下一个做功冲程缸号CntIgnition+1的目标FEQR,即加浓控制空燃比时间TBase(设置目标FEQR为rFEQRRichBase大于1),然后紧接着减稀控制空燃比预设时间TBase(设置目标FEQR为rFEQRLeanBase小于1),如此反复控制N0次(本实例可取10,即10个周期性控制FEQR),实时记录上游宽域氧传感器反馈的实际FEQR,计算出实际FEQR偏浓反映时间TRichResDn12和TRichResUp12,计算出实际FEQR偏稀反映时间TLeanResDn12和TLeanResUp12
然后周期性控制做功冲程缸号CntIgnition+2和下一个做功冲程缸号CntIgnition+3的目标FEQR,即加浓控制空燃比时间TBase(设置目标FEQR为rFEQRRichBase大于1),然后紧接着减稀控制空燃比预设时间TBase(设置目标FEQR为rFEQRLeanBase小于1),如此反复控制N0次(本实例可取10,即10个周期性控制FEQR),实时记录上游宽域氧传感器反馈的实际FEQR,计算出实际FEQR偏浓反映时间TRichResDn13和TRichResUp13,计算出实际FEQR偏稀反映时间TLeanResDn13和TLeanResUp13
然后周期性控制做功冲程缸号CntIgnition+3和下一个做功冲程缸号CntIgnition的目标FEQR,即加浓控制空燃比时间TBase(设置目标FEQR为rFEQRRichBase大于1),然后紧接着减稀控制空燃比预设时间TBase(设置目标FEQR为rFEQRLeanBase小于1),如此反复控制N0次(本实例可取20,即20个周期性控制FEQR),实时记录上游宽域氧传感器反馈的实际FEQR,计算出实际FEQR偏浓反映时间TRichResDn14和TRichResUp14,计算出实际FEQR偏稀反映时间TLeanResDn14和TLeanResUp14
如此反复以上的不同缸号调控方法。即再次同样分别周期性控制做功冲程缸号CntIgniti和下一个做功冲程缸号CntIgnition+1,获得实际FEQR偏浓反映时间TRichResDn21和TRichResUp21,计算出实际FEQR偏稀反映时间TLeanResDn21和TLeanResUp21
如此反复N1次(本实例取4次)后,可以得到如下时间,该时间均是由N0个数的数组组成,剔除头2个数和尾2个数(避免刚刚引入FEQR主动调控时控制***不稳定造成数据偏差,以提高数据准确性),得到N0-4个数,计算出N0-4个数对应的平均值得到:其中p的取值范围为1,2,3,4;q的取值为1,2,3,4。
读取当前实际的FEQR,即进入诊断时的实际FEQR,设置目标FEQR=rFEQRRichBase本实例为FEQR+0.1,且目标FEQR=rFEQRLeanBase取2FEQR-rFEQRRichBase
如果出现以下任意情况,则宽域氧传感器出现故障:
1.中的任意1个时间大于/>则宽域氧传感器出现故障;其中/>为进入诊断后的平均气缸新鲜空气进气流量。d2,d1,d0分别取值为-25.32(ms*mgps2),1245.87(ms*mgps),0.154(ms),在不同的rFEQRRichBase下根据故障氧传感器和无故障氧传感器对标拟合数据得到。
2.中的任意1个时间大于则宽域氧传感器出现故障;d5,d4,d3分别取值为1234.745(ms/mgps2),-342.7284(ms/mgps),108.62(ms),在不同的rFEQRRichBase下根据故障氧传感器和无故障氧传感器对标拟合数据得到。
3.p的取值范围为1,2,3,4,和/>之差绝对值,且/>之差绝对值,且/>和/>之差绝对值,且/>和/>之差绝对值均大于/>p的取值范围为1,2,3,4时均满足,则宽域氧传感器出现故障;d7,d6分别取值为0.0765(ms),1.085(ms),在不同的rFEQRRichBase下根据故障氧传感器和无故障氧传感器对标拟合数据得到。
4.p的取值范围为1,2,3,4,和/>之差绝对值,且/>之差绝对值,且/>和/>之差绝对值,且/>和/>之差绝对值均大于/>p的取值范围为1,2,3,4时均满足,则宽域氧传感器出现故障;d7,d6分别取值为0.0765(ms),1.085(ms),在不同的rFEQRRichBase下根据故障氧传感器和无故障氧传感器对标拟合数据得到。
5.p的取值范围为1,2,3,4,和/>之差绝对值,且/>之差绝对值,且/>和/>之差绝对值,且/>和/>之差绝对值均大于/>则宽域氧传感器出现故障;d9,d8分别取值为0.132(ms),0.231(ms),在不同的/>下根据故障氧传感器和无故障氧传感器对标拟合数据得到。特别地,此时如果/>大于/>且/>大于/>且/>大于且/>大于/>p的取值范围为1,2,3,4时均满足,说明不仅仅宽域氧传感器出现故障,且宽域氧传感器浓到稀反应故障;特别地,此时如果/>不大于/>且/>不大于/>且/>不大于/>不大于/>p的取值范围为1,2,3,4时均满足,说明不仅仅宽域氧传感器出现故障,且宽域氧传感器稀到浓反应故障。
6.p的取值范围为1,2,3,4,和/>之差绝对值,且/>之差绝对值,且/>和/>之差绝对值,且/>和/>之差绝对值均大于/>则宽域氧传感器出现故障;d9,d8分别取值为0.132(ms),0.231(ms),在不同的/>下根据故障氧传感器和无故障氧传感器对标拟合数据得到。特别地,此时如果/>大于/>且/>大于/>且/>大于且/>大于/>说明不仅仅宽域氧传感器出现故障,且宽域氧传感器浓到稀反应故障;特别地,此时如果/>不大于/>且/>不大于且/>不大于/>且/>不大于/>p的取值范围为1,2,3,4时均满足,说明不仅仅宽域氧传感器出现故障,且宽域氧传感器稀到浓反应故障。
在以上6种故障诊断中出现任意故障后则本次驾驶循环不再进行诊断。
如果以上6种故障均未发生,则判断如下:
如果与/>3个中任意一个比较,其差的绝对值均大于/>其中/>为进入诊断后的平均发动机转速。p的取值范围为1,2,3,4时均满足,则CntIgnition对应的缸号燃烧异常,记录该缸燃烧异常故障。
如果与/>3个中任意一个比较,其差的绝对值均大于/>其中/>为进入诊断后的平均发动机转速。p的取值范围为1,2,3,4时均满足,则CntIgnition对应的缸号燃烧异常,记录该缸燃烧异常故障。
如果与/>3个中任意一个比较,其差的绝对值均大于/>其中/>为进入诊断后的平均发动机转速。p的取值范围为1,2,3,4时均满足,则CntIgnition对应的缸号燃烧异常,记录该缸燃烧异常故障。
如果与/>3个中任意一个比较,其差的绝对值均大于/>其中/>为进入诊断后的平均发动机转速。p的取值范围为1,2,3,4时均满足,则CntIgnition对应的缸号燃烧异常,记录该缸燃烧异常故障。
同样方法获取缸号CntIgnition+1,CntIgnition+2,CntIgnition+3的失效监测方法。
其中的获取方法,对表1中不同缸号设置异常燃烧处理和正常燃烧对比得到,d10取4。
表1
在以上3种故障诊断中出现任意故障后则本次驾驶循环不再进行诊断。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种混动车型发动机宽域氧传感器失效监测方法,其特征在于,包括以下步骤:
通过宽域氧传感器采集燃烧后排气管中排气的氧浓度信号;
根据氧浓度信号计算空燃比,生成实际空燃比信号;
根据空燃比信号,控制发动机喷油量和喷油正时调节空燃比,生成调节后的实际空燃比信号;
根据理想空燃比、调节后的实际空燃比和预设的目标空燃比分别建立实际燃油当量比和目标燃油当量比;其中,实际燃油当量比表示为调节后的实际空燃比与理想空燃比的比值,目标燃油当量比表示为目标空燃比与理想空燃比的比值;
在满足所有工况条件和工况稳定条件后进入宽域氧传感器的劣化诊断,判断宽域氧传感器是否失效;
所述的工况条件包括:
发动机转速小于或等于预设转速阈值;发动机转速的相关诊断无故障发生;
发动机未出现断油;
宽域氧传感器加热完成,即宽域氧传感器已经在正常工作温度内;宽域氧传感器加热诊断无故障发生;
油门未全开,且油门踏板开度在一定范围;油门开度传感器诊断无故障发生;
发动机冷却水温超过一定值;冷却温度传感器诊断无故障发生;
发动机进气歧管温度超过一定值;进气歧管温度传感器诊断无故障发生;
发动机运行时间超过一定值,此时发动机暖机成功;
进气气缸内的进气量在一定范围;用于监测或计算进气量的相关诊断无故障发生;
车速超过一定值;车速的相关诊断无故障发生;
无点火线圈故障;
在工况条件满足后,进行工况稳定条件检测,所述的工况稳定条件包括:
发动机转速在一定范围内波动;
油门踏板开度在一定范围内波动;
车速在一定范围内波动;
进入气缸内的进气量在一定范围内波动;
在上述工况稳定条件和工况条件均满足后,进入宽域氧传感器的劣化诊断;
在工况稳定条件和工况条件均满足后,读取从1号缸即将进行的做功冲程缸号CntIgnition,周期性控制做功冲程缸号CntIgnition和下一个做功冲程缸号CntIgnition+1的目标燃油当量比,以第一预设时间T Base进行加浓操作,加浓操作包括:增加氧浓度,设置加浓目标燃油当量比为rFEQRRichBase大于1;然后以第一预设时间TBase进行减稀操作,减稀操作包括:减少氧浓度,设置减稀目标燃油当量比为rFEQRLeanBase小于1;交替重复加浓操作和减稀操作各N0次,实时记录上游宽域氧传感器反馈的实际燃油当量比,计算出CntIgnition的实际燃油当量比的第一偏浓反映时间TRichResDn11和第二偏浓反映时间TRichResUp11;计算出CntIgnition的实际燃油当量比的第一偏稀反映时间TLeanResDnl1和第二偏稀反映时间TLeanResUp11;其中TBase大于TMin
TRichResDn11起始计算时刻的判定方法为:当前采样周期中实际燃油当量比与rFEQRRichBase的差绝对值大于预设差异值ΔC,且上一个采样周期中实际燃油当量比与rFEQRRichBase的差绝对值大于或等于ΔC;
TRichResDn11结束计算时刻的判定方法为:当前采样周期中实际燃油当量比与1的差绝对值小于ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC;
TRichResUpl1起始计算时刻的方法:当前采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值小于ΔC;
TRichResUpl1结束计算时刻的方法:当前采样周期中实际燃油当量比与rFEQRRichBase的差绝对值小于或等于ΔC,且上一个采样周期中实际燃油当量比与rFEQRRichBase的差绝对值大于ΔC;
TLeanResDn11起始计算时刻的判定方法为:当前采样周期中实际燃油当量比与1的差绝对值小于预设差异值ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC;
TLeanResDn11结束计算时刻的判定方法为:当前采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值大于ΔC,且上一个采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值大于或等于ΔC;
TLeanResUp11起始计算时刻的方法:当前采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值小于或等于ΔC,且上一个采样周期中实际燃油当量比与rFEQRLeanBase的差绝对值大于ΔC;
TLeanResUp11结束计算时刻的方法:当前采样周期中实际燃油当量比与1的差绝对值大于或等于ΔC,且上一个采样周期中实际燃油当量比与1的差绝对值小于ΔC;
周期性控制做功冲程缸号和下一个做功冲程缸号的目标燃油当量比,以上述相同步骤顺次获取CntIgnition+1的实际燃油当量比的第一偏浓反映时间TRichResDn12和第二偏浓反映时间TRichResUp12;计算出CntIgnition+1的实际燃油当量比的第一偏稀反映时间TLeanResDn12和第二偏稀反映时间TLeanResUp12;直至得到q号缸CntIgnition+q-1的实际燃油当量比的第一偏浓反映时间TRichResDn1q和第二偏浓反映时间TRichResUp1q;计算出CntIgnition+q-1的实际燃油当量比的第一偏稀反映时间TLeanResDn1q和第二偏稀反映时间TLeanResUp1q时,视为一个采样周期结束,一周期内总计q个缸做功;在下一周期从1号缸进行周期性控制目标燃油量当量比,按上述相同步骤顺次的到其实际燃油当量比的第一偏浓反映时间、第二偏浓反映时间、第一偏稀反映时间和第二偏稀反映时间;直至得到第p个周期q号缸的实际燃油当量比的第一偏浓反映时间TRichResDn(p,q),第二偏浓反映时间TRichResUp(p,q),第一偏稀反映时间TLeanResDn(p,q)和第二偏稀反映时间TLeanResUp(p,q)
分别在TRichResDn、TRichResUp、TLeanResDn、TLeanResUp形成的数组中存在对应加浓操作次数的N0个元素,剔除初始2个元素和末尾2个元素,得到N0-4个元素,计算出N0-4个元素对应的平均值得到
当出现以下任一情况时,判断宽域氧传感器出现故障:
(1)中的任一时间大于/>则判断宽域氧传感器出现故障;其中/>为进入诊断后的平均气缸新鲜空气进气流量;d2,d1,d0分别为第二评价系数、第一评价系数和初始评价系数,其中d2,d1,d0在不同rFEQRRichBase下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(2)中的任一时间大于/>则判断宽域氧传感器出现故障;d5,d4,d3分别为第五评价系数、第四评价系数和第三评价系数,其中d5,d4,d3在不同的rFEQRRidelase下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(3)和/>之差绝对值至/>和/>之差绝对值均大于则判断宽域氧传感器出现故障;d7,d6分别为第七评价系数和第六评价系数,其中d7,d6在不同的/>下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(4)和/>之差绝对值至/>和/>之差绝对值均大于则判断宽域氧传感器出现故障;
(5)和/>之差绝对值至/>和/>之差绝对值均大于则判断宽域氧传感器出现故障;d9,d8分别为第九评价系数和第八评价系数,其中d9,d8在不同的/>下根据故障氧传感器和无故障氧传感器对标拟合数据得到;
(6)和/>之差绝对值至/>合/>之差绝对值均大于则判断宽域氧传感器出现故障;
在以上6种故障诊断中出现任一故障判断后,则本次驾驶循环不再进行劣化诊断。
2.根据权利要求1所述的一种混动车型发动机宽域氧传感器失效监测方法,其特征在于,当以上6种故障均未发生,则进行如下判断:
与/>至/> 与/>至/> 与/>至/> 与/>至/>分别作差得到对应差值,当对应差值的绝对值大于/>时,则判断对应缸号燃烧异常,判断该缸宽域氧传感器出现故障。
3.根据权利要求1所述的一种混动车型发动机宽域氧传感器失效监测方法,其特征在于,理想空燃比为14.3。
4.根据权利要求1所述的一种混动车型发动机宽域氧传感器失效监测方法,其特征在于,预设差异值ΔC为0.005。
5.根据权利要求1或2所述的一种混动车型发动机宽域氧传感器失效监测方法,其特征在于,缸数为4,p和q的取值范围均为{1,2,3,4}。
6.根据权利要求1所述的一种混动车型发动机宽域氧传感器失效监测方法,其特征在于,TBase其中,/>为进入劣化诊断后的平均发动机转速。
7.根据权利要求1或2所述的一种混动车型发动机宽域氧传感器失效监测方法,其特征在于,N0为10。
CN202210643033.2A 2022-06-08 2022-06-08 一种混动车型发动机宽域氧传感器失效监测方法 Active CN114962036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210643033.2A CN114962036B (zh) 2022-06-08 2022-06-08 一种混动车型发动机宽域氧传感器失效监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210643033.2A CN114962036B (zh) 2022-06-08 2022-06-08 一种混动车型发动机宽域氧传感器失效监测方法

Publications (2)

Publication Number Publication Date
CN114962036A CN114962036A (zh) 2022-08-30
CN114962036B true CN114962036B (zh) 2024-04-02

Family

ID=82970838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210643033.2A Active CN114962036B (zh) 2022-06-08 2022-06-08 一种混动车型发动机宽域氧传感器失效监测方法

Country Status (1)

Country Link
CN (1) CN114962036B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061681A (ja) * 2014-09-18 2016-04-25 本田技研工業株式会社 O2センサの故障診断装置
KR20160070647A (ko) * 2014-12-10 2016-06-20 현대오트론 주식회사 산소센서 고장진단방법, 및 이를 통해 운용되는 배기가스 모니터링 시스템
CN112253321A (zh) * 2020-10-13 2021-01-22 东风汽车集团有限公司 多缸发动机基于氧传感器的单缸空燃比闭环控制方法
CN114962034A (zh) * 2022-06-08 2022-08-30 东风汽车集团股份有限公司 混动车型发动机宽域氧传感器劣化诊断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061681A (ja) * 2014-09-18 2016-04-25 本田技研工業株式会社 O2センサの故障診断装置
KR20160070647A (ko) * 2014-12-10 2016-06-20 현대오트론 주식회사 산소센서 고장진단방법, 및 이를 통해 운용되는 배기가스 모니터링 시스템
CN112253321A (zh) * 2020-10-13 2021-01-22 东风汽车集团有限公司 多缸发动机基于氧传感器的单缸空燃比闭环控制方法
CN114962034A (zh) * 2022-06-08 2022-08-30 东风汽车集团股份有限公司 混动车型发动机宽域氧传感器劣化诊断方法

Also Published As

Publication number Publication date
CN114962036A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US7603994B2 (en) Abnormality diagnosis device and control system for internal combustion engine
US8483900B2 (en) Hybrid vehicle
CN109372618B (zh) 车用宽域氧传感器失效监测方法
US8949001B2 (en) Control apparatus and control method for internal combustion engine
CN114962032B (zh) 发动机宽域氧传感器劣化诊断方法
JP5256233B2 (ja) 内燃機関の回転変動異常検出装置
US10208692B2 (en) Misfire detecting system for engine
US5157613A (en) Adaptive control system for an engine
CN114962033B (zh) 发动机宽域氧传感器合理性能监测方法
JP2008075641A (ja) 内燃機関の制御装置
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
CN114962034B (zh) 混动车型发动机宽域氧传感器劣化诊断方法
CN114962038B (zh) 发动机宽域氧传感器性能失效监测方法
CN111412074A (zh) 一种汽油机长期燃油修正的自学习方法
CN114962036B (zh) 一种混动车型发动机宽域氧传感器失效监测方法
JP2006057523A (ja) エンジン制御システムの異常診断装置
CN114962037B (zh) 混动车型发动机宽域氧传感器有效性判断方法
JPH0226053B2 (zh)
US8463530B2 (en) Method for operating auto ignition combustion engine
JP2000204984A (ja) 直噴ガソリンエンジンの内部egrシステム
CN115111077B (zh) 一种混动车型发动机宽域氧传感器有效性判断方法
US9506416B2 (en) Inter-cylinder air-fuel ratio variation abnormality detection apparatus for multicylinder internal combustion engine
CN114962035B (zh) 发动机宽域氧传感器工作性能监测方法
EP2290210A1 (en) Fuel supply control system for internal combustion engine
CN114961954B (zh) 催化器后氧传感器故障检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant