CN114951687A - 一种凹凸棒-纳米铜粉复合物的室温宏量制备方法 - Google Patents

一种凹凸棒-纳米铜粉复合物的室温宏量制备方法 Download PDF

Info

Publication number
CN114951687A
CN114951687A CN202210755680.2A CN202210755680A CN114951687A CN 114951687 A CN114951687 A CN 114951687A CN 202210755680 A CN202210755680 A CN 202210755680A CN 114951687 A CN114951687 A CN 114951687A
Authority
CN
China
Prior art keywords
attapulgite
copper
stirring
water
until
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210755680.2A
Other languages
English (en)
Other versions
CN114951687B (zh
Inventor
汪宝堆
刘达标
苏军霞
郭文婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaian Zhongshun Environmental Protection Technology Co ltd
Original Assignee
Huaian Zhongshun Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaian Zhongshun Environmental Protection Technology Co ltd filed Critical Huaian Zhongshun Environmental Protection Technology Co ltd
Priority to CN202210755680.2A priority Critical patent/CN114951687B/zh
Publication of CN114951687A publication Critical patent/CN114951687A/zh
Application granted granted Critical
Publication of CN114951687B publication Critical patent/CN114951687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution

Abstract

本发明公开了一种凹凸棒‑纳米铜粉复合物的室温宏量制备方法,焦磷酸钠完全溶于去离子水,搅拌下加入凹凸棒原土,搅拌至分散均匀,加入酸,超声,继续搅拌,静置,离心分离,水洗至洗涤水为中性,真空干燥,研磨,得纯化凹凸棒土;将其缓慢加入铜盐水溶液中,水浴中搅拌,静置,真空抽滤,水洗至洗涤后的水无色,真空干燥,得凹凸棒‑铜盐复合物;凹凸棒‑铜盐复合物完全分散于去离子水中,加入还原剂,水浴中搅拌至没有气泡产生,离心分离,洗涤,真空干燥,制得凹凸棒‑纳米铜粉复合物。该制备方法工艺简单,经济成本低,低耗环保,原料储量丰富,可以实现大量合成,具备客观的经济效益。是一项有望实现铜及其合金产业化的关键技术。

Description

一种凹凸棒-纳米铜粉复合物的室温宏量制备方法
技术领域
本发明涉及一种凹凸棒-纳米铜粉复合物的室温宏量制备方法。
背景技术
通常将铝、铜、锌、铁、铜、银及其合金粉体称为金属粉体,按粒径尺寸可以分为微米级粉体(1~100μm)、亚微米级粉体(0.1~1μm)以及纳米粉体(0.001~0.1μm)。纳米粉体因小尺寸效应、表面效应和量子隧道效应等纳米特性,在电子元件、冶金工业、化学品工业、生物工程、先进陶瓷材料以及环境、能源等领域有着较为广泛的应用。铜粉是粉末冶金工业中最重要的基础原料之一,具有高导电性、高熔点、低的电化学迁移行为、强的可焊性以及低廉的价格。例如:以多晶铜粉末为催化剂,利用标准的电化学电池与三电极体系,将CO还原为碳氢化合物和多碳氧化合物。采用原子化Zr-Cu-Ni-Al非晶态粉末进行脱合金处理,制备了与Cu2O共存的纳米多孔铜(Cu)粉末。所制备的NPCPs具有核壳结构,比表面积达7.52m2/g,在酸性和中性环境下均表现出明显的过氧化氢(H2O2)降解能力,能够完全消除甲基橙(MO)。铜粉可以被认为是一种自负载的纳米铜催化剂(即在铜颗粒上负载纳米铜),因此,以铜粉作为醇胺化的活性催化剂,具有比金属氧化物负载的纳米铜催化剂更好的催化性能。此外,纳米铜粉还可以用于固体润滑剂、导电材料、制造纳米铜材料、改性酚醛树脂以及航天领域等。应用于不同领域的铜粉,由于使用特性的不同,对其形貌、表面特征等有着不同的要求。同时,由于金属粉体具有较高的活性,且对粒度大小及分布要求极高,因此铜粉的制备面临诸多挑战。
目前,铜粉的生产有化学沉淀、电解沉积、氧化还原、水雾化、气雾化、水气联合雾 化等多种方法。还有分为直流电弧等离子体(DC)法、高频等离子体(RF)法及混合等离子体 (Hybridplasma)法的等离子体法。等离子体法可获得均匀、小颗粒的纳米粉体,但DC法高温 下电极易于熔化或蒸发而污染产物;RF法能量利用率低、稳定性差。机械化学法是利用高能 球磨并发生化学反应的方法。该方法产量较高、工艺简单,但制得的晶粒不均匀,制备过程 中易引入杂质。扫描喷射电沉积法制备纳米晶铜的过程中电流密度、喷射流量和扫描速度 都对沉积层的表面生长形态有较大的影响。封闭循环氢还原法中以CuSO 4 ∙5H 2 O和NaOH为原 料,在25±1℃剧烈搅拌下,向盛有CuSO 4 水溶液的烧杯中快速滴加NaOH水溶液进行沉淀反 应,得到前驱体粉。前驱体粉在闭循环氢还原炉中,被氢气和氮气的混合气体还原得到粒径 约40~80nm、含量为99.26%的纳米铜粉。晶核生长法可以制备出粒径80~90nm的均匀纳米 铜。此外,物理气相沉积法的工艺过程简单,无污染,耗材少,但设备较复杂,投资较大。γ射 线辐照法的操作简单,能有效防止颗粒团聚,产物粒度易控,产率较高,易于产业化,但收集 困难。溶胶-凝胶法制备的纳米粒子分布均匀,纯度高,化学活性高,但成本较高,有污染。微 乳液法能有效控制产物粒径、防止粒子团聚,但乳化剂用量大、产量低,难以产业化。过程简 单、易于控制的溶剂热法也存在产率低的问题等
发明内容
本发明提供了一种凹凸棒-纳米铜粉复合物的室温宏量制备方法,能够大量制备不易氧化的纳米铜粉复合物。
为此,本发明采用如下技术方案:一种凹凸棒-纳米铜粉复合物的室温宏量制备方法,具体按以下步骤进行:
1)凹凸棒土(ATP)的纯化:
5~10 mmol焦磷酸钠加入1000~2000 mL去离子水中,室温下搅拌至焦磷酸钠完全溶解后,搅拌条件下缓慢加入50~100 g凹凸棒原土,室温下再搅拌30 min,分散均匀,缓慢加入4~7 mL酸,超声30 min,继续搅拌3 h,静置12 h,离心分离,水洗沉淀物,至洗涤后水为中性,110℃温度下真空干燥12 h,研磨,过200目筛,得纯化凹凸棒土;
酸采用摩尔浓度10 mol/L的盐酸、摩尔浓度5 mol/L的硫酸或摩尔浓度10 mol/L的硝酸。
)制备凹凸棒-铜盐复合物:
将10~30 mmol铜盐加入1000~3000 mL去离子水中,搅拌至铜盐完全溶解,缓慢加入10~30 g纯化凹凸棒土,于30 ℃水浴中搅拌24 h,静置,真空抽滤分离,水洗分离出来的固体,至洗涤后的水无色,以除去没有参与配位的铜盐,60℃温度下真空干燥12 h,得凹凸棒-铜盐复合物;
铜盐采用硫酸铜、二水合氯化铜、一水合乙酸铜或六水合硝酸铜。
)制备凹凸棒-纳米铜粉复合物:
将5~20 g凹凸棒-铜盐复合物加入1000~4000 mL去离子水中,完全分散后,缓慢加入7.5~50 mmol还原剂,30℃水浴中搅拌至反应没有气泡产生,离心分离收集凹凸棒-纳米铜粉,去离子水洗涤,60℃温度下真空干燥,制得凹凸棒-纳米铜粉复合物。
还原剂可以采用硼氢化钠、抗坏血酸、水合肼、草酸。
图1是本发明制备方法制得凹凸棒-铜粉的透射电镜图,从图中可以看出,纳米铜粉限域在凹凸棒孔径中,呈分散的球形颗粒,形貌均一。图2是该凹凸棒-铜粉的粒径分布图,可以看出,凹凸棒-铜粉的平均粒径为0.5nm。图3是本发明制备方法制得凹凸棒-铜粉的XRD图,从图中可以看到,所制备的样品并未明显表现出铜的(111)、(200)以及(220)特征晶面,说明凹凸棒起到明显的限域作用,将铜纳米颗粒完全封装到凹凸棒孔径里面,将铜纳米颗粒粒径很好的控制在0.5 nm的超小尺寸中,并有效地阻碍了铜纳米颗粒的氧化。
本发明通过将铜纳米颗粒封装在具有独特链层状结构的凹凸棒中,有效抑制了纳米颗粒的生长,合成了平均粒径0.5nm的超小尺寸铜纳米颗粒。由于凹凸棒矿土链层状结构的保护,可以有效防止铜纳米的氧化,具备良好的工业催化等领域的实际应用前景。
作为含水富镁铝硅酸盐粘土矿物,凹凸棒土因其较大的比表面积和多孔结构,常被用作分散和稳定纳米颗粒的机械载体。本发明经过凹凸棒土的酸化处理利用H+将石层间的部分K+、Na+、Ca2+、Mg2+等离子置换出来,增大其比表面积,再利用硼氢化钠、抗坏血酸、水合肼或草酸等还原剂将凹凸棒的硅羟基配位与铜离子形成的凹凸棒-铜盐复合物还原成凹凸棒-纳米铜粉复合物,使得铜纳米颗粒封装到凹凸棒孔里,在分散铜纳米颗粒的基础上缓解了铜纳米颗粒的氧化。
本发明制备方法得到的凹凸棒-纳米铜粉复合物可应用于催化、润滑油添加剂、导电涂料、能源等领域。
本发明制备方法在室温条件下制备凹凸棒-铜粉,工艺简单,经济成本低,低耗环保,原料储量丰富,可以实现大量合成,具备客观的经济效益。是一项有望实现铜及其合金产业化的关键技术,具有重要的理论和现实意义。制备的凹凸棒-铜粉具有形貌均一、不易氧化、粒径分布范围窄、超小尺寸(平均粒径0.5 nm)等优点,凹凸棒的限域作用也有效地阻碍了铜纳米颗粒的氧化,使其有望表现良好的催化活性。且凹凸棒-铜粉的合成只需去离子水作为溶剂,制备全过程无污染物及污水生成,符合绿色生产要求。
附图说明
图1是本发明制备方法制得凹凸棒-纳米铜粉复合物的表征透射(TEM)图。
图2是本发明制备方法制得凹凸棒-纳米铜粉复合物的粒径分布图。
图3是本发明制备方法制得凹凸棒-纳米铜粉复合物的X-射线衍射(XRD)图。
具体实施方式
实施例1
5 mmol的焦磷酸钠加入1000 mL去离子水中,室温下搅拌至焦磷酸钠完全溶解后,搅拌状态下缓慢加入50g凹凸棒原土,室温搅拌30 min后,分散均匀,缓慢加入6 mL摩尔浓度10 mol/L盐酸,超声30 min,继续搅拌3 h,静置12 h,离心分离,水洗沉淀物,至洗涤后水为中性,110 ℃温度下真空干燥12 h,研磨,过200目筛,得纯化凹凸棒土。将20 mmol的硫酸铜加入2000 mL去离子水中,搅拌至硫酸铜全部溶解,缓慢加入20 g纯化凹凸棒土,于30 ℃水浴中搅拌24 h,静置,真空抽滤分离,水洗分离出来的固体,至洗涤后的水无色,以除去没有参与配位的铜盐,60 ℃温度下真空干燥12 h,得凹凸棒-铜盐复合物。将10 g凹凸棒-铜盐复合物加入2000 mL去离子水中,完全分散后,缓慢加入30 mmol抗坏血酸,30 ℃水浴中搅拌至反应没有气泡产生,离心分离,去离子水洗涤,60 ℃真空干燥得到凹凸棒-纳米铜粉复合物。
实施例2
10mmol焦磷酸钠加入2000 mL去离子水中,室温下搅拌至焦磷酸钠完全溶解后,搅拌状态下缓慢加入100 g原土,室温搅拌30 min后缓慢加入4 mL摩尔浓度5 mol/L的硫酸,超声30 min,继续搅拌3 h,静置12h,离心分离,水洗沉淀物,至洗涤后水为中性,110 ℃温度下真空干燥12 h,研磨,过200目筛,得纯化凹凸棒土。将10 mmol二水合氯化铜加入1000mL去离子水中,搅拌至二水合氯化铜全部溶解,缓慢加入10 g纯化凹凸棒土,于30 ℃水浴中搅拌24 h,静置,真空抽滤分离,水洗分离出来的固体,至洗涤后的水无色,以除去没有参与配位的铜盐,60 ℃温度下真空干燥12 h,得凹凸棒-铜盐复合物。将5 g凹凸棒-铜盐复合物加入1000 mL去离子水中,完全分散,缓慢加入7.5mmol草酸,30℃水浴中搅拌至反应没有气泡产生,离心分离收集,去离子水洗涤,60℃真空干燥,制得凹凸棒-纳米铜粉复合物。
实施例3
8mmol焦磷酸钠加入1500 mL去离子水中,室温下搅拌至焦磷酸钠完全溶解,搅拌状态下缓慢加入75 g凹凸棒原土,室温搅拌30 min后缓慢加入7mL摩尔浓度10 mol/L的硝酸,超声30 min,继续搅拌3 h,静置12h,离心分离,水洗沉淀物,至洗涤后水为中性, 110℃温度下真空干燥12 h,研磨,过200目筛,得纯化凹凸棒土。将30 mmol六水合硝酸铜加入3000 mL去离子水中,搅拌至六水合硝酸铜全部溶解,缓慢加入30 g纯化凹凸棒土,于30 ℃水浴中搅拌24 h,静置,抽滤分离,水洗分离出来的固体,至洗涤后的水无色,以除去没有参与配位的铜盐,60 ℃真空干燥12 h,得凹凸棒-铜盐复合物。将20 g凹凸棒-铜盐复合物加入4000 mL去离子水中,完全分散后,缓慢加入50 mmol水合肼,30℃水浴中搅拌至反应没有气泡产生,离心分离收集,去离子水洗涤,60℃真空干燥,制得凹凸棒-纳米铜粉复合物。

Claims (5)

1.一种凹凸棒-纳米铜粉复合物的室温宏量制备方法,其特征在于,该制备方法具体按以下步骤进行:
1)5~10 mmol焦磷酸钠加入1000~2000mL去离子水中,室温下搅拌至焦磷酸钠完全溶解后,搅拌下缓慢加入50~100g凹凸棒原土,室温下搅拌至分散均匀,缓慢加入4~7 mL酸,超声,继续搅拌,静置,离心分离,水洗,真空干燥,研磨,得纯化凹凸棒土;
2)将10~30 mmol铜盐加入1000~3000 mL去离子水中,搅拌至铜盐完全溶解,缓慢加入10~30 g纯化凹凸棒土,于30℃水浴中搅拌24 h,静置,真空抽滤,水洗至洗涤后的水无色,真空干燥得到凹凸棒-铜盐复合物;
3)将5~20 g凹凸棒-铜盐复合物加入1000~4000 mL去离子水中,完全分散后,缓慢加入7.5~50 mmol还原剂,30℃水浴中搅拌至反应没有气泡产生,离心分离,去离子水洗涤,真空干燥,制得凹凸棒-纳米铜粉复合物。
2.如权利要求1所述的凹凸棒-纳米铜粉复合物的室温宏量制备方法,其特征在于,所述步骤1)中,酸采用摩尔浓度10 mol/L的盐酸、摩尔浓度5 mol/L的硫酸或摩尔浓度10mol/L的硝酸。
3.如权利要求1所述的凹凸棒-纳米铜粉复合物的室温宏量制备方法,其特征在于,所述步骤1)中,洗涤至洗涤后水为中性。
4.如权利要求1所述的凹凸棒-纳米铜粉复合物的室温宏量制备方法,其特征在于,所述步骤2)中,铜盐采用硫酸铜、二水合氯化铜、一水合乙酸铜或硝酸铜。
5.如权利要求1所述的凹凸棒-纳米铜粉复合物的室温宏量制备方法,其特征在于,所述步骤3)中,还原剂采用硼氢化钠、抗坏血酸、水合肼或草酸。
CN202210755680.2A 2022-06-30 2022-06-30 一种凹凸棒-纳米铜粉复合物的室温宏量制备方法 Active CN114951687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210755680.2A CN114951687B (zh) 2022-06-30 2022-06-30 一种凹凸棒-纳米铜粉复合物的室温宏量制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210755680.2A CN114951687B (zh) 2022-06-30 2022-06-30 一种凹凸棒-纳米铜粉复合物的室温宏量制备方法

Publications (2)

Publication Number Publication Date
CN114951687A true CN114951687A (zh) 2022-08-30
CN114951687B CN114951687B (zh) 2024-02-13

Family

ID=82967246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210755680.2A Active CN114951687B (zh) 2022-06-30 2022-06-30 一种凹凸棒-纳米铜粉复合物的室温宏量制备方法

Country Status (1)

Country Link
CN (1) CN114951687B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716505A (zh) * 2009-11-30 2010-06-02 赵杰 一种铂/凹凸棒催化剂的制备及其应用
CN102260864A (zh) * 2011-07-20 2011-11-30 淮阴工学院 凹土/铜-核壳结构一维棒状超细铜粉的制备方法
CN102716759A (zh) * 2012-06-15 2012-10-10 甘肃省科学院自然能源研究所 钒-氮共掺杂TiO2/凹凸棒光催化复合材料及其制备
CN104308171A (zh) * 2014-07-18 2015-01-28 江苏启弘新材料科技有限公司 一种核壳结构金属/凹凸棒土导电粒子的制备方法
JP2015131985A (ja) * 2014-01-10 2015-07-23 一般財団法人川村理化学研究所 金属/粘土鉱物複合ナノ粒子、金属/粘土鉱物複合ナノ粒子分散液及びそれらの製造方法
CN104815664A (zh) * 2015-03-09 2015-08-05 中国科学院广州能源研究所 一种凹凸棒土基复合材料负载Cu-Zn-Fe基催化剂、其制备方法及其应用
CN104888777A (zh) * 2015-04-09 2015-09-09 南京大学 一种凹凸棒石黏土-TiO2-Cu2O复合型可见光催化剂的制备方法
CN106824204A (zh) * 2017-02-28 2017-06-13 山西大学 一种凹凸棒土负载镍催化剂及制备方法和应用
JP2018141180A (ja) * 2017-02-24 2018-09-13 住友金属鉱山株式会社 ニッケルコート銅粉とその製造方法、及び導電性ペースト

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716505A (zh) * 2009-11-30 2010-06-02 赵杰 一种铂/凹凸棒催化剂的制备及其应用
CN102260864A (zh) * 2011-07-20 2011-11-30 淮阴工学院 凹土/铜-核壳结构一维棒状超细铜粉的制备方法
CN102716759A (zh) * 2012-06-15 2012-10-10 甘肃省科学院自然能源研究所 钒-氮共掺杂TiO2/凹凸棒光催化复合材料及其制备
JP2015131985A (ja) * 2014-01-10 2015-07-23 一般財団法人川村理化学研究所 金属/粘土鉱物複合ナノ粒子、金属/粘土鉱物複合ナノ粒子分散液及びそれらの製造方法
CN104308171A (zh) * 2014-07-18 2015-01-28 江苏启弘新材料科技有限公司 一种核壳结构金属/凹凸棒土导电粒子的制备方法
CN104815664A (zh) * 2015-03-09 2015-08-05 中国科学院广州能源研究所 一种凹凸棒土基复合材料负载Cu-Zn-Fe基催化剂、其制备方法及其应用
CN104888777A (zh) * 2015-04-09 2015-09-09 南京大学 一种凹凸棒石黏土-TiO2-Cu2O复合型可见光催化剂的制备方法
JP2018141180A (ja) * 2017-02-24 2018-09-13 住友金属鉱山株式会社 ニッケルコート銅粉とその製造方法、及び導電性ペースト
CN106824204A (zh) * 2017-02-28 2017-06-13 山西大学 一种凹凸棒土负载镍催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN114951687B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
You et al. Research of high entropy alloys as electrocatalyst for oxygen evolution reaction
Xiang et al. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction
Zhang et al. Preparation of copper nanoparticles by chemical reduction method using potassium borohydride
Xu et al. Construction of reduced graphene oxide-supported Ag–Cu 2 O composites with hierarchical structures for enhanced photocatalytic activities and recyclability
KR100836659B1 (ko) 금속 및 금속 산화물 나노입자의 제조방법
Songping et al. Preparation of micron size copper powder with chemical reduction method
CN106077695B (zh) 一种高铜钨铜纳米复合粉末的制备方法
Huang et al. Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors
CN103007963A (zh) 一种以石墨烯为载体的双金属纳米合金复合材料的制备方法
Zhou et al. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods
Ramani et al. Chemically designed CeO 2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid
Jiao et al. Magnetic Ni and Ni/Pt hollow nanospheres and their catalytic activities for hydrolysis of ammonia borane
Zhou et al. Pd and Au@ Pd nanodendrites: a one-pot synthesis and their superior catalytic properties
Baco-Carles et al. Copper nanoparticles prepared from oxalic precursors
Liu et al. Galvanic replacement synthesis of Ag x Au 1− x@ CeO 2 (0≤ x≤ 1) core@ shell nanospheres with greatly enhanced catalytic performance
CN102941350B (zh) 一种纳米铜粉的制备方法
CN108772569B (zh) 一种超细纳米钨粉的水热制备方法
CN111530459A (zh) 一种基于AlOOH纳米片的0D/2D复合材料的制备方法及应用
Wang et al. Functional metal powders: Design, properties, applications, and prospects
CN112916864B (zh) 一种水相铜纳米晶及其制备方法与应用
Abeywickrama et al. A versatile method to prepare size-and shape-controlled copper nanocubes using an aqueous phase green synthesis
CN114951687B (zh) 一种凹凸棒-纳米铜粉复合物的室温宏量制备方法
WO2010102010A1 (en) Method for producing dispersed, crystalline, stable to oxidation copper particles
Jiang et al. Hollow porous Cu–Au particles with high catalytic activity for the reduction of 4-nitrophenol
CN114950440B (zh) 一种凹凸棒-纳米镍粉复合物的宏量室温制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant