CN114946766A - 一种构建先天性高胰岛素血症模型的方法及模型 - Google Patents

一种构建先天性高胰岛素血症模型的方法及模型 Download PDF

Info

Publication number
CN114946766A
CN114946766A CN202210548261.1A CN202210548261A CN114946766A CN 114946766 A CN114946766 A CN 114946766A CN 202210548261 A CN202210548261 A CN 202210548261A CN 114946766 A CN114946766 A CN 114946766A
Authority
CN
China
Prior art keywords
sgrna
gene
model
site
fertilized eggs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210548261.1A
Other languages
English (en)
Other versions
CN114946766B (zh
Inventor
宋宇宁
李占军
赖良学
王东旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202210548261.1A priority Critical patent/CN114946766B/zh
Publication of CN114946766A publication Critical patent/CN114946766A/zh
Application granted granted Critical
Publication of CN114946766B publication Critical patent/CN114946766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/107Rabbit
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0362Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种构建先天性高胰岛素血症模型的方法及模型,通过对kcnj11基因P.H259R位点及P.H296R位点进行共同突变打靶,胚胎注射后进行胚胎移植,获得兔先天性高胰岛素血症模型,利用SpRY‑ABEmax基因编辑技术优势是没有识别PAM区域的序列限制,可以完成指定位点的突变顺利进行;克服了传统的CRISPR/Cas9基因编辑技术需要识别PAM区域为NGG碱基序列,大部分突变位点无法进行编辑;本发明所利用的SpRY‑ABEmax碱基编辑技术在家兔上进行应用,能够有助于基础医学研究及机制探究。

Description

一种构建先天性高胰岛素血症模型的方法及模型
技术领域
本发明公开了一种构建先天性高胰岛素血症模型的方法及模型,利用基因编辑技术进行kcnj11基因双位点共同突变方法,构建兔先天性高胰岛素血症模型,属于生物技术领域。
背景技术
先天性高胰岛素性低血糖血症(CHI)又称婴儿持续性高胰岛素血症性低血糖症等,是一种遗传异质性内分泌疾病。发病率为1/50000~1/30000,在近亲婚配的群体中发生率较高,约为1/2500。本病以胰岛素过量分泌或不受血糖调控和反复发作的严重低血糖为主要特征,是新生儿期和婴儿早期严重和持续性低血糖的常见原因。治疗以药物为主,如药物治疗无效可应用外科治疗。预后与分型及严重程度有关。且有一定的遗传倾向。ATP敏感性钾通道编码基因突变是关键病因,如KCNJ11基因。但尚有近50%CHI病因不明。CHH活产婴儿中的发病率为1/30 000~1/50 000,在血缘关系较密切的国家和地区(如***地区)CHI的发病率可能高至1/2 500 。因反复发生低血糖,可导致不可逆的中枢神经***损伤,故早期识别、诊断和合理处理十分重要。
kcnj11基因编码ATP敏感性钾通道(KATP)的Kir6.2亚基,是调节胰岛β细胞胰岛素分泌的重要基因。研究表明kcnj11基因P.H259R位点及P.H296R位点突变可导致婴儿持续性高胰岛素血症性低血糖症。然而前期单碱基基因编辑技术有PAM限制及设计要求,而这两个突变位点序列限制而无法完成,因此目前针对该突变位点还没有合适的动物模型。
发明内容
本发明针对现有技术存在的上述不足,提供一种构建先天性高胰岛素血症模型,利用SpRY-ABEmax基因编辑技术双位点共同编辑kcnj11基因P.H259R位点及P.H296R位点构建而成。
本发明公开的一种构建先天性高胰岛素血症模型,其特征在于:利用SpRY-ABEmax基因编辑***介导kcnj11基因P.H259R及P.H296R双位点共同突变构建而成,如序列表SEQNO.1和SEQNO.2所示。
本发明公开的一种构建先天性高胰岛素血症模型的方法,包括以下步骤:
1)sgRNA表达载体的构建:
针对基因P.H259R位点及P.H296R位点分别设计1个sgRNA序列作用靶点,合成两队对寡聚核苷酸链制备sgRNA,sgRNA的寡聚核苷酸链选取原则:选取突变碱基位置在5或6位的一条寡聚核苷酸链,其寡聚核苷酸为:
sgRNA-1-F:TAGGCACCACGTCATCGACGCCAA;
sgRNA-1-R:AAACTTGGCGTCGATGACGTGGTG;
sgRNA-2-F:TAGGGGGGCATCACCACCCAGGCCC;
sgRNA-2-R:AAACGGGCCTGGGTGGTGATGCCCC;
两条合成的寡聚核苷酸链经退火形成双链,退火条件是:95℃ 5min后自然降至室温,分BbsⅠ限制性核酸内切酶对PUC57载体线性化,随后将酶切产物进行回收,并将退火的sgRNA连接到PUC57载体上,进而完成PUC57-sgRNA载体的构建,如序列表SEQNO.3和SEQNO.4所示;
其中:酶切体系:质粒PUC57 20μl;
10×buffer 20μl;
BbsⅠ 1μl;
ddH2O 159μl;
酶切37℃ 3h,电泳跑胶后,使用普通DNA琼脂糖胶回收试剂盒进行回收;
2)CAS9mRNA的合成:CAS9表达质粒经酶切线性化,经酚氯仿抽提纯化后,溶于无核酸酶的水中;
酶切体系:NotⅠ 4μl;
CAS9 50μl;
BSA 30μl;
Triton 30μl;
10×H 30μl;
ddH2O 156μl;
酶切37℃ 3h,电泳跑胶后,使用普通DNA琼脂糖胶回收试剂盒进行回收;
3)受精卵的获取和显微注射:注射***,之后注射人绒毛膜***,获取受精卵,通过显微注射仪器将预混好CAS9mRNA/sgRNA混合物注射到细胞质中,其中CAS9mRNA浓度为150ng/μl,sgRNA浓度为30ng/μl;
4)受精卵的培养和发育:将显微注射的受精卵转移到培养液中,置于37℃恒温培养箱中培养,发育到桑椹胚时期时,用吸卵针将单个胚胎转移到离心管中。
本发明还提供了胚胎Kcnj11基因敲除情况鉴定方法:
1、胚胎裂解:胚胎裂解试剂为NP40,裂解条件为:56℃,1h;95℃,10min;
2、DNA测序鉴定胚胎基因型突变情况:提取DNA,进行PCR,电泳鉴定,并进行DNA测序,得到基因型鉴定结果;
a、设计PCR引物如下:
上游引物:ATCATCAGCGCCACCATC;
下游引物:GGAATCCGGAGAGATGCTAAAC;
b、PCR反应体系如下:
模板DNA 1ul;
上游引物 1ul;
下游引物 1ul;
2×Taq plus 12.5ul;
ddH2O 9.5ul;
c、PCR反应条件:
95℃预变性7min;94℃变性30s,58℃退火30s,72℃延伸40s;30个循环;72℃延伸5min;
3、PCR产物进行测序,测序结果在kcnj11基因引物设计的打靶位点出现完全突变或不完全突变的情况,选择位点完全突变或者不完全突变的样品则为基因突变。
本发明的积极效果在于:
公开了一种先天性高胰岛素血症兔模型,通过对kcnj11基因P.H259R位点及P.H296R位点进行共同突变打靶,胚胎注射后进行胚胎移植,获得兔先天性高胰岛素血症模型,利用SpRY-ABEmax基因编辑技术优势是没有识别PAM区域的序列限制,可以完成指定位点的突变顺利进行;克服了传统的CRISPR/Cas9基因编辑技术需要识别PAM区域为NGG碱基序列,大部分突变位点无法进行编辑;本发明所利用的SpRY-ABEmax碱基编辑技术首次在家兔上进行应用,并首次实现双位点共同突变。
附图说明
图1是本发明kcnj11 sgRNA的设计示意图;
图2是本发明PCR产物鉴定胚胎kcnj11基因突变情况的sanger测序图;
图3是显微注射后得到的新生兔模型;
图4是新生兔模型基因型鉴定;
图5是新生兔模型血糖水平检测;
图6是新生兔模型胰岛素表达水平检测;
图7是新生兔模型胰腺组织胰岛素组化方法检测。
具体实施方式
通过以下实施例进一步举例描述本发明,并不以任何方式限制本发明,在不背离本发明的技术解决方案的前提下,对本发明所作的本领域普通技术人员容易实现的任何改动或改变都将落入本发明的权利要求范围之内。
实施例1
本发明利用SpRY-ABEmax碱基编辑器成功构建kcnj11基因双位点共同突变先天性高胰岛素性低血糖血症兔模型:
1、SpRY-ABEmax***sgRNA设计和表达载体的构建
针对在kcnj11基因第设计2个sgRNA序列作用靶点,合成两对寡聚核苷酸链用于制备sgRNA;该sgRNA的寡聚核苷酸链选取原则:选取突变碱基位置在5或6位的一条寡聚核苷酸链;合成的寡聚核苷酸经退火(95℃ 5min后自然降至室温),连入经BbsⅠ酶切经回收PUC57-sgRNA表达载体,完成sgRNA载体构建,通过测序验证片段连接正确,进行克隆,扩大培养后提取质粒用于准备体外转录模板;
酶切体系:质粒PUC57 20ul;
10×buffer 20ul;
BbsⅠ 1ul;
ddH2O 159ul;
酶切37℃ 3h,电泳跑胶后,使用普通DNA琼脂糖胶回收试剂盒(购于天根公司,北京,中国)进行回收,具体操作按说明书进行;
SPRY-ABEmax表达质粒(Addgene,实验室购买),经酶切线性化,经酚氯仿抽提纯化后,溶于无核酸酶的水中作为模板,用于体外转录;SPRY-ABEmaxmRNA的合成由试剂盒RNeasy Mini Kit(Qiagen,No.74104)在体外作用T7RNA聚合酶来完成,sgRNA的体外合成由试剂盒MiRNeasy Mini Kit(Qiasgen,No.217004)在体外利用T7RNA聚合酶完成;
酶切体系:NotⅠ 4 ul;
CAS9 50μl;
BSA 30μl;
Triton 30μl;
10×H 30μl;
ddH2O 156μl;
酶切37℃ 3h,电泳跑胶后,使用普通DNA琼脂糖胶回收试剂盒(购于天根公司,北京,中国)进行回收,具体操作按说明书进行。
2、受精卵的获取和显微注射
注射***(FSH),之后注射人绒毛膜***(HCG)(购于宁波第二激素厂),获取受精卵,通过显微注射仪器将预混好CAS9mRNA/sgRNA混合物注射到细胞质中(CAS9mRNA终浓度为150ng/ ul,sgRNA终浓度为30ng/ ul);
3、受精卵的体外培养和发育
将显微注射的受精卵转移到培养液中,置于37℃恒温培养箱中培养,发育到桑椹胚时期时,用吸卵针将单个胚胎转移到离心管中,用于后面实验;
4)胚胎kcnj11基因突变情况鉴定
1)胚胎裂解
胚胎裂解试剂为NP40,裂解条件为:56℃ 1h;95℃ 10min;
2)DNA测序鉴定胚胎基因型突变情况
提取DNA,提取方法按照组织基因组提取试剂盒说明书进行操作(购于天根公司,北京,中国),进行PCR,电泳鉴定,并进行DNA测序,得到基因型鉴定结果;
(1)胚胎裂解:胚胎裂解试剂为NP40,裂解条件为:56℃,1h;95℃,10min;
(2)DNA测序鉴定胚胎基因型突变情况:提取DNA,进行PCR,电泳鉴定,并进行DNA测序,得到基因型鉴定结果;
a、设计PCR引物如下:
上游引物:TGGCTTGCCTGTCTTTCTT;
下游引物:ATGTCGTTGAGATGGAGGTATTC;
b、PCR反应体系如下:
模板DNA 1ul;
上游引物 1ul;
下游引物 1ul;
2×Taq plus 12.5ul;
ddH2O 9.5ul;
c、PCR反应条件:
95℃预变性7min;94℃变性30s,58℃退火30s,72℃延伸40s;30个循环;72℃延伸5min;
(3)PCR产物进行测序,测序结果在kcnj11基因引物设计的打靶位点出现完全突变或者不完全突变的情况,选择位点完全突变或者不完全突变的样品则为基因突变。
实验例1
Kcnj11基因帕金森病兔模型表型鉴定和基因型分析
1)DNA测序鉴定Kcnj11基因帕金森病兔模型的基因型
提取出生兔模型组织DNA,提取方法按照组织基因组提取试剂盒说明书进行操作(天根,北京,中国),进行PCR,核酸电泳鉴定,并进行DNA测序,得到基因型鉴定结果;
a、设计PCR引物如下:
上游引物:TGGCTTGCCTGTCTTTCTT;
下游引物:ATGTCGTTGAGATGGAGGTATTC;
b、PCR反应体系如下:
模板DNA 1ul;
上游引物 1ul;
下游引物 1ul;
2×Taq plus 12.5ul;
ddH2O 9.5ul;
c、PCR反应条件:
95℃预变性5min;95℃变性30s,58℃退火30s,72℃延伸30s;35个循环;72℃延伸5min;
PCR产物进行测序,测序结果在EIF4G1基因引物设计的打靶位点出现完全突变或者不完全突变的情况,样本则为基因突变;
如图4所示,得到了Kcnj11基因突变兔模型;
2)兔模型血糖采集
分别于出生后3,4,5天测定正常兔与突变兔的血糖水平,如图5所示,出生3天后Kcnj11基因突变兔模型血糖值明显降低;
3)兔模型胰岛素表达水平检测
分别于出生后3,4,5天测定正常兔与突变兔的体重,如图6所示,出生3天后Kcnj11基因突变兔模型胰岛素表达水平明显升高;
4)兔模型组织学结果观察
观察兔身体重要部位或组织是否发生病变;兔模型在生长过程中若出现死亡的个体,立即解剖观察胰腺等病变情况,固定组织后进行组织病理切片;如图7所示,兔模型免疫组化结果显示存在胰岛组织存在明显的胰岛素阳性反应。
结论:
本发明成功构建kcnj11基因P.H259R位点及P.H296R位点双位点共同突变兔模型,其具有典型的先天性高胰岛素性低血糖血症症状,与人类临床病例结果相一致,本发明构建的模型准确可靠。
序列表
<110> 吉林大学
<120> 一种构建先天性高胰岛素血症模型的方法及模型
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1106
<212> DNA
<213> Oryctolagus cuniculus
<400> 1
agcccaggta ccgcgcccgt gagcggaggg cccgcttcgt gtccaaaaaa gggaactgta 60
atgtggccca caagaacatc cgcgagcagg ggcgcttcct gcaggacgtc ttcaccacgc 120
tggtggacct caagtggacg cacacgctgc tcatcttcac catgtccttt ctctgcagct 180
ggctgctctt tgccatggtc tggtggctca tcgccttcgc ccacggtgac ctggcgcccg 240
gcgagggcgc cgccgtgccc tgcgtcacca gcatccactc cttttcctcc gccttccttt 300
tctccatcga ggtccaggtg accatcggct tcggcgggcg catggtgacg gaggagtgcc 360
ccctggccat cctgatcctc atcgtgcaga acatcgtagg gctcatgatc aacgccatca 420
tgctgggctg catcttcatg aagaccgccc aggcccaccg gcgcgccgag accctcatct 480
tcagcaagca tgccgtcatc gccctgcgcc aagggcgcct ctgtttcatg ctgcgcgtgg 540
gcgacctgcg caagagcatg atcatcagcg ccaccatcca catgcaggtg gtgcgcaaga 600
cgaccagccc cgagggcgag gtggtgccac tgcaccaggt ggacatcccc atggagaacg 660
gcgtgggcgg caacagcatc ttcctggtgg ccccgctcat catccaccac gtcatcgacg 720
ccaacagtcc actgtatgac ctggcgccca gcgacctgca ccaccaccag gacctggaga 780
tcatcgtcat cctcgagggg gtggtggaaa ccacgggcat caccacccag gcccgcacct 840
cctacctggc agacgagatc ctgtgggggc agcgcttcgt gcccattgtg gccgaggagg 900
acgggcgcta ctccgtggac tactccaagt ttggcaacac cgtgaaagtg cccacgcccc 960
tctgcacggc ccgccagctg gacgaggacc gcagcctgct ggacgccctg acgctcacct 1020
ccgcccgagg acccctacgc aagcgcagcg tgcccgtcgc caaggccaag cccaagttta 1080
gcatctctcc agattccttg tcctga 1106
<210> 2
<211> 1240
<212> DNA
<213> 兔(Oryctolagus cuniculus)
<400> 2
atgctgtccc gaaaggggat catcccggag gagtatgtgc tgacgcggct ggccgaggac 60
cccgccgatg ctgtcccgaa aggggatcat cccggaggag tatgtgctga cgcggctggc 120
cgaggacccc gccgagccca ggtaccgcgc ccgtgagcgg agggcccgct tcgtgtccaa 180
aaaagggaac tgtaatgtgg cccacaagaa catccgcgag caggggcgct tcctgcagga 240
cgtcttcacc acgctggtgg acctcaagtg gacgcacacg ctgctcatct tcaccatgtc 300
ctttctctgc agctggctgc tctttgccat ggtctggtgg ctcatcgcct tcgcccacgg 360
tgacctggcg cccggcgagg gcgccgccgt gccctgcgtc accagcatcc actccttttc 420
ctccgccttc cttttctcca tcgaggtcca ggtgaccatc ggcttcggcg ggcgcatggt 480
gacggaggag tgccccctgg ccatcctgat cctcatcgtg cagaacatcg tagggctcat 540
gatcaacgcc atcatgctgg gctgcatctt catgaagacc gcccaggccc accggcgcgc 600
cgagaccctc atcttcagca agcatgccgt catcgccctg cgccaagggc gcctctgttt 660
catgctgcgc gtgggcgacc tgcgcaagag catgatcatc agcgccacca tccacatgca 720
ggtggtgcgc aagacgacca gccccgaggg cgaggtggtg ccactgcacc aggtggacat 780
ccccatggag aacggcgtgg gcggcaacag catcttcctg gtggccccgc tcatcatcca 840
ccgcgtcatc gacgccaaca gtccactgta tgacctggcg cccagcgacc tgcaccacca 900
ccaggacctg gagatcatcg tcatcctcga gggggtggtg gaaaccacgg gcgtcaccac 960
ccaggcccgc acctcctacc tggcagacga gatcctgtgg gggcagcgct tcgtgcccat 1020
tgtggccgag gaggacgggc gctactccgt ggactactcc aagtttggca acaccgtgaa 1080
agtgcccacg cccctctgca cggcccgcca gctggacgag gaccgcagcc tgctggacgc 1140
cctgacgctc acctccgccc gaggacccct acgcaagcgc agcgtgcccg tcgccaaggc 1200
caagcccaag tttagcatct ctccagattc cttgtcctga 1240
<210> 3
<211> 1053
<212> DNA
<213> 兔(Oryctolagus cuniculus)
<400> 3
cagtgattgg agatcggtac ttcgcgaatg cgtcgagata ttgggtcttt aaaagcaccg 60
actcggtgcc actttttcaa gttgataacg gactagcctt attttaactt gctatttcta 120
gctctaccta tagtgagtcg tattaattgg gtatcggatg ccgggaccga cgagtgcaga 180
ggcgtgcaag cgagcttggc gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat 240
ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc ctggggtgcc 300
taatgagtga gctaactcac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga 360
aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt 420
attgggcgct cttccgcttc ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg 480
cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc aggggataac 540
gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg 600
ttgctggcgt ttttccatag gctccgcccc cctgacgagc atcacaaaaa tcgacgctca 660
agtcagaggt ggcgaaaccc gacaggacta taaagatacc aggcgtttcc ccctggaagc 720
tccctcgtgc gctctcctgt tccgaccctg ccgcttaccg gatacctgtc cgcctttctc 780
ccttcgggaa gcgtggcgct ttctcatagc tcacgctgta ggtatctcag ttcggtgtag 840
gtcgttcgct ccaagctggg ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc 900
ttatccgggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc 960
agcagccact ggtacaggat tagcagagcg agtatgtaag cgttgctaca gagttcttga 1020
agtggtgcct aactacgggc ttaccactaa gga 1053
<210> 4
<211> 1053
<212> DNA
<213> 兔(Oryctolagus cuniculus)
<400> 4
cagtgattgg agatcggtac ttcgcgaatg cgtcgagata ttgggtcttt aaaagcaccg 60
actcggtgcc actttttcaa gttgataacg gactagcctt attttaactt gctatttcta 120
gctctaccta tagtgagtcg tattaattgg gtatcggatg ccgggaccga cgagtgcaga 180
ggcgtgcaag cgagcttggc gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat 240
ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc ctggggtgcc 300
taatgagtga gctaactcac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga 360
aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt 420
attgggcgct cttccgcttc ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg 480
cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc aggggataac 540
gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg 600
ttgctggcgt ttttccatag gctccgcccc cctgacgagc atcacaaaaa tcgacgctca 660
agtcagaggt ggcgaaaccc gacaggacta taaagatacc aggcgtttcc ccctggaagc 720
tccctcgtgc gctctcctgt tccgaccctg ccgcttaccg gatacctgtc cgcctttctc 780
ccttcgggaa gcgtggcgct ttctcatagc tcacgctgta ggtatctcag ttcggtgtag 840
gtcgttcgct ccaagctggg ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc 900
ttatccgggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc 960
agcagccact ggtacaggat tagcagagcg agtatgtaag cgttgctaca gagttcttga 1020
agtggtgcct aactacgggc ttaccactaa gga 1053

Claims (3)

1.一种构建先天性高胰岛素血症模型,其特征在于:利用kcnj11基因P.H259R及P.H296R双位点共同突变构建而成,如序列表SEQNO.1所示和SEQNO.2所示。
2.一种构建先天性高胰岛素血症模型的两对寡聚核苷酸链,其特征在于针对基因P.H259R位点及P.H296R位点分别设计1个sgRNA序列作用靶点,合成两队对寡聚核苷酸链制备sgRNA,其寡聚核苷酸为:
sgRNA-1-F:TAGGCACCACGTCATCGACGCCAA;
sgRNA-1-R:AAACTTGGCGTCGATGACGTGGTG;
sgRNA-2-F:TAGGGGGGCATCACCACCCAGGCCC;
sgRNA-2-R:AAACGGGCCTGGGTGGTGATGCCCC。
3.一种构建先天性高胰岛素血症模型的方法,包括以下步骤:
1)sgRNA表达载体的构建:
针对基因P.H259R位点及P.H296R位点分别设计1个sgRNA序列作用靶点,合成两队对寡聚核苷酸链如权利要求2所述制备sgRNA,两条合成的寡聚核苷酸链经退火形成双链,分BbsⅠ限制性核酸内切酶对PUC57载体线性化,随后将酶切产物进行回收,并将退火的sgRNA连接到PUC57载体上,进而完成PUC57-sgRNA载体的构建,酶切37℃ 3h,电泳跑胶后,使用普通DNA琼脂糖胶回收试剂盒进行回收;
2)CAS9mRNA的合成:
CAS9表达质粒经酶切线性化,经酚氯仿抽提纯化后,溶于无核酸酶的水中;酶切37℃3h,电泳跑胶后,使用普通DNA琼脂糖胶回收试剂盒进行回收;
3)受精卵的获取和显微注射:
注射***,之后注射人绒毛膜***,获取受精卵,通过显微注射仪器将预混好CAS9mRNA/sgRNA混合物注射到细胞质中;
4)受精卵的培养和发育:
将显微注射的受精卵转移到培养液中,置于37℃恒温培养箱中培养,发育到桑椹胚时期时,用吸卵针将单个胚胎转移到离心管中。
CN202210548261.1A 2022-05-20 2022-05-20 一种构建先天性高胰岛素血症模型的方法及模型 Active CN114946766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210548261.1A CN114946766B (zh) 2022-05-20 2022-05-20 一种构建先天性高胰岛素血症模型的方法及模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210548261.1A CN114946766B (zh) 2022-05-20 2022-05-20 一种构建先天性高胰岛素血症模型的方法及模型

Publications (2)

Publication Number Publication Date
CN114946766A true CN114946766A (zh) 2022-08-30
CN114946766B CN114946766B (zh) 2024-02-09

Family

ID=82984341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210548261.1A Active CN114946766B (zh) 2022-05-20 2022-05-20 一种构建先天性高胰岛素血症模型的方法及模型

Country Status (1)

Country Link
CN (1) CN114946766B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2625744A1 (en) * 2005-10-11 2007-04-19 Tethys Bioscience, Inc. Diabetes-associated markers and methods of use thereof
CN101008032A (zh) * 2006-01-26 2007-08-01 北京华安佛医药研究中心有限公司 多态性位点基因型预测磺脲类药物作用效果的用途和方法
CN106011268A (zh) * 2016-07-06 2016-10-12 上海市内分泌代谢病研究所 一种mody型糖尿病基因检测试剂盒及突变位点
RU2716268C1 (ru) * 2019-10-08 2020-03-11 Федеральное государственное бюджетное учреждение "Уральский научно-исследовательский институт охраны материнства и младенчества" Министерства здравоохранения Российской Федерации (ФГБУ "НИИ ОММ" Минздрава России) Способ прогнозирования риска развития гестационного сахарного диабета у беременных женщин

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2625744A1 (en) * 2005-10-11 2007-04-19 Tethys Bioscience, Inc. Diabetes-associated markers and methods of use thereof
CN101008032A (zh) * 2006-01-26 2007-08-01 北京华安佛医药研究中心有限公司 多态性位点基因型预测磺脲类药物作用效果的用途和方法
CN106011268A (zh) * 2016-07-06 2016-10-12 上海市内分泌代谢病研究所 一种mody型糖尿病基因检测试剂盒及突变位点
RU2716268C1 (ru) * 2019-10-08 2020-03-11 Федеральное государственное бюджетное учреждение "Уральский научно-исследовательский институт охраны материнства и младенчества" Министерства здравоохранения Российской Федерации (ФГБУ "НИИ ОММ" Минздрава России) Способ прогнозирования риска развития гестационного сахарного диабета у беременных женщин

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ABBASI, F: "Detection of KCNJ11 Gene Mutations in a Family with Neonatal Diabetes Mellitus Implications for Therapeutic Management of Family Members with Long-Standing Disease", 《MOLECULAR DIAGNOSIS & THERAPY》, vol. 16, no. 2, pages 109 - 114 *
HE, BB: "Continuous spectrum of glucose dysmetabolism due to the KCNJ11 gene mutation-Case reports and review of the literature", 《JOURNAL OF DIABETES》, vol. 13, no. 1, pages 19 - 32 *
HUGILL, A: "A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose-intolerant phenotype in the mouse", 《BIABETOLOGIA》, vol. 53, no. 11, pages 2352 - 2356, XP019836290 *
LAU, E: "Permanent neonatal diabetes by a new mutation in KCNJ11: unsuccessful switch to sulfonylurea", 《ARCHIVES OF ENDOCRINOLOGY METABOLISM》, vol. 59, no. 6, pages 559 - 561 *
SONG, YN: "CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits", 《BIOSCIENCE REPORTS》, vol. 38, no. 2, pages 1490 *
WALCZEWSKA-SZEWC, K: "Spacial models of malfunctioned protein complexes help to elucidate signal transduction critical for insulin release", 《SYSTEMS》, vol. 177, pages 48 - 55 *
杭帆: "ABCC8/KCNJ11基因突变与新生儿糖尿病/先天性高胰岛素血症关系研究进展", 《徐州医科大学学报》, no. 2, pages 89 - 93 *
王芳: "内向整流型钾离子通道亚家族J成员11mRNA在脑胶质瘤中的表达及预测预", 《肿瘤防治研究》, no. 1, pages 18 - 23 *

Also Published As

Publication number Publication date
CN114946766B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN110551752B (zh) xCas9n-epBE碱基编辑***及其在基因组碱基替换中的应用
CN106755026A (zh) sgRNA表达载体的构建及牙釉质钙化不全模型的建立
CN108203714B (zh) 一种棉花基因的编辑方法
CN109593781B (zh) 陆地棉基因组的精准高效编辑方法
CN110656114B (zh) 一种烟草色素合成相关的基因及其应用
CN109912720A (zh) 一种蛛丝蛋白的设计合成方法和纺丝
CN110656122B (zh) 一种提高去甲四环素产量的方法
CN101775410B (zh) 一种鸡痘病毒载体穿梭质粒及其应用
CN114946766B (zh) 一种构建先天性高胰岛素血症模型的方法及模型
CN109321576A (zh) 一种无腺体低棉酚棉花种质的创制方法
CN108690823A (zh) 一种装载dna的布鲁氏菌菌蜕复合疫苗
KR101891603B1 (ko) 구제역 a형 한국발생주 및 백신표준주 a22형의 방어항원이 동시에 발현되는 재조합 바이러스
CN114480456A (zh) 用于检测多种融合基因的标准质粒及检测试剂盒
CN114958847A (zh) 一种rhob基因点突变的人源脑瘫兔模型及构建方法
CN109880885B (zh) 一种双荧光筛选β-丙氨酸合成酶的方法
CN114958911A (zh) 利用eAID-Cas9构建的帕金森病兔模型及方法
CN110305873A (zh) 共编辑标记ben-1sgRNA靶位点及其CRISPR/Cas9共编辑***和应用
CN113122516B (zh) 一种植物epsps突变体及其在植物中的应用
CN109337925B (zh) 一种以黄花蒿悬浮细胞系为受体的转AaADS基因提高黄花蒿中青蒿素含量的方法
CN109750005A (zh) 一种猪伪狂犬病重组病毒株及其构建方法
CN107815435A (zh) 具有增强的纤维素生产能力的葡糖醋杆菌
CN104450768B (zh) 一种靶向酵母线粒体的穿梭载体及其应用
CN114591996B (zh) 一种凝结芽孢杆菌h-1的表达载体及其构建方法与应用
CN112662672B (zh) 一种启动子及其制备方法
CN113373163B (zh) 一种密码子优化的沙眼衣原体ctl0286基因及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant