CN114907840A - 监测细胞内gsh浓度的荧光金纳米团簇及其制备方法 - Google Patents

监测细胞内gsh浓度的荧光金纳米团簇及其制备方法 Download PDF

Info

Publication number
CN114907840A
CN114907840A CN202210231753.8A CN202210231753A CN114907840A CN 114907840 A CN114907840 A CN 114907840A CN 202210231753 A CN202210231753 A CN 202210231753A CN 114907840 A CN114907840 A CN 114907840A
Authority
CN
China
Prior art keywords
gsh
fluorescent gold
monitoring
nanocluster
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210231753.8A
Other languages
English (en)
Other versions
CN114907840B (zh
Inventor
张忠洁
刘璐
李宗祥
冯燕
朱满洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210231753.8A priority Critical patent/CN114907840B/zh
Publication of CN114907840A publication Critical patent/CN114907840A/zh
Application granted granted Critical
Publication of CN114907840B publication Critical patent/CN114907840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了监测细胞内GSH浓度的荧光金纳米团簇及其制备方法,该荧光金纳米团簇制备的方法步骤如下:将小分子硫醇配体和氯金酸在甲醇水溶液中混合反应,反应后经超滤制得监测细胞内GSH浓度的荧光金纳米团簇。本发明首次合成可用于细胞内GSH的定性检测原子精确的水溶性纳米团簇,提供了一种新的检测GSH的纳米材料;荧光金纳米团簇可以选择性的与GSH反应,不受生物体内其他物质的干扰,且对GSH具有13μM的极低检出限。

Description

监测细胞内GSH浓度的荧光金纳米团簇及其制备方法
技术领域
本发明涉及纳米团簇技术领域,尤其涉及监测细胞内GSH浓度的荧光金纳米团簇及其制备方法。
背景技术
目前金纳米团簇检测GSH主要是通过向团簇的***配体上连接一些基团,实现对团簇表面的功能化。但是这种方法会导致水溶性团簇的尺寸增加,从而不易被人体代谢掉。除此之外,根据文献报道,功能化的团簇尺寸通常在10nm以上,较大尺寸的团簇也会导致团簇在细胞内聚集,从而影响检测结果。
发明内容
基于背景技术存在的技术问题,本发明提出了监测细胞内GSH浓度的荧光金纳米团簇及其制备方法,具有细胞内检测、检出限低等优点。
本发明提出的监测细胞内GSH浓度的荧光金纳米团簇的制备方法,方法步骤如下:将小分子硫醇配体和氯金酸在甲醇水溶液中混合反应,反应后经超滤制得监测细胞内GSH浓度的荧光金纳米团簇。
优选地,所述小分子硫醇为嘌呤类硫醇、叶酸类硫醇或嘧啶类硫醇。
优选地,所述小分子硫醇为6-硫鸟嘌呤。
优选地,所述6-硫鸟嘌呤与所述氯金酸的摩尔比为1:20-40。
优选地,所述甲醇水溶液中水和甲醇的体积比为1:2-6。
优选地,反应的温度为20-50℃,时间为5-48h。
本发明提出的上述方法制备的监测细胞内GSH浓度的荧光金纳米团簇。
优选地,所述荧光金纳米团簇分子式为Aum(SR)n,式中SR为配体。
优选地,所述荧光金纳米团簇分子式中m=21,n=16。
本发明提出的上述荧光金纳米团簇在检测细胞内GSH浓度中的应用。
本发明的有益技术效果:
(1)本发明首次合成可用于细胞内GSH的定性检测原子精确的水溶性纳米团簇,提供了一种新的检测GSH的纳米材料。
(2)本发明合成的荧光金纳米团簇可以选择性的与GSH反应,不受生物体内其他物质的干扰。
(3)本发明合成的荧光金纳米团簇的尺寸仅为1nm左右,从而有效的避免了团簇在细胞中的聚集,更容易被人体代谢掉。
(4)本发明合成的荧光性水溶性纳米团簇对GSH具有13μM的极低检出限。
附图说明
图1为本发明提出的荧光金纳米团簇的质谱图;
图2为本发明提出的荧光金纳米团簇的DLS检测结果图;
图3为本发明提出的荧光金纳米团簇的特异性检测GSH效果图;
图4为本发明提出的荧光金纳米团簇的GSH滴定图;
图5为本发明提出的荧光金纳米团簇的监测细胞内GSH的示意图。
具体实施方式
实施例1
一种监测细胞内GSH浓度的荧光金纳米团簇的制备方法,方法步骤如下:将氯金酸、6-硫鸟嘌呤室温下在水和甲醇的混合溶剂中混合均匀,反应后用3KDa 超滤管超滤,最终得到纯化的荧光金纳米团簇。
其中:氯金酸与6-硫鸟嘌呤的摩尔比1:40,水和甲醇的体积比为1:6;反应的温度为35℃,时间为24h。
实施例2
一种监测细胞内GSH浓度的荧光金纳米团簇的制备方法,方法步骤如下:将氯金酸、6-硫鸟嘌呤室温下在水和甲醇的混合溶剂中混合均匀,反应后用3KDa 超滤管超滤,最终得到纯化的荧光金纳米团簇。
其中:氯金酸与6-硫鸟嘌呤的摩尔比1:20,水和甲醇的体积比为1:2;反应的温度为20℃,时间为5h。
实施例3
一种监测细胞内GSH浓度的荧光金纳米团簇的制备方法,方法步骤如下:将氯金酸、6-硫鸟嘌呤室温下在水和甲醇的混合溶剂中混合均匀,反应后用3KDa 超滤管超滤,最终得到纯化的荧光金纳米团簇。
其中:氯金酸与6-硫鸟嘌呤的摩尔比1:30,水和甲醇的体积比为1:4;反应的温度为50℃,时间为48h。
以实施例1制备的一种监测细胞内GSH浓度的荧光金纳米团簇及其应用为例进行相关的性能测试,其中:
为了检测荧光金纳米团簇的选择性,并探索其在细胞传感中的潜在应用,我们研究了外来离子的影响。选择生物分子,如L-组氨酸(L-His)、半胱氨酸(Cys)、甘氨酸(Gly)、亮氨酸(Leu)、谷氨酸(Glu)、赖氨酸(Lys)、组氨酸(His) 和精氨酸(Arg),阳离子Zn2+,K+,Na+,Cu2+,Mg2+,Fe2+,Fe3+,Cu+浓度为 2μmol/L(与GSH等量)作为对照实验,比较荧光金纳米团簇对GSH的选择性,结果表明该荧光纳米团簇能实现对GSH的高选择性检测。
为了研究荧光纳米团簇对GSH的敏感性,我们将其与不同浓度的GSH混合。随着GSH浓度从0增加到12μmol/L,纳米团簇的荧光强度逐渐降低。随着GSH 含量的增加,猝灭效果逐渐增强。此外,结果如图4所示,在0-5μM下,根据检出限=3σ/s,GSH的检测限(LOD)为13μmol/L。
图1为荧光金纳米团簇的质谱图,用3KDa超滤管纯化2mL,1.5mmol/L抗癌性纳米团簇,用处于负离子模式下的高分辨率质谱仪(Waters Q-TOF premier,购自美国沃特世公司进行质谱测试),并对其分子式进行模拟,由图1可知荧光纳米团簇团簇在1381Da和1726Da处有两组峰,用Isopro软件进行模拟,图1 中的小插图证明理论峰与实验峰十分吻合,则该纳米团簇的分子式为Au21(SR)16 (SR=配体),价电子数N*=m-n-q=21-16+1=6。因此,ESI-MS也证明了制备的荧光金团簇具有6e结构。
图2为荧光金纳米团簇的尺寸图,取2mL纯化后的溶液,用DLS(激光粒度仪,型号为ZS90,生产商为马尔文)测量其尺寸,由图2可知,本发明制备的荧光金纳米团簇的尺寸仅为1nm左右,远小于现有的功能化的荧光金纳米团簇的尺寸(10nm以上),从而有效的避免了团簇在细胞中的聚集,更容易被人体代谢掉。
图3为荧光金纳米团簇特异性检测GSH的效果图,具体的测试方法为:配制浓度为2μmol/L的L-组氨酸(L-His)、半胱氨酸(Cys)、甘氨酸(Gly)、亮氨酸(Leu)、谷氨酸(Glu)、赖氨酸(Lys)、组氨酸(His)和精氨酸(Arg),阳离子Zn2+,K+,Na+,Cu2+,Mg2+,Fe2+,Fe3+,Cu+溶液,分别取2μL加入100μL 金纳米团簇中,在荧光检测仪中测试发射强度。
图4为荧光金纳米团簇检测GSH的滴定图,具体的测试方法为:配制浓度为1μmol/L的GSH,以加入100μL金纳米团簇中,在荧光检测仪中测试发射强度。
图5为荧光金纳米团簇细胞内检测GSH的效果图,具体的测试方法为:将癌细胞Hela细胞在96孔板中孵育过夜。弃掉旧培养基,加入浓度为20μg/mL 的金纳米团簇,2h后,加入浓度为1μmol/L的GSH 0μL,4μL,8μL,12μL,用激光共聚焦显微镜拍摄荧光照片。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.监测细胞内GSH浓度的荧光金纳米团簇的制备方法,其特征在于,方法步骤如下:将小分子硫醇配体和氯金酸在甲醇水溶液中混合反应,反应后经超滤制得监测细胞内GSH浓度的荧光金纳米团簇。
2.根据权利要求1所述的监测细胞内GSH浓度的荧光金纳米团簇的制备方法,其特征在于,所述小分子硫醇为嘌呤类硫醇、叶酸类硫醇或嘧啶类硫醇。
3.根据权利要求2所述的监测细胞内GSH浓度的荧光金纳米团簇的制备方法,其特征在于,所述小分子硫醇为6-硫鸟嘌呤。
4.根据权利要求1所述的监测细胞内GSH浓度的荧光金纳米团簇的制备方法,其特征在于,所述小分子硫醇配体与所述氯金酸的摩尔比为1:20-40。
5.根据权利要求1所述的监测细胞内GSH浓度的荧光金纳米团簇的制备方法,其特征在于,所述甲醇水溶液中水和甲醇的体积比为1:2-6。
6.根据权利要求1所述的监测细胞内GSH浓度的荧光金纳米团簇的制备方法,其特征在于,反应的温度为20-50℃,时间为5-48h。
7.如权利要求1-6任一项所述方法制备的监测细胞内GSH浓度的荧光金纳米团簇。
8.根据权利要求7所述的监测细胞内GSH浓度的荧光金纳米团簇,其特征在于,所述荧光金纳米团簇分子式为Aum(SR)n,式中SR为配体。
9.根据权利要求8所述的监测细胞内GSH浓度的荧光金纳米团簇,其特征在于,所述荧光金纳米团簇分子式中m=21,n=16。
10.如权利要求7-8任一项所述的荧光金纳米团簇在检测细胞内GSH浓度中的应用。
CN202210231753.8A 2022-03-10 2022-03-10 监测细胞内gsh浓度的荧光金纳米团簇及其制备方法 Active CN114907840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210231753.8A CN114907840B (zh) 2022-03-10 2022-03-10 监测细胞内gsh浓度的荧光金纳米团簇及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210231753.8A CN114907840B (zh) 2022-03-10 2022-03-10 监测细胞内gsh浓度的荧光金纳米团簇及其制备方法

Publications (2)

Publication Number Publication Date
CN114907840A true CN114907840A (zh) 2022-08-16
CN114907840B CN114907840B (zh) 2023-05-26

Family

ID=82763758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210231753.8A Active CN114907840B (zh) 2022-03-10 2022-03-10 监测细胞内gsh浓度的荧光金纳米团簇及其制备方法

Country Status (1)

Country Link
CN (1) CN114907840B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298115A1 (en) * 2008-05-29 2009-12-03 Chung Yuan Christian University Fluorescent Gold Nanocluster and Method for Forming the Same
CN104101584A (zh) * 2014-06-12 2014-10-15 东南大学 金纳米簇作为谷胱甘肽荧光探针的应用
CN104749151A (zh) * 2015-04-08 2015-07-01 东南大学 一种基于谷胱甘肽稳定的金纳米簇颗粒在检测巯基化合物方面的应用
CN109705841A (zh) * 2018-12-24 2019-05-03 山西大学 一种转铁蛋白为模板的金纳米团簇及其制备方法和应用
CN111269715A (zh) * 2020-02-13 2020-06-12 中国科学院合肥物质科学研究院 一种比率荧光探针及其在可视化检测谷胱甘肽中的应用
CN113663072A (zh) * 2021-06-29 2021-11-19 安徽大学 靶向细胞溶酶体的抗癌性团簇及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298115A1 (en) * 2008-05-29 2009-12-03 Chung Yuan Christian University Fluorescent Gold Nanocluster and Method for Forming the Same
CN104101584A (zh) * 2014-06-12 2014-10-15 东南大学 金纳米簇作为谷胱甘肽荧光探针的应用
CN104749151A (zh) * 2015-04-08 2015-07-01 东南大学 一种基于谷胱甘肽稳定的金纳米簇颗粒在检测巯基化合物方面的应用
CN109705841A (zh) * 2018-12-24 2019-05-03 山西大学 一种转铁蛋白为模板的金纳米团簇及其制备方法和应用
CN111269715A (zh) * 2020-02-13 2020-06-12 中国科学院合肥物质科学研究院 一种比率荧光探针及其在可视化检测谷胱甘肽中的应用
CN113663072A (zh) * 2021-06-29 2021-11-19 安徽大学 靶向细胞溶酶体的抗癌性团簇及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIN YI WONG ET AL.: "Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on "turn‑off" fluorescence" *
YUANQING SUN ET AL.: "Tunable near-infrared fluorescent gold nanoclusters: temperature sensor and targeted bioimaging" *

Also Published As

Publication number Publication date
CN114907840B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
Kong et al. MnO 2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood
Gao et al. Sub-nanometer sized Cu 6 (GSH) 3 clusters: one-step synthesis and electrochemical detection of glucose
Xiaoqing et al. Fast synthesis of copper nanoclusters through the use of hydrogen peroxide additive and their application for the fluorescence detection of Hg 2+ in water samples
Xia et al. Aggregation-induced emission enhancement of gold nanoclusters in metal–organic frameworks for highly sensitive fluorescent detection of bilirubin
Dai et al. One-pot synthesis of bovine serum albumin protected gold/silver bimetallic nanoclusters for ratiometric and visual detection of mercury
Yan et al. Synthesis of water-soluble Ag 2 Se QDs as a novel resonance Rayleigh scattering sensor for highly sensitive and selective ConA detection
CN112175608B (zh) 一种蓝色荧光银纳米团簇及其制备方法与应用
Zhao et al. Phosphorescent sensing of Cr 3+ with protein-functionalized Mn-doped ZnS quantum dots
CN107300544B (zh) 一种亚铁离子的检测方法
CN110066655B (zh) 银掺杂碳量子点及其制备方法和应用
Zhao et al. CoOOH-induced synthesis of fluorescent polydopamine nanoparticles for the detection of ascorbic acid
Liu et al. Triggered peroxidase-like activity of Au decorated carbon dots for colorimetric monitoring of Hg 2+ enrichment in Chlorella vulgaris
CN107470648A (zh) 一种dna功能化金纳米团簇及其制备方法
Ge et al. Progress in electrochemiluminescence of nanoclusters: how to improve the quantum yield of nanoclusters
Yan et al. WS 2 quantum dots-MnO 2 nanosheet system for use in ratiometric fluorometric/scattered light detection of glutathione
Gao et al. An “on–off–on” fluorescent nanoprobe for recognition of Cu 2+ and GSH based on nitrogen co-doped carbon quantum dots, and its logic gate operation
CN115386371B (zh) 蓝色荧光量子点制备方法及作为谷胱甘肽检测探针的应用
Zeng et al. Design and synthesis of a vanadate-based ratiometric fluorescent probe for sequential recognition of Cu 2+ ions and biothiols
CN109128144A (zh) 对过氧化氢的宽响应范围的铜纳米团簇的制备方法
Zhou et al. A novel “off-on-off” fluorescent sensor based on inner filter effect for ultrasensitive detection of protamine/trypsin and subcellular colocalization
Niu et al. Development of sensing method for mercury ions and cell imaging based on highly fluorescent gold nanoclusters
Kavitha et al. Colorimetric determination of cysteine and copper based on the peroxidase-like activity of Prussian blue nanocubes
Zheng et al. Simultaneous detection and speciation of mono-and di-valent copper ions with a dual-channel fluorescent nanoprobe
Bai et al. A ratiometric fluorescence platform composed of MnO 2 nanosheets and nitrogen, chlorine co-doped carbon dots and its logic gate performance for glutathione determination
CN108732151B (zh) 针对挥发性胺具有高灵敏光学响应的发光金纳米粒子制备及其快速分析检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant