CN114907121A - 一种热导率随温度可调控的高熵陶瓷及其制备方法 - Google Patents

一种热导率随温度可调控的高熵陶瓷及其制备方法 Download PDF

Info

Publication number
CN114907121A
CN114907121A CN202210702838.XA CN202210702838A CN114907121A CN 114907121 A CN114907121 A CN 114907121A CN 202210702838 A CN202210702838 A CN 202210702838A CN 114907121 A CN114907121 A CN 114907121A
Authority
CN
China
Prior art keywords
temperature
entropy ceramic
thermal conductivity
entropy
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210702838.XA
Other languages
English (en)
Other versions
CN114907121B (zh
Inventor
贺加贝
刘跃
李珍宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN202210702838.XA priority Critical patent/CN114907121B/zh
Publication of CN114907121A publication Critical patent/CN114907121A/zh
Application granted granted Critical
Publication of CN114907121B publication Critical patent/CN114907121B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明公开了一种热导率随温度可调控的高熵陶瓷,由原料HfO2、ZrO2、SnO2、TiO2与CeO2/MnO2通过高温固相反应合成得到,高熵陶瓷在室温至1200℃温度范围内的热导率存在极值,且热导率呈现先升高后降低的趋势;该高熵陶瓷的制备方法为:将各原料球磨后经干燥、研磨、过筛,再烧结进行高温固相反应。本发明通过将五种金属氧化物进行高温固相反应合成得到高熵陶瓷,在成分回复机制作用下,高熵陶瓷在较低温度下热处理时低热导率随温度升高而升高,在较高温度下热处理时热导率随温度升高而降低,即高熵陶瓷的热导率随温度可调控,拓宽了高熵陶瓷的应用领域;本发明高熵陶瓷的制备方法简单易控,易于工业化生产和应用。

Description

一种热导率随温度可调控的高熵陶瓷及其制备方法
技术领域
本发明属于高熵材料制备技术领域,特别涉及了一种热导率随温度可调控的高熵陶瓷及其制备方法。
背景技术
高熵陶瓷是近年出现的一种新型陶瓷,为元素种类为5种以上、没有主导元素、并且所有元素的含量在5%-35%之间的材料。由于陶瓷高熵化后材料晶格畸变,使得高熵陶瓷具有较低的热导率、高熔点、较好的耐蚀性、良好的生物相容性以及良好的电化学性能等性能,在超高温、生物医学和能源等领域具有较大发展潜力。
成分均一的高熵陶瓷体系中,其晶格结构稳定性源于体系的混合熵增加导致的***吉布斯自由能降低,因此体系能够自发形成稳定的均一相。但是同时由于吉布斯自由能也与环境温度直接相关,温度与熵的乘积共同影响整个***的吉布斯自由能,意味着,当环境温度较低时,***的混合熵与温度的共同作用不足以使高熵体系形成均一的固溶体,因此体系内会存在偏析或化合物等,当环境温度再次升高,体系则自发再次固溶,即存在随温度变化的成分回复现象。陶瓷的导热机制多为声子振动传输导热,因此,高熵陶瓷随温度变化而产生的成分变化会改变声子振动模式,从而改变材料热导率,实现以成分变化控制材料热导率的目的。考虑高熵陶瓷在未来极端环境下多适应性的应用,高熵陶瓷从室温至1200℃范围内的热导率变化值得特别关注。通过调控热导率,有助于拓展核高熵结构材料的选择范围和使用场景。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种热导率随温度可调控的高熵陶瓷。该高熵陶瓷由五种金属氧化物进行高温固相反应合成得到,使得金属氧化物的点阵重新排列为最密排的立方晶格结构,在高熵陶瓷的成分回复机制作用下,当高熵陶瓷在较低温度下热处理时因晶格畸变程度降低热导率随温度升高而升高,当在较高温度下热处理时因晶格畸变程度增加热导率随温度升高而降低,从而高熵陶瓷的热导率随温度可调控。
为解决上述技术问题,本发明采用的技术方案为:一种热导率随温度可调控的高熵陶瓷,其特征在于,由原料HfO2、ZrO2、SnO2、TiO2与 CeO2/MnO2通过高温固相反应合成得到,所述高熵陶瓷在室温至1200℃温度范围内的热导率存在极值,且热导率呈现先升高后降低的趋势。
本发明采用五种金属氧化物HfO2、ZrO2、SnO2、TiO2与CeO2/MnO2作为原料进行高温固相反应合成得到高熵陶瓷,这五种金属氧化物在高温固溶时,构型熵增加促进金属氧化物的点阵重新排列为最密排的立方晶格结构,当高熵陶瓷置于较低温度即低于固溶温度的条件下热处理后,高熵陶瓷的构型熵不够高无法形成均一固溶体,因而体系内出现偏析、化合物甚至单一成分相,该高熵陶瓷的成分回复机制促使第二相析出,降低整个体系的晶格畸变程度,导致高熵陶瓷的热导率随温度升高而升高,当高熵陶瓷置于较高温度即升高至固溶温度时,高熵陶瓷体系内开始固溶,导致整个体系的晶格畸变增加,导致高熵陶瓷的热导率随温度升高而下降,因此,高熵陶瓷在室温至1200℃温度范围内对应固溶开始温度处,其热导率存在极值,且热导率呈现先升高后降低的趋势,即高熵陶瓷的热导率随温度可调控,拓宽了高熵陶瓷的应用领域。
上述的一种热导率随温度可调控的高熵陶瓷,其特征在于,所述高熵陶瓷为萤石结构的单相陶瓷。
上述的一种热导率随温度可调控的高熵陶瓷,其特征在于,所述高熵陶瓷在固溶温度以下的热导率升高,在固溶温度以上的热导率降低。
另外,本发明还提供了一种制备如上述的热导率随温度可调控的高熵陶瓷的方法,其特征在于,该方法包括:将原料HfO2、ZrO2、SnO2、TiO2与CeO2或者与MnO2置于球磨罐中,然后加入分析纯乙醇进行球磨 12h~24h,依次经干燥、研磨、过筛后烧结进行高温固相反应,得到高熵陶瓷;所述烧结的温度为1400℃~1600℃,时间为1h~4h。本发明直接将各原料进行湿法球磨以细化原料尺寸,促进原料充分混匀,并结合干燥、研磨和过筛,使得原料进一步细化混匀,再烧结进行高温固相反应成型,得到高熵陶瓷,通过控制烧结的温度和时间,使得各原料排列为最密排的立方晶格结构,并保证固溶完全,进而保证了高熵陶瓷的热导率随温度可调控的特性。
上述的方法,其特征在于,所述过筛后进行压制成型再烧结进行高温固相反应,得到高熵陶瓷块体制品。通过过筛后进行压制成型再烧结,满足不同尺寸、不同形状高熵陶瓷块体制品的需求,且提高了烧结致密度,改善了高熵陶瓷块体制品的质量。
本发明中的室温通常为25℃~35℃。
本发明与现有技术相比具有以下优点:
1、本发明通过将五种金属氧化物进行高温固相反应合成得到高熵陶瓷,使得金属氧化物的点阵重新排列为最密排的立方晶格结构,从而当高熵陶瓷在较低温度下热处理时因晶格畸变程度降低热导率随温度升高而升高,在较高温度下热处理时因晶格畸变程度增加热导率随温度升高而降低,即高熵陶瓷的热导率随温度可调控,拓宽了高熵陶瓷的应用领域。
2、本发明热导率随温度可调控的高熵陶瓷的制备方法简单易控,易于工业化生产和应用。
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。
附图说明
图1为本发明实施例1~2的热导率随温度可调控的高熵陶瓷块体的 XRD图谱。
图2为本发明实施例1~2的热导率随温度可调控的高熵陶瓷块体在室温至1200℃温度范围的热导率变化趋势图。
具体实施方式
实施例1
本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料HfO2、ZrO2、SnO2、TiO2与CeO2通过高温固相反应合成得到。
本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的HfO2、6g的ZrO2、7.3380g的SnO2、3.8893g的TiO2与8.38g 的CeO2置于球磨罐中,然后加入分析纯乙醇进行球磨24h,依次经80℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1400℃烧结 2h进行高温固相反应,得到热导率随温度可调控的(Hf,Zr,Sn,Ti,Ce)O2高熵陶瓷块体。
实施例2
本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料HfO2、ZrO2、SnO2、TiO2与MnO2通过高温固相反应合成得到。
本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的HfO2、6g的ZrO2、7.3380g的SnO2、3.8893g的TiO2与4.233g 的MnO2置于球磨罐中,然后加入分析纯乙醇进行球磨12h,依次经120 ℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1550℃烧结4h进行高温固相反应,得到热导率随温度可调控的(Hf,Zr,Sn,Ti,Mn)O2高熵陶瓷块体。
将本发明实施例1~实施例2的热导率随温度可调控的高熵陶瓷块体进行X射线衍射分析,得到的XRD图谱如图1所示,从图1可以看出,本发明实施例1~实施例2的热导率随温度可调控的高熵陶瓷块体均具有立方萤石结构。
将本发明实施例1~实施例2的热导率随温度可调控的高熵陶瓷块体进行室温至1200℃温度范围的热导率测试,结果如图2所示,从图2可以看出,实施例1的高熵陶瓷块体的热导率在900℃以下缓慢上升,至900 ℃开始热导率开始下降,即该高熵陶瓷块体在固溶温度900℃对应的热导率为极值;实施例2的高熵陶瓷块体的热导率在1000℃以下缓慢上升,至 1000℃开始热导率开始下降,即该高熵陶瓷块体在固溶温度1000℃对应的热导率为极值。
实施例3
本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料HfO2、ZrO2、SnO2、TiO2与CeO2通过高温固相反应合成得到。
本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的HfO2、6g的ZrO2、7.3380g的SnO2、3.8893g的TiO2与8.38g 的CeO2置于球磨罐中,然后加入分析纯乙醇进行球磨24h,依次经80℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1400℃烧结 1h进行高温固相反应,得到热导率随温度可调控的(Hf,Zr,Sn,Ti,Ce)O2高熵陶瓷块体。
经检测,本实施例的热导率随温度可调控的高熵陶瓷块体的晶格结构为单相萤石结构,在室温至1200℃温度范围内的热导率呈现先升高后降低的趋势,该高熵陶瓷块体在固溶温度900℃对应的热导率为极值。
实施例4
本实施例的热导率随温度可调控的高熵陶瓷由摩尔质量比为1:1:1: 1:1的原料HfO2、ZrO2、SnO2、TiO2与CeO2通过高温固相反应合成得到。
本实施例的热导率随温度可调控的高熵陶瓷的制备方法为:将原料 10.2488g的HfO2、6g的ZrO2、7.3380g的SnO2、3.8893g的TiO2与8.38g 的CeO2置于球磨罐中,然后加入分析纯乙醇进行球磨24h,依次经80℃烘箱干燥、研磨、过250目筛后进行冷等静压压制成型,在1600℃烧结 1h进行高温固相反应,得到热导率随温度可调控的(Hf,Zr,Sn,Ti,Ce)O2高熵陶瓷块体。
经检测,本实施例的热导率随温度可调控的高熵陶瓷块体的晶格结构为单相萤石结构,在室温至1200℃温度范围内的热导率呈现先升高后降低的趋势,该高熵陶瓷块体在固溶温度900℃对应的热导率为极值。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (5)

1.一种热导率随温度可调控的高熵陶瓷,其特征在于,由原料HfO2、ZrO2、SnO2、TiO2与CeO2/MnO2通过高温固相反应合成得到,所述高熵陶瓷在室温至1200℃温度范围内的热导率存在极值,且热导率呈现先升高后降低的趋势。
2.根据权利要求1所述的一种热导率随温度可调控的高熵陶瓷,其特征在于,所述高熵陶瓷为萤石结构的单相陶瓷。
3.根据权利要求1所述的一种热导率随温度可调控的高熵陶瓷,其特征在于,所述高熵陶瓷在固溶温度以下的热导率升高,在固溶温度以上的热导率降低,且高熵陶瓷在固溶温度对应的热导率为极值。
4.一种制备如权利要求1~3中任一权利要求所述的热导率随温度可调控的高熵陶瓷的方法,其特征在于,该方法包括:将原料HfO2,ZrO2,SnO2、TiO2与CeO2或者与MnO2置于球磨罐中,然后加入分析纯乙醇进行球磨12h~24h,依次经干燥、研磨、过筛后烧结进行高温固相反应,得到高熵陶瓷;所述烧结的温度为1400℃~1600℃,时间为1h~4h。
5.根据权利要求4所述的方法,其特征在于,所述过筛后进行压制成型再烧结进行高温固相反应,得到高熵陶瓷块体制品。
CN202210702838.XA 2022-06-21 2022-06-21 一种热导率随温度可调控的高熵陶瓷及其制备方法 Active CN114907121B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210702838.XA CN114907121B (zh) 2022-06-21 2022-06-21 一种热导率随温度可调控的高熵陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210702838.XA CN114907121B (zh) 2022-06-21 2022-06-21 一种热导率随温度可调控的高熵陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114907121A true CN114907121A (zh) 2022-08-16
CN114907121B CN114907121B (zh) 2022-12-20

Family

ID=82772978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210702838.XA Active CN114907121B (zh) 2022-06-21 2022-06-21 一种热导率随温度可调控的高熵陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114907121B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788738A (en) * 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
US7559494B1 (en) * 1996-09-03 2009-07-14 Ppg Industries Ohio, Inc. Method of forming non-stoichiometric nanoscale powder comprising temperature-processing of a stoichiometric metal compound
CN109987935A (zh) * 2019-03-20 2019-07-09 太原理工大学 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法
US20210043966A1 (en) * 2019-08-05 2021-02-11 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
CN112723862A (zh) * 2020-12-29 2021-04-30 太原理工大学 简单低耗制备高熵氧化物陶瓷材料的方法
KR102303704B1 (ko) * 2020-04-03 2021-09-16 서울시립대학교 산학협력단 무연 솔더 조성물 및 그 제조 방법
CN114606407A (zh) * 2022-02-28 2022-06-10 武汉理工大学 一种高熵陶瓷-高熵合金梯度材料及其制备方法
CN114644523A (zh) * 2022-04-16 2022-06-21 昆明理工大学 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN114907117A (zh) * 2022-04-21 2022-08-16 清华大学 钛酸铋基陶瓷材料及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788738A (en) * 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
US7559494B1 (en) * 1996-09-03 2009-07-14 Ppg Industries Ohio, Inc. Method of forming non-stoichiometric nanoscale powder comprising temperature-processing of a stoichiometric metal compound
CN109987935A (zh) * 2019-03-20 2019-07-09 太原理工大学 具有萤石型结构的(ZrHfCeTiZn)O2-δ高熵氧化物陶瓷粉体及块体制备方法
US20210043966A1 (en) * 2019-08-05 2021-02-11 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
KR102303704B1 (ko) * 2020-04-03 2021-09-16 서울시립대학교 산학협력단 무연 솔더 조성물 및 그 제조 방법
CN112723862A (zh) * 2020-12-29 2021-04-30 太原理工大学 简单低耗制备高熵氧化物陶瓷材料的方法
CN114606407A (zh) * 2022-02-28 2022-06-10 武汉理工大学 一种高熵陶瓷-高熵合金梯度材料及其制备方法
CN114644523A (zh) * 2022-04-16 2022-06-21 昆明理工大学 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN114907117A (zh) * 2022-04-21 2022-08-16 清华大学 钛酸铋基陶瓷材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIABEI HE: "A four-component entropy-stabilized orthorhombic oxide", 《MATERIALS LETTERS》 *
简晓东等: "BaZr_(0.2)Ti_(0.8)O_3无铅厚膜陶瓷的电卡效应", 《硅酸盐学报》 *
裴欣彤: "高熵氧化物的制备与性能", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN114907121B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN111763087B (zh) 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法
Wu et al. Sintering of nanophase γ‐Al2O3 powder
CN111233454A (zh) 一种尖晶石型铁钴铬锰镁系高熵氧化物粉体的制备方法
CN114349493B (zh) 一种铜离子掺杂硅酸钙微波介质陶瓷及其制备方法
Shi et al. Correlation between structure characteristics and dielectric properties of Li2Mg3-xCuxTiO6 ceramics based on complex chemical bond theory
Guo et al. Characterization and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics
CN101880160A (zh) 一种制备CaCu3Ti4O12粉体的方法
CN114644523A (zh) 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN101580393B (zh) 一种铪酸钇透明陶瓷的制备方法
Guihua et al. Sintering behavior and microwave dielectric properties of (1− x) CaTiO3− xLaAlO3 ceramics
CN108530056B (zh) 一种巨介电低损耗钛酸锶钡陶瓷及其制备方法
CN108585837B (zh) 一种钛酸铋钠基高温电容器介质陶瓷的制备方法
CN114907121B (zh) 一种热导率随温度可调控的高熵陶瓷及其制备方法
CN108395243A (zh) 一种XnR宽温高稳定的BaTiO3基介质陶瓷及其制备方法
Iyasara et al. La and Sm co-doped SrTiO3-δ thermoelectric ceramics
CN110862257A (zh) 一种石墨陶瓷合闸电阻及其制备方法
JP2009004542A (ja) 熱電材料及び熱電材料の製造方法
JP2008124404A (ja) 熱電材料および熱電材料の製造方法
CN116730722B (zh) 一种钙钛矿型铌酸钾钠基陶瓷及其制备方法
CN115417660B (zh) 一种Eu2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法
CN115417667B (zh) 一种Nd2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法
CN115504770B (zh) 一种过渡金属离子与Nd3+共掺杂型固体电解质陶瓷材料及其制备方法
CN113548873B (zh) 一种锰钴氧化物陶瓷材料的制备方法
CN115417659B (zh) 一种过渡金属离子与Dy3+共掺杂型固体电解质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant