CN114937693A - 一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法 - Google Patents

一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法 Download PDF

Info

Publication number
CN114937693A
CN114937693A CN202210876407.5A CN202210876407A CN114937693A CN 114937693 A CN114937693 A CN 114937693A CN 202210876407 A CN202210876407 A CN 202210876407A CN 114937693 A CN114937693 A CN 114937693A
Authority
CN
China
Prior art keywords
region
source
gate
trench
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210876407.5A
Other languages
English (en)
Other versions
CN114937693B (zh
Inventor
李伟聪
陈钱
姜春亮
雷秀芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Vergiga Semiconductor Co Ltd
Original Assignee
Shenzhen Vergiga Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Vergiga Semiconductor Co Ltd filed Critical Shenzhen Vergiga Semiconductor Co Ltd
Priority to CN202210876407.5A priority Critical patent/CN114937693B/zh
Publication of CN114937693A publication Critical patent/CN114937693A/zh
Application granted granted Critical
Publication of CN114937693B publication Critical patent/CN114937693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明属于功率半导体器件技术领域,具体涉及一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法,通过第二源极多晶硅与第二沟道二极管氧化层、第二P型区和第二源区配合设置形成第二沟道二极管;通过源沟槽与第一沟道二极管栅氧化层、基区和第一源区配合设置形成第一沟道二极管;由于两个沟道二极管的开启电压不同,在二极管电流较低时,其中一个二极管导通;在二极管电流较高时,第一沟道二极管和第二沟道二极管都导通;双沟道二极管的设置在为器件提供反向并联续流二极管,能够有效提高二极管的抗浪涌性能,并且有效避免了寄生PN结二极管导通,防止发生双极退化效应。同时本器件结构的栅极沟道密度低,有较高的短路能力。

Description

一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备 方法
技术领域
本发明属于功率半导体器件技术领域,具体涉及一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法。
背景技术
SiC MOSFET常用作开关器件,为防止开关过程中电流突变,产生过高的电压尖峰损坏SiC MOSFET器件,需要反向并联一个续流二极管。由于SiC材料的禁带宽度较宽(约为3.26eV),其体二极管的开启电压较高(室温下约为2.5V~3V),如果直接采用器件自身的寄生体二极管作为续流二极管,会造成***额外的功率损耗,并且体二极管开启后,由于SiC材料的双极退化效应,会对器件长期可靠性造成影响。如果直接采用外接二极管作为续流二极管的方式,会给***带来额外的寄生电容以及杂散电感,增加***的功率损耗,制约SiC MOSFET器件的高频化和小型化,同时增加额外的成本。
现有技术下,往往会在器件内部集成肖特基二极管,作为续流二极管,但是肖特基二极管的抗浪涌性能较差。
发明内容
本发明要解决的技术问题在于克服现有技术为防止SiC MOSFET器件开关过程中电流突变,产生过高的电压尖峰损坏器件,而在器件内部集成肖特基二极管,作为续流二极管,但是肖特基二极管的抗浪涌性能较差的缺陷,从而提供一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法。
一种具有双沟道二极管的沟槽栅SiC MOSFET器件,
包括:漏极金属、N型重掺杂的漏区、N型的漂移区、第一P型区、P型的基区、N型重掺杂的第一源区、源极金属、第二P型区、N型重掺杂的第二源区、P型重掺杂的欧姆接触区、栅介质层、第一介质层、第二沟道二极管栅氧化层、栅极多晶硅、第二源极多晶硅、第一沟道二极管栅氧化层、第一源极多晶硅、第二介质层;
所述漏区位于所述漏极金属上侧;
所述漂移区位于所述漏区上侧;
所述第二P型区位于所述漂移区上侧中间;
所述欧姆接触区位于所述第二P型区上侧中间,并且左侧连接第二源区;
栅沟槽位于所述第二P型区左侧,所述栅极多晶硅和第二源极多晶硅分别位于所述栅沟槽内左右并且之间设置有第一介质层,所述栅极多晶硅的左侧和下侧覆盖有栅介质层,所述第二源极多晶硅的右侧和下侧覆盖有第二沟道二极管栅氧化层;所述第二沟道二极管栅氧化层的右侧上方与所述第二源区接触,右侧下方和下侧右方与所述第二P型区接触;
源沟槽位于所述漂移区的上方左侧,内填充有第一源极多晶硅,且在右侧设有第一沟道二极管栅氧化层,下侧设有第一P型区;
所述第一源区位于所述源沟槽和栅沟槽之间;所述基区位于所述第一源区下侧并与之接触;并且所述第一源区和所述基区的左侧与所述第一沟道二极管栅氧化层右侧接触,右侧与所述栅介质层左侧接触;
所述第二介质层覆盖所述栅沟槽的上侧,同时在左右两侧覆盖部分第一源区和部分第二源区上侧,并且在所述第二源极多晶硅上侧留出部分空隙;
所述源极金属覆盖器件上表面,连接所述第一源区、所述第二源区、所述第二源极多晶硅、第一源极多晶硅和所述欧姆接触区。
进一步的,所述栅沟槽深度为0.4um-4um,宽度为0.8um-3um。
进一步的,所述栅介质层厚度为40nm-120nm。
进一步的,所述源沟槽深度为0.5um-4um,宽度为0.5um-1um。
进一步的,所述第一沟道二极管栅氧化层和第二沟道二极管栅氧化层的厚度为5nm-40nm。
进一步的,所述基区掺杂浓度低于所述第二P型区掺杂浓度。
一种具有双沟道二极管的沟槽栅SiC MOSFET器件的制备方法,包括以下步骤:
步骤S1:在N型的SiC衬底上外延生长N型的漂移区;
步骤S2:在漂移区上采用第一硬掩模作为阻挡层,离子注入形成第二P型区和第一P型区,去除第一硬掩模,进行离子注入形成基区;采用第二硬掩模作为阻挡层,离子注入形成欧姆接触区,去除第二硬掩模;采用第三硬掩模作为阻挡层,离子注入形成第一源区,去除第三硬掩模;退火处理,激活第一P型区、第二P型区、基区、欧姆接触区和第一源区;
步骤S3:光刻并刻蚀部分第一源区、基区和第二P型区,形成源沟槽和栅沟槽,并在所述源沟槽和栅沟槽内热生长形成第二沟道二极管栅氧化层和第一沟道二极管栅氧化层;
步骤S4:在栅沟槽和源沟槽内分别淀积第二源极多晶硅和第一源极多晶硅并刻蚀;
步骤S5:光刻并刻蚀部分第二源极多晶硅,然后热生长栅介质层和第一介质层;
步骤S6:淀积多晶硅形成栅极多晶硅并刻蚀;
步骤S7:淀积第二介质层,刻蚀孔区域,淀积源极金属;背面减薄,背金形成漏极金属。
有益效果:
1.本发明通过第二源极多晶硅与第二沟道二极管氧化层、第二P型区和第二源区配合设置形成第二沟道二极管;通过源沟槽与第一沟道二极管栅氧化层、基区和第一源区配合设置形成第一沟道二极管;由于第一沟道二极管和第二沟道二极管的开启电压不同,在二极管电流较低时,其中一个二极管导通;在二极管电流较高时,第一沟道二极管和第二沟道二极管都导通;双沟道二极管的设置在为SiC MOSFET器件提供反向并联续流二极管的同时,能够有效提高二极管的抗浪涌性能,并且有效避免了寄生PN结二极管导通,防止发生双极退化效应。同时本器件结构的栅极沟道密度低,因此有较高的短路能力。
2.本发明通过第二P型区半包围第二源极多晶硅的设置,在器件反向阻断时,能够有效抑制第二源极多晶硅附近氧化层中高电场,防止氧化层被提前击穿,提高器件氧化层的可靠性。
3.本发明通过基区掺杂浓度低于所述第二P型区掺杂浓度的设置,使基区结深比第二P型区小,从而第一沟道二极管的开启电压低于第二沟道二极管,确保了器件的抗浪涌能力。
附图说明
图1为本发明整体结构示意图;
图2为本发明制备方法步骤S2的示意图;
图3为本发明制备方法步骤S3的示意图;
图4为本发明制备方法步骤S4的示意图;
图5为本发明制备方法步骤S5的示意图;
图6为本发明制备方法步骤S6的示意图;
图7为本发明制备方法步骤S7的示意图。
附图标记:1、漏极金属;2、漏区;3、漂移区;4、第一P型区;5、基区;6、第一源区;7、源极金属;8、第二P型区;9、第二源区;10、欧姆接触区;11、栅介质层;12、第一介质层;13、第二沟道二极管栅氧化层;14、栅极多晶硅;15、第二源极多晶硅;16、第一沟道二极管栅氧化层;17、第一源极多晶硅;18、第二介质层。
具体实施方式
为了使本领域的技术人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参照图1所示,一种具有双沟道二极管的沟槽栅SiC MOSFET器件,包括:漏极金属1、N型重掺杂的漏区2、N型的漂移区3、第一P型区4、P型的基区5、N型重掺杂的第一源区6、源极金属7、第二P型区8、N型重掺杂的第二源区9、P型重掺杂的欧姆接触区10、栅介质层11、第一介质层12、第二沟道二极管栅氧化层13、栅极多晶硅14、第二源极多晶硅15、第一沟道二极管栅氧化层16、第一源极多晶硅17、第二介质层18;
所述漏区2位于所述漏极金属1上侧;
所述漂移区3位于所述漏区2上侧;
所述第二P型区8位于所述漂移区3上侧中间;
所述欧姆接触区10位于所述第二P型区8上侧中间,并且左侧连接第二源区9;
栅沟槽位于所述第二P型区8左侧,所述栅极多晶硅14和第二源极多晶硅15分别位于所述栅沟槽内左右并且之间设置有第一介质层12,所述栅极多晶硅14的左侧和下侧覆盖有栅介质层11,所述第二源极多晶硅15的右侧和下侧覆盖有第二沟道二极管栅氧化层13;所述第二沟道二极管栅氧化层13的右侧上方与所述第二源区9接触,右侧下方和下侧右方与所述第二P型区8接触;
源沟槽位于所述漂移区3的上方左侧,内填充有第一源极多晶硅17,且在右侧设有第一沟道二极管栅氧化层16,下侧设有第一P型区4;
所述第一源区6位于所述源沟槽和栅沟槽之间;所述基区5位于所述第一源区6下侧并与之接触;并且所述第一源区6和所述基区5的左侧与所述第一沟道二极管栅氧化层16右侧接触,右侧与所述栅介质层11左侧接触;
所述第二介质层18覆盖所述栅沟槽的上侧,同时在左右两侧覆盖部分第一源区6和部分第二源区9上侧,并且在所述第二源极多晶硅15上侧留出部分空隙;
所述源极金属7覆盖器件上表面,连接所述第一源区6、所述第二源区9、所述第二源极多晶硅15、第一源极多晶硅17和所述欧姆接触区10。
通过第二源极多晶硅15与第二沟道二极管氧化层、第二P型区8和第二源区9配合设置形成第二沟道二极管;通过源沟槽与第一沟道二极管栅氧化层16、基区5和第一源区6配合设置形成第一沟道二极管;由于第一沟道二极管和第二沟道二极管的开启电压不同,在二极管电流较低时,其中一个二极管导通;在二极管电流较高时,第一沟道二极管和第二沟道二极管都导通;双沟道二极管的设置在为SiC MOSFET器件提供反向并联续流二极管的同时,能够有效提高二极管的抗浪涌性能,并且有效避免了寄生PN结二极管导通,防止发生双极退化效应。同时本器件结构的栅极沟道密度低,因此有较高的短路能力。
并且通过第二P型区8半包围第二源极多晶硅15的设置,在器件反向阻断时,能够有效抑制多晶硅第二源极多晶硅15附近氧化层中高电场,防止氧化层被提前击穿,提高器件氧化层的可靠性。
在本发明的一个实施例中,所述栅沟槽深度为0.4um-4um,宽度为0.8um-3um;所述栅介质层11厚度为40nm-120nm;所述源沟槽深度为0.5um-4um,宽度为0.5um-1um;所述第一沟道二极管栅氧化层16和第二沟道二极管栅氧化层13的厚度为5nm-40nm。
所述基区5掺杂浓度低于所述第二P型区8掺杂浓度;通过基区5掺杂浓度低于所述第二P型区8掺杂浓度的设置,使基区5结深比第二P型区8小,从而第一沟道二极管的开启电压低于第二沟道二极管,确保了器件的抗浪涌能力。
第一沟道二极管的开启电压为0.5V-1.5V,第二沟道二极管的开启电压为1V-2V。
一种具有双沟道二极管的沟槽栅SiC MOSFET器件的制备方法,包括以下步骤:
步骤S1:在N型的SiC衬底上外延生长N型的漂移区3;
步骤S2:参照图2所示,在漂移区3上采用第一硬掩模作为阻挡层,进行2-5次能量为100KeV-2MeV的AL离子注入形成第二P型区8和第一P型区4,去除第一硬掩模,进行2-5次能量为80KeV-800KeV的AL离子注入形成基区5;采用第二硬掩模作为阻挡层,进行2-4次能量为40KeV-800KeV的AL离子注入形成欧姆接触区10,去除第二硬掩模;采用第三硬掩模作为阻挡层,进行2-4次能量为40KeV-500KeV的N元素或P元素离子注入形成第一源区6,去除第三硬掩模;在1500°C-1800°C的氩气环境下高温退火处理,退火时间为10-60分钟激活第一P型区4、第二P型区8、基区5、欧姆接触区10和第一源区6;
步骤S3:参照图3所示,光刻并刻蚀部分第一源区6、基区5和第二P型区8,形成源沟槽和栅沟槽,并在所述源沟槽和栅沟槽内热生长形成第二沟道二极管栅氧化层13和第一沟道二极管栅氧化层16;
步骤S4:在栅沟槽和源沟槽内分别淀积第二源极多晶硅15和第一源极多晶硅17并刻蚀;
步骤S5:参照图5所示,光刻并刻蚀部分第二源极多晶硅15,然后热生长栅介质层11和第一介质层12;
步骤S6:参照图6所示,淀积多晶硅形成栅极多晶硅14并刻蚀;
步骤S7:参照图7所示,淀积第二介质层18,刻蚀孔区域,淀积源极金属7;背面减薄,背金形成漏极金属1。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围之内。

Claims (7)

1.一种具有双沟道二极管的沟槽栅SiC MOSFET器件,其特征在于,
包括:漏极金属(1)、N型重掺杂的漏区(2)、N型的漂移区(3)、第一P型区(4)、P型的基区(5)、N型重掺杂的第一源区(6)、源极金属(7)、第二P型区(8)、N型重掺杂的第二源区(9)、P型重掺杂的欧姆接触区(10)、栅介质层(11)、第一介质层(12)、第二沟道二极管栅氧化层(13)、栅极多晶硅(14)、第二源极多晶硅(15)、第一沟道二极管栅氧化层(16)、第一源极多晶硅(17)、第二介质层(18);
所述漏区(2)位于所述漏极金属(1)上侧;
所述漂移区(3)位于所述漏区(2)上侧;
所述第二P型区(8)位于所述漂移区(3)上侧中间;
所述欧姆接触区(10)位于所述第二P型区(8)上侧中间,并且左侧连接第二源区(9);
栅沟槽位于所述第二P型区(8)左侧,所述栅极多晶硅(14)和第二源极多晶硅(15)分别位于所述栅沟槽内左右并且之间设置有第一介质层(12),所述栅极多晶硅(14)的左侧和下侧覆盖有栅介质层(11),所述第二源极多晶硅(15)的右侧和下侧覆盖有第二沟道二极管栅氧化层(13);所述第二沟道二极管栅氧化层(13)的右侧上方与所述第二源区(9)接触,右侧下方和下侧右方与所述第二P型区(8)接触;
源沟槽位于所述漂移区(3)的上方左侧,内填充有所述第一源极多晶硅(17),且在右侧设有第一沟道二极管栅氧化层(16),下侧设有第一P型区(4);
所述第一源区(6)位于所述源沟槽和栅沟槽之间;所述基区(5)位于所述第一源区(6)下侧并与之接触;并且所述第一源区(6)和所述基区(5)的左侧与所述第一沟道二极管栅氧化层(16)右侧接触,右侧与所述栅介质层(11)左侧接触;
所述第二介质层(18)覆盖所述栅沟槽的上侧,同时在左右两侧覆盖部分第一源区(6)和部分第二源区(9)上侧,并且在所述第二源极多晶硅(15)上侧留出部分空隙;
所述源极金属(7)覆盖器件上表面,连接所述第一源区(6)、所述第二源区(9)、所述第二源极多晶硅(15)、第一源极多晶硅(17)和所述欧姆接触区(10)。
2.根据权利要求1所述的一种具有双沟道二极管的沟槽栅SiC MOSFET器件,其特征在于,所述栅沟槽深度为0.4um-4um,宽度为0.8um-3um。
3.根据权利要求1所述的一种具有双沟道二极管的沟槽栅SiC MOSFET器件,其特征在于,所述栅介质层(11)厚度为40nm-120nm。
4.根据权利要求1所述的一种具有双沟道二极管的沟槽栅SiC MOSFET器件,其特征在于,所述源沟槽深度为0.5um-4um,宽度为0.5um-1um。
5.根据权利要求1所述的一种具有双沟道二极管的沟槽栅SiC MOSFET器件,其特征在于,所述第一沟道二极管栅氧化层(16)和第二沟道二极管栅氧化层(13)的厚度为5nm-40nm。
6.根据权利要求1所述的一种具有双沟道二极管的沟槽栅SiC MOSFET器件,其特征在于,所述基区(5)掺杂浓度低于所述第二P型区(8)掺杂浓度。
7.一种具有双沟道二极管的沟槽栅SiC MOSFET器件的制备方法,其特征在于,包括以下步骤:
步骤S1:在N型的SiC衬底上外延生长N型的漂移区(3);
步骤S2:在漂移区(3)上采用第一硬掩模作为阻挡层,离子注入形成第二P型区(8)和第一P型区(4),去除第一硬掩模,进行离子注入形成基区(5);采用第二硬掩模作为阻挡层,离子注入形成欧姆接触区(10),去除第二硬掩模;采用第三硬掩模作为阻挡层,离子注入形成第一源区(6),去除第三硬掩模;退火处理,激活第一P型区(4)、第二P型区(8)、基区(5)、欧姆接触区(10)和第一源区(6);
步骤S3:光刻并刻蚀部分第一源区(6)、基区(5)和第二P型区(8),形成源沟槽和栅沟槽,并在所述源沟槽和栅沟槽内热生长形成第二沟道二极管栅氧化层(13)和第一沟道二极管栅氧化层(16);
步骤S4:在栅沟槽和源沟槽内分别淀积第二源极多晶硅(15)和第一源极多晶硅(17)并刻蚀;
步骤S5:光刻并刻蚀部分第二源极多晶硅(15),然后热生长栅介质层(11)和第一介质层(12);
步骤S6:淀积多晶硅形成栅极多晶硅(14)并刻蚀;
步骤S7:淀积第二介质层(18),刻蚀孔区域,淀积源极金属(7);背面减薄,背金形成漏极金属(1)。
CN202210876407.5A 2022-07-25 2022-07-25 一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法 Active CN114937693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210876407.5A CN114937693B (zh) 2022-07-25 2022-07-25 一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210876407.5A CN114937693B (zh) 2022-07-25 2022-07-25 一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法

Publications (2)

Publication Number Publication Date
CN114937693A true CN114937693A (zh) 2022-08-23
CN114937693B CN114937693B (zh) 2022-10-28

Family

ID=82868722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210876407.5A Active CN114937693B (zh) 2022-07-25 2022-07-25 一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法

Country Status (1)

Country Link
CN (1) CN114937693B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207130A (zh) * 2022-09-09 2022-10-18 深圳芯能半导体技术有限公司 一种侧壁栅双沟槽碳化硅mosfet及其制备方法
CN116314337A (zh) * 2023-04-11 2023-06-23 陕西亚成微电子股份有限公司 提高器件抗浪涌能力的sgt mosfet结构、方法及结构制备方法
WO2024060811A1 (zh) * 2022-09-20 2024-03-28 华润微电子(重庆)有限公司 一种功率mosfet及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321848A (ja) * 1997-05-22 1998-12-04 Nissan Motor Co Ltd 半導体装置の製造方法
CN1468449A (zh) * 2000-10-06 2004-01-14 通用半导体公司 内含沟道型肖特基整流器的沟道型dmos晶体管
US20050167695A1 (en) * 2004-02-02 2005-08-04 Hamza Yilmaz Semiconductor device containing dielectrically isolated pn junction for enhanced breakdown characteristics
JP2008021930A (ja) * 2006-07-14 2008-01-31 Denso Corp 半導体装置
US20150349110A1 (en) * 2014-05-30 2015-12-03 Texas Instruments Incorporated Mosfet having dual-gate cells with an integrated channel diode
US20160056284A1 (en) * 2013-03-18 2016-02-25 Robert Bosch Gmbh Rectifier diode
CN107731899A (zh) * 2017-10-20 2018-02-23 电子科技大学 一种具有拑位结构的沟槽栅电荷储存型igbt器件及其制造方法
US20180166539A1 (en) * 2016-12-13 2018-06-14 Hyundai Motor Company Semiconductor device and method manufacturing the same
WO2019085851A1 (zh) * 2017-11-01 2019-05-09 苏州东微半导体有限公司 沟槽型功率晶体管
CN109755311A (zh) * 2017-11-01 2019-05-14 苏州东微半导体有限公司 一种沟槽型功率晶体管
CN110729356A (zh) * 2019-10-30 2020-01-24 北京工业大学 一种具有内嵌沟道二极管的SiC MOSFET结构
CN111048590A (zh) * 2019-12-26 2020-04-21 北京工业大学 一种具有内嵌沟道二极管的双沟槽SiC MOSFET结构及其制备方法
CN113990923A (zh) * 2021-10-20 2022-01-28 电子科技大学 一种集成沟道二极管的碳化硅双槽mosfet
CN114744041A (zh) * 2022-02-25 2022-07-12 北京工业大学 一种内置异质结二极管的SiC沟槽型MOS器件结构

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321848A (ja) * 1997-05-22 1998-12-04 Nissan Motor Co Ltd 半導体装置の製造方法
CN1468449A (zh) * 2000-10-06 2004-01-14 通用半导体公司 内含沟道型肖特基整流器的沟道型dmos晶体管
US20050167695A1 (en) * 2004-02-02 2005-08-04 Hamza Yilmaz Semiconductor device containing dielectrically isolated pn junction for enhanced breakdown characteristics
JP2008021930A (ja) * 2006-07-14 2008-01-31 Denso Corp 半導体装置
US20160056284A1 (en) * 2013-03-18 2016-02-25 Robert Bosch Gmbh Rectifier diode
US20150349110A1 (en) * 2014-05-30 2015-12-03 Texas Instruments Incorporated Mosfet having dual-gate cells with an integrated channel diode
US20180166539A1 (en) * 2016-12-13 2018-06-14 Hyundai Motor Company Semiconductor device and method manufacturing the same
CN107731899A (zh) * 2017-10-20 2018-02-23 电子科技大学 一种具有拑位结构的沟槽栅电荷储存型igbt器件及其制造方法
WO2019085851A1 (zh) * 2017-11-01 2019-05-09 苏州东微半导体有限公司 沟槽型功率晶体管
CN109755311A (zh) * 2017-11-01 2019-05-14 苏州东微半导体有限公司 一种沟槽型功率晶体管
CN110729356A (zh) * 2019-10-30 2020-01-24 北京工业大学 一种具有内嵌沟道二极管的SiC MOSFET结构
CN111048590A (zh) * 2019-12-26 2020-04-21 北京工业大学 一种具有内嵌沟道二极管的双沟槽SiC MOSFET结构及其制备方法
CN113990923A (zh) * 2021-10-20 2022-01-28 电子科技大学 一种集成沟道二极管的碳化硅双槽mosfet
CN114744041A (zh) * 2022-02-25 2022-07-12 北京工业大学 一种内置异质结二极管的SiC沟槽型MOS器件结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINTIAN ZHOU等: "SiC Double-Trench MOSFETs With Embedded MOS-Channel Diode", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207130A (zh) * 2022-09-09 2022-10-18 深圳芯能半导体技术有限公司 一种侧壁栅双沟槽碳化硅mosfet及其制备方法
WO2024060811A1 (zh) * 2022-09-20 2024-03-28 华润微电子(重庆)有限公司 一种功率mosfet及其制备方法
CN116314337A (zh) * 2023-04-11 2023-06-23 陕西亚成微电子股份有限公司 提高器件抗浪涌能力的sgt mosfet结构、方法及结构制备方法

Also Published As

Publication number Publication date
CN114937693B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
US10734514B2 (en) Semiconductor device with trench gate structure including a gate electrode and a contact structure for a diode region
CN114937693B (zh) 一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法
US7834376B2 (en) Power semiconductor switch
CN114937692B (zh) 一种具有沟道二极管的阶梯沟槽栅SiC MOSFET结构及其制备方法
JP6532549B2 (ja) 半導体装置
JP5646044B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2021088231A1 (zh) 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件
CN116387362A (zh) 一种集成HJD的SiC UMOSFET器件及其制备方法
CN109768090A (zh) 一种具有内嵌异质结二极管自保护的碳化硅槽型场氧功率mos器件
JP2019102554A (ja) 半導体装置
JP3998454B2 (ja) 電力用半導体装置
CN116525683B (zh) 一种深阱型SiC Mosfet器件及制备方法
CN112086507A (zh) 一种SiC MOSFET器件元胞及其制造方法
CN117059673A (zh) 半导体结构、半导体结构的制作方法以及半导体器件
CN111627983A (zh) 一种沟槽型SiC器件
CN112466922A (zh) 半导体装置
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
EP4309204A2 (en) Wide bandgap semiconductor device with sensor element
CN112018162B (zh) 一种4H-SiC侧栅集成SBD MOSFET器件及其制备方法
CN109065638B (zh) 一种功率二极管器件
CN112216694A (zh) 一种SiC IGBT器件及其制备方法
CN117238968B (zh) 一种沟槽栅碳化硅mosfet器件及其制备方法
US20220199823A1 (en) Semiconductor device
US20220246723A1 (en) Silicon carbide vertical conduction mosfet device for power applications and manufacturing process thereof
CN115939177B (zh) 一种碳化硅功率器件及开关元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant