CN114836418A - 用于敲降猪流行性腹泻病毒的CRISPR-Cas13d*** - Google Patents

用于敲降猪流行性腹泻病毒的CRISPR-Cas13d*** Download PDF

Info

Publication number
CN114836418A
CN114836418A CN202110145282.4A CN202110145282A CN114836418A CN 114836418 A CN114836418 A CN 114836418A CN 202110145282 A CN202110145282 A CN 202110145282A CN 114836418 A CN114836418 A CN 114836418A
Authority
CN
China
Prior art keywords
cas13d
sgrna
gene
crispr
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110145282.4A
Other languages
English (en)
Other versions
CN114836418B (zh
Inventor
胡晓湘
赵成成
兰欣悦
李果
连迪
李宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202110145282.4A priority Critical patent/CN114836418B/zh
Publication of CN114836418A publication Critical patent/CN114836418A/zh
Application granted granted Critical
Publication of CN114836418B publication Critical patent/CN114836418B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种用于敲降猪流行性腹泻病毒的CRISPR‑Cas13d***。本发明利用mCherry荧光报告基因,将PEDV病毒ORF3、E、M和N四个表达阅读框序列分别融合到mCherry基因的C端,构建筛选靶向PEDV表达阅读框的sgRNA高效作用靶点的荧光报告***,利用CRISPR‑Cas13d高效切割mRNA的特性,进行高效率sgRNAs的快速筛选。然后利用筛选出的高效靶向结合的sgRNAs进行CRISPR‑Cas13d***对靶病毒的高效降解。本发明提供的RNA病毒敲降方法具有高效率、高精准率及低脱靶率的优势。

Description

用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***
技术领域
本发明涉及基因编辑技术领域,具体地说,涉及一种用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***。
背景技术
病毒是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,为类生物,无法自行表现出生命现象。与一般的细胞生物的遗传物质为双链DNA不同的是,病毒的遗传物质可以为DNA或RNA,可以为单链或双链。从目前已发现的病毒来看,更多的是RNA病毒,RNA病毒是一类严重危害人类健康,农业安全生产的病毒,因其快速复制动力学、高突变率和复杂的进化动力学使其防控及相关疾病的治疗变得尤为艰难。每次RNA病毒的爆发都会造成严重的流行,并且其致死率很高,造成巨大的经济损失。目前对于RNA病毒的防治主要依靠疫苗、抗体和RNA干扰技术 (RNAi),由于疫苗和抗体的研发时间长,针对病毒单一,RNAi技术脱靶效率高甚至会参与到机体转录过程,因此亟需开发新的抗RNA病毒方法。
为了对抗病毒,细菌和古细菌开发了一种独特的抗病毒***CRISPR/Cas***,这是一种适应性免疫***,通过创建特定位点的DNA双链断裂来抵抗外来质粒和病毒。因此,将CRISPR/Cas***应用于人类或哺乳动物的细胞内,对外来DNA和病毒进行细胞内防御,具有一定的启发意义(Catherine A.Freije et al.2019)。许多利用 CRISPR***破坏基因或在DNA水平引入编码序列变化的工具已经成功开发出来。然而,直到最近,用于破坏或编辑RNA分子的工具仍然有限。
最新研究表明,Ⅱ类Ⅵ型CRISPR效应蛋白Cas13d蛋白可高效切割ssRNA(SilvanaKonermann et al.,2018;Winston X.Yan et al.,2018)。Rfx-Cas13d含有2个HEPN蛋白域,可以将pre-crRNA处理为成熟的crRNA,也可以在20-30nt crRNA的指引下裂解靶向ssRNA分子。其长度仅约930aa,是目前最小的Ⅱ类CRISPR效应物,使其更易被腺相关病毒(AAV)包装,用于原代细胞和体内递送。Rfx-Cas13d对目标的侧翼序列没有要求,因此可以靶向任何RNA序列。CRISPR-Cas13d基因编辑工具的出现将为 RNA病毒的敲降提供新的策略。
发明内容
本发明的目的是提供一种用于敲降猪流行性腹泻病毒(PEDV)的CRISPR-Cas13d***。
本发明的另一目的是提供一种基于CRISPR-Cas13d***高效干扰仔猪流行性腹泻病毒的方法。
为了实现本发明目的,发明人基于CRISPR-Cas13d同系物CasRx介导的高效、精准和特异的ssRNA切割活性,提供一种RNA病毒的敲降策略:通过CasRx***对 mCherry-PEDV-ORFs报告质粒mRNA的切割筛选高效sgRNA及高效sgRNA组合,利用筛选出的高效sgRNA进行PEDV的高效敲降,抑制RNA病毒的复制,从而实现对 RNA病毒防治。
第一方面,本发明提供一种基于CRISPR-Cas13d***的靶向猪流行性腹泻病毒基因组的sgRNA,选自
Figure BDA0002929820670000021
中的至少一条:
①靶向猪流行性腹泻病毒ORF3基因的sgRNA,其作用位点的核苷酸序列如SEQ IDNO:11所示;
②靶向猪流行性腹泻病毒E基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:12所示;
③靶向猪流行性腹泻病毒M基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:13所示;
④靶向猪流行性腹泻病毒N基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:14所示;
⑤靶向猪流行性腹泻病毒N基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:15所示;
⑥靶向猪流行性腹泻病毒ORF3基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
⑦靶向猪流行性腹泻病毒E基因的串联sgRNA,其作用位点的核苷酸序列如SEQ IDNO:10所示;
⑧靶向猪流行性腹泻病毒M基因的串联sgRNA,其作用位点的核苷酸序列如SEQ IDNO:10所示;
⑨靶向猪流行性腹泻病毒N基因的串联sgRNA,其作用位点的核苷酸序列如SEQ IDNO:10所示;
⑩靶向猪流行性腹泻病毒ORF3基因和E基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
Figure BDA0002929820670000022
靶向猪流行性腹泻病毒E基因和M基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
Figure BDA0002929820670000023
靶向猪流行性腹泻病毒M基因和N基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
Figure BDA0002929820670000031
靶向猪流行性腹泻病毒N基因和ORF3基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
Figure BDA0002929820670000032
靶向猪流行性腹泻病毒ORF3基因和M基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
Figure BDA0002929820670000033
靶向猪流行性腹泻病毒E基因和N基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示。
第二方面,本发明提供猪流行性腹泻病毒基因编辑载体,包括基于 CRISPR-Cas13d***的上述sgRNA表达载体和含有Cas13d蛋白的表达载体。
优选地,sgRNA表达载体的出发载体可以是pC0043-PspCas13b crRNA backbone。
基于CRISPR-Cas13d***的sgRNA表达载体的构建方法包括:将编码sgRNA的核酸序列构建到载体pC0043-PspCas13b crRNA backbone的两个BspQ1酶切位点之间,即得。
含有Cas13d蛋白的表达载体为在Cas13d蛋白的两端连有NLS序列或NES序列的载体。
优选地,所述含有Cas13d蛋白的表达载体的序列如SEQ ID NO:5所示。
第三方面,本发明提供用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***,包含上述基因编辑载体。
优选地,所述***同时靶向猪流行性腹泻病毒ORF3、E、M和N单个或多个基因。
第四方面,本发明提供一种基于CRISPR-Cas13d***高效干扰仔猪流行性腹泻病毒的方法,包括:将所述基于CRISPR-Cas13d***的sgRNA表达载体和含有Cas13d 蛋白的表达载体共转染(如脂质体转染)至感染了PEDV的宿主细胞中。
进一步地,本发明提供一种基于CRISPR-Cas13d***的sgRNA高效作用靶点的筛选及其在PEDV敲降中的应用,包括以下步骤:
1)合成目标核酸序列,将目标核酸序列构建到含有报告基团的载体中,且目标核酸序列与报告基团位于同一表达盒内;
2)根据目标核酸序列,设计并合成一系列基于CRISPR-Cas13d***的sgRNA序列,并将其构建到sgRNA表达载体中;
3)将步骤1)的报告载体、含有Cas13d蛋白的表达载体与步骤2)所得sgRNA表达载体共同导入真核细胞中,得到一系列转染细胞;待转染细胞培养48h后,分别鉴定不同sgRNA对目标核酸序列的切割效率,根据切割效率筛选出高效sgRNA;
4)将高效sgRNA表达载体与含有Cas13d蛋白的表达载体共同转染到感染了 PEDV的真核宿主细胞中。
本发明还提供一种用于PEDV病毒敲降的试剂盒,所述试剂盒包括:根据上述方法获得的高效sgRNA,以及任选包括含有Cas13d蛋白的表达载体。
其中,步骤1)所述目标核酸序列5‘端具有帽子结构,且3’端具有多聚腺嘌呤核苷酸尾结构的核苷酸序列。
所述目标核酸序列包括但不限于mRNA或RNA病毒核酸序列。
优选地,RNA病毒为PEDV。
所述含有报告基团的载体为携带mCherry荧光蛋白的真核表达载体。
例如,mCherry荧光蛋白报告载体的构建如下:利用载体同源重组的方法将从PEDV病毒基因组扩增得到的ORF3、E、M和N四个表达阅读框序列分别连接到载体 pcDNA3.1-mCherry中mCherry基因的下游,构建得到mCherry-ORF3、mCherry-E、 mCherry-M、mCherry-N和mCherry-PEDV-ORFs荧光报告载体。
优选地,所述目标核酸序列位于mCherry荧光蛋白的C端。
前述的方法,步骤2)所述基于CRISPR-Cas13d***的sgRNA表达载体为 pC0043-PspCas13b crRNA backbone哺乳基因编辑质粒(参见Silvana Konermann et al.Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.(2018). Cell),购自Addgene。
前述的方法,步骤3)所述含有Cas13d蛋白的表达载体为在Cas13d蛋白的两端连有NLS序列的载体。
优选地,所述含有Cas13d蛋白的表达载体的序列如SEQ ID NO:5所示。
更优选地,所述目标核酸序列为PEDV的ORF3、E、M和N基因;针对ORF3、E、 M和N基因筛选到的高效sgRNA,它们作用位点的核苷酸序列分别如SEQ ID NO:11-13所示,针对N基因筛选到的高效sgRNA,其作用位点的核苷酸序列如SEQ ID NO:14、15所示。
可选地,步骤3)所述真核细胞为HEK293T、Vero。
借由上述技术方案,本发明至少具有下列优点及有益效果:
(一)本发明提供一种CRISPR-Cas13d***高效降解PEDV的方法。利用荧光报告***筛选得到的高效的sgRNA,结合CRISPR-Cas13d***,进行PEDV的高效降解,充分显示了该方法对RNA病毒的高效抑制性,同时适用于其他RNA病毒的抑制。
(二)本发明具有高精准性及低脱靶率的优势。CRISPR-Cas13d***转染细胞活性状态未受影响,且无脱靶现象存在,可应用于农业动物抗病育种及人类RNA病毒性疾病的研究与新型药物的研发等领域。
附图说明
图1为本发明较佳实施例中利用CRISPR-Cas13d***切割mCherry-ORF3(A)、mCherry-E(B)、mCherry-M(C)、mCherry-N(D)和mCherry-PEDV-ORFs(E)实现高效sgRNA筛选的示意图。
图2为本发明较佳实施例中利用工程化NLS-Cas13d、NES-Cas13d切割PEDV,实现高效率敲降RNA病毒的示意图。
图3为本发明较佳实施例中mCherry-ORF3、mCherry-N、mCherry-M和mCherry-E 报告***在HEK293T上的mRNA敲降效果图。
图4为本发明较佳实施例中串联sgRNA对mCherry-PEDV-ORFs报告***在HEK293T上的mRNA敲降效果图。
图5为本发明较佳实施例中筛选出的高效sgRNA对PEDV病毒在vero细胞中高效敲降的Western Blot效果图。
具体实施方式
本发明提供一种PEDV敲降方法,包括:
构建mCherry-PEDV-ORFs荧光蛋白报告载体,比对选定PEDV相对保守的区域ORF3、E、M和N的20-30nt模板序列(无PAM和PFS限制)。
利用sgRNA序列将Cas13d定位到目标序列以使PEDV的RNA被切割,从而实现 PEDV的敲降。
在细胞系HEK293T进行mCherry-PEDV-ORFs报告***筛选CRISPR-Cas13d高效切割mRNA的sgRNAs筛选。
本发明还提供一种用于PEDV病毒敲降的试剂盒,包括筛选到的高效sgRNA、工程化的Cas13d载体以及扩增试剂。
所述sgRNA序列为与目标序列正向一致的20-30nt序列。
本发明中,Cas13d蛋白载体可选自RfxCas13d-NLS-HA(CasRx)。参见SilvanaKonermann et al.Transcriptome Engineering with RNA-Targeting Type VI-D CRISPREffectors.(2018).Cell。载体RfxCas13d-NLS-HA(CasRx)购自Addgene公司。
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular Cloning:a Laboratory Manual,2001),或按照制造厂商说明书建议的条件。
实施例1基于CRISPR-Cas13d***高效干扰仔猪流行性腹泻病毒的方法
1、构建mCherry-PEDV-ORFs荧光报告***
如图1所示,将ORF3、E、M和N序列扩增后,融合至mCherry基因的C端,形成荧光报告***:
(1)mCherry-ORF3,图1(A),SEQ ID NO:1;
(2)mCherry-E,图1(B),SEQ ID NO:2;
(3)mCherry-M,图1(C),SEQ ID NO:3;
(4)mCherry-N,图1(D),SEQ ID NO:4。
同时构建入核信号NLS介导的Cas13d表达载体,将合成的NLS序列***至Cas13d蛋白的首尾两端,得到工程化Cas13d表达载体NLS-Cas13d-NLS(图2,SEQ ID NO:16)。
然后进行sgRNA的设计。Cas13d蛋白酶对靶标的侧翼序列没有要求,可以靶向任何RNA序列。
通过比对50种PEDV的不同毒株序列,选择ORF3、E、M与N两个开放阅读框中相对保守的区域进行sgRNA的设计,sgRNA的长度为20-30nt。
制备与目标序列正向一致的sgRNA序列。
本发明选定下述目标序列来设计相应的sgRNA:
PEDV-ORF3:
ORF3-sgRNA1:GACAGCAAAACGCGCTGCCAACATAATATA
ORF3-sgRNA2:TCATTCACTAATTGTAGCATACTCGTCTAG
ORF3-sgRNA3:TTCACTAATTGTAGCATACTCGTCTAGTTG
ORF3-sgRNA4:CACTAATTGTAGCATACTCGTCTAGTTGAA
ORF3-sgRNA5:AATCACAATGGATTTGCCGTCATA
PEDV-E:
E-sgRNA1:TAGACCATTATCATTCACTAATTGTAGCAT
E-sgRNA2:CTAGACCATTATCATTCACTAATTGTAGCA
E-sgRNA3:ACAACCGGTGACAAGTGAAGCACAGATTAA
E-sgRNA4:CACAACCGGTGACAAGTGAAGCACAGATTA
PEDV-M:
M-sgRNA1:TACTTGTAATGGCCATACTGAAGCACTAC
M-sgRNA2:CCAAAGTATCCATAGAATAGCCATCTTGAC
M-sgRNA3:AGAGGCCAAAGTATCCATAGAATAGCCATC
M-sgRNA4:CAAGAGGCCAAAGTATCCATAGAATAGCCA
M-sgRNA5:AGGCCAAAGTATCCATAGAATAGCCATCT
M-sgRNA6:GCCAAAGTATCCATAGAATAGCCATCTTG
M-sgRNA7:AGTGATGCAAGCCATAAGGATGCTGAAAG
M-sgRNA8:TACATTATCCACAGCATAAGAGTGATGCAA
M-sgRNA9:ACCACCAAGAATGTGTCCTGCGCCACAAC
M-sgRNA10:AGACCACCAAGAATGTGTCCTGCGCCACAA
M-sgRNA11:TCACAGAAGTAGTGAGAAGCGCGTC
M-sgRNA12:TACACCAGTTGGTGCTCCAAGCACTGGAAT
M-sgRNA13:CAATGTACCACTAAGGAGTGTTAGCGTTACACC
M-sgRNA14:TTACCTGTACGCCAGTAGCAACCTTATAGC
M-sgRNA15:TGACTTACCTGTACGCCAGTAGCAACCTT
M-sgRNA16:GTTGTAGTGGCCTTGGCGACTGTGACGAAA
M-sgRNA17:TAGACAATTGTTGTAGTGGCCTTGGCGACT
PEDV-N:
N-sgRNA1:GCACCCGTTTGCGGCCACGATCCTG
N-sgRNA2:ATTAGTAACCCTAAGAGGGGCAT
N-sgRNA3:CGCTCACCACGGCGCATGCGCCAG
N-sgRNA4:TAGAAATGCCAATTGGAAGGTTGTTCAAT
N-sgRNA5:CCAGAAAACACCCTCAGTACGAGTCCTATA
N-sgRNA6:CAACCCAGAAAACACCCTCAGTACGAGTCCTATA
N-sgRNA7:CTGGTTATTTCCACGATTCTGTGAATTACC
N-sgRNA8:TTATTGTTATTATTATTGCCTCCTCT
N-sgRNA9:ACAGCAGCCACCAGATCATCGCGTGATGT
N-sgRNA10:ACGCTATTTTCGCCCTTGGGAATTCTCCTCCACTC
N-sgRNA11:CTACGCTATTTTCGCCCTTGGGAATTCTC
N-sgRNA12:AACAGCCACATTACCACCAAAGAGCAATG
N-sgRNA13:TATGTAATCTCGTAAGAGTCCGCTAGCTC
N-sgRNA14:TTTTAAATGCATCCACCTGTGAAACAAGAAGCTC
N-sgRNA15:ATCTCGTTGATAATTTCAACGGCCGT
针对上述选定的目标基因序列,构建相应的sgRNA表达载体。
2、在细胞株上进行CRISPR-Cas13d***介导的mCherry-ORF3、mCherry-E、mCherry-M和mCherry-N报告质粒的mRNA切割,实现高效靶向结合sgRNA的筛选按常规操作步骤进行细胞株的mRNA敲降。
(1)以HEK293T细胞为例,本发明进行真核生物细胞的培养与转染:将HEK293T 细胞接种培养于添加10%FBS的DMEM高糖培养基中(GIBCO,11965-092),其中含青霉素(100U/ml)和链霉素(100μg/ml)。
(2)在转染前分至24孔板中,待密度达到70%-80%时进行转染。
(3)以脂质体转染为例,按照LipofectamineTM LTX和PIUS Transfection Reagent(Invitrogen,15338-100)操作手册,以mCherry-ORF3报告质粒为例,将100ng mCherry-ORF3质粒与300ng NLS-Cas13d-NLS及600ng gRNA表达质粒混匀,共转染至每孔细胞中,6-8h后换液,48h后进行切割效率的鉴定及检测。
(4)mRNA切割效率分析
a、转染细胞48h后,使用PBS清洗细胞两次,补充500ul浓度10%FBS的培养基,进行细胞荧光成像拍照;
b、收取细胞使用Trizol法进行总RNA提取,提取的RNA进行浓度测定,使用反转试剂进行反转录获取cDNA。
去除gDNA的反应体系为:1μg mRNA,2μl 5×gDNA Eraser Buffer,1μl gDNAEraser,用不含RNase的ddH2O补齐至10μl。
去除gDNA程序:42℃,2min;4℃保持。
反转录体系(以1μg mRNA为例):10μl上述反应液,1μl PrimeScript RT EnzymeMix I,1μl RT Primer Mix,4μl 5×PrimeScript Buffer 2(for Real Time),4μl不含RNase 的ddH2O。
反转录程序:37℃,15min;85℃ 5s;4℃保持。
c、实时荧光定量PCR:针对PEDV基因ORF3、E、M和N,分别设计Q-PCR检测引物,利用反转录产物(稀释10倍)进行Q-PCR检测转染48h后mCherry-ORF3、 mCherry-E、mCherry-M和mCherry-N mRNA的相对表达量。
Q-PCR反应体系:2μl cDNA,10μl 2×Q-PCR Mix,0.8μl正向引物,0.8μl反向引物,用不含RNase的ddH2O补齐至20μl。
Q-PCR反应程序:95℃预变性30s;95℃变性5s,60℃退火34s,40个循环;按照仪器操作说明选择熔解曲线分析:95℃ 15s,60℃ 1min,95℃ 15s,利用2-△△CT法分析定量数据。Q-PCR引物如下:
PEDV-ORF3:
qPCR-ORF3-F(1):AGTGTTTTTATCTACTTCTT
qPCR-ORF3-R(1):TTATAGCGCCAGGAGTAAAA
qPCR-ORF3-F(2):ACTCTTTTGTTGCTTTCGTT
qPCR-ORF3-R(2):TTCACTAATTGTAGCATACT
qPCR-ORF3-R(3):TTCTTGCCATCAAGAAGCTC
qPCR-ORF3-F(3):ACACTTTCTTTCCTCAATGG
PEDV-E:
qPCR-E-F:ATGCTACAATTAGTGAATGA
qPCR-E-R:TTATACGTCAATAACAGTAC
PEDV-M:
qPCR-M-F(1):ATGTCTAACGGTTCTATTCC
qPCR-M-R(1):TGAAAGCTAGCCCATGCATC
qPCR-M-F(2):GGTCAATTGGGTCTTTTTTG
qPCR-M-R(2):CTTATAGCCCTCTACAAGCA
qPCR-M-F(3):ACTGGCGTACAGGTAAGTCA
qPCR-M-R(3):TGAAGCACTTTCTCACTATC
PEDV-N:
qPCR-N-F(1):GCGGCATGGACGAGCTGTAC
qPCR-N-R(1):GCATTATTTGCAAGTACCTT
qPCR-N-F(2):ATTGGATACTGGAATGAGCA
qPCR-N-R(2):ACCCAGGTTAGTGGGTTCAG
qPCR-N-F(3):GTAACAACAGAGGCAATAACC
qPCR-N-R(3):CCAAAGATTTAAGGGCATCC
qPCR-N-F(4):CCAGAGCCACTTCGAAAGAA
qPCR-N-R(4):CATTTGGTGCTAAACTGGCG
qPCR-N-F(5):GCCAGTTTAGCACCAAATGT
qPCR-N-R(5):TTCTTTCTCTGGGGTTTTGC
GAPDH(内参基因):
GAPDH-F:AGAAGGCTGGGGCTCATTTG
GAPDH-R:AGGGGCCATCCACAGTCTTC
结果表明,mCherry-ORF3、mCherry-E、mCherry-M和mCherry-N报告质粒mRNA 发生了高效的敲降,其中ORF3-sgRNA3(SEQ ID NO:11)、E-sgRNA2(SEQ ID NO:12)、M-sgRNA5(SEQ ID NO:13)和N-sgRNA2(SEQ ID NO:14)效果最佳(图 3)。后续实验中采用N-sgRNA10(SEQ ID NO:15)。
本发明利用CRISPR-Cas13d***精准的对PEDV特定ORF的切割,从而提供比传统RNA敲降方法更高效、更精确以及更少脱靶效应的RNA病毒敲降策略,为RNA病毒介导疾病的治疗提供了新的思路及方向。
实施例2基于CRISPR-Cas13d***高效干扰仔猪流行性腹泻病毒的方法
1、构建mCherry-PEDV-ORFs荧光报告***
如图1所示,将ORF3、E、M和N序列扩增后,融合至mCherry基因的C端,形成荧光报告***:
(1)mCherry-PEDV-ORFs,图1(A),SEQ ID NO:10;
同时构建入核信号NLS和出核信号NES介导的Cas13d表达载体,将合成的NLS序列或NES序列***至Cas13d蛋白的首尾两端,得到工程化Cas13d表达载体NLS-Cas13d-NLS、NES-Cas13d-NES(图2,SEQ ID NO:16和17)。
然后进行串联sgRNA的设计。Cas13d蛋白酶对靶标的侧翼序列没有要求,可以靶向任何RNA序列。
通过将筛选出的高效gRNA进行不同组合的串联,制备靶向同一基因或不同基因的串联sgRNA。
制备与目标序列正向一致的sgRNA序列。
本发明选定下述目标序列来设计相应的sgRNA:
①靶向猪流行性腹泻病毒ORF3基因和E基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
②靶向猪流行性腹泻病毒E基因和M基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
③靶向猪流行性腹泻病毒M基因和N基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
④靶向猪流行性腹泻病毒N基因和ORF3基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示。
⑤靶向猪流行性腹泻病毒ORF3基因和M基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示;
⑥靶向猪流行性腹泻病毒E基因和N基因的串联sgRNA,其作用位点的核苷酸序列如SEQ ID NO:10所示。
针对上述选定的目标基因序列,构建相应的sgRNA表达载体,sgRNA序列如下:
M5/E2:
5′-GAGGCCAAAGTATCCATAGAATAGCCATCTCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACCTAGACCATTATCATTCACTAATTGTAGCA-3′
M5/ORF3-3:
5′-GAGGCCAAAGTATCCATAGAATAGCCATCTCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACTTCACTAATTGTAGCATACTCGTCTAGTTG-3′
M5/N10:
5′-GAGGCCAAAGTATCCATAGAATAGCCATCTCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACACGCTATTTTCGCCCTTGGGAATTCTCCTCCACTC-3′
ORF3-3/E2:
5′-GTTCACTAATTGTAGCATACTCGTCTAGTTGCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACTAGACCATTATCATTCACTAATTGTAGCA-3′
N10/E2:
5′-GCGCTATTTTCGCCCTTGGGAATTCTCCTCCACTCCAAGTAAACCCCTACCAA CTGGTCGGGGTTTGAAACTAGACCATTATCATTCACTAATTGTAGCA-3′
ORF3-3/N10:
5′-GTTCACTAATTGTAGCATACTCGTCTAGTTGCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACCGCTATTTTCGCCCTTGGGAATTCTCCTCCACTC-3′
M5/M14:
5′-GAGGCCAAAGTATCCATAGAATAGCCATCTCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACCTTACCTGTACGCCAGTAGCAACCTTATAGC-3′
N7/N10:
5′-GCTGGTTATTTCCACGATTCTGTGAATTACCCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACACGCTATTTTCGCCCTTGGGAATTCTCCTCCACTC-3′
E2/E3:
5′-GACAACCGGTGACAAGTGAAGCACAGATTAACAAGTAAACCCCTACCAACT GGTCGGGGTTTGAAACCTAGACCATTATCATTCACTAATTGTAGCA-3′
ORF3-1/ORF3-3:
5′-GTTCACTAATTGTAGCATACTCGTCTAGTTGCAAGTAAACCCCTACCAACTGG TCGGGGTTTGAAACGACAGCAAAACGCGCTGCCAACATAATATA-3′
2、在细胞株上进行CRISPR-Cas13d***介导的mCherry-PEDV-ORFs、报告质粒的mRNA切割,实现高效靶向结合sgRNA的筛选。
按常规操作步骤进行细胞株的mRNA敲降。
(1)以HEK293T细胞为例,本发明进行真核生物细胞的培养与转染:HEK293T 细胞接种培养于添加10%FBS的DMEM高糖培养基中(GIBCO,11965-092),其中含青霉素(100U/ml)和链霉素(100μg/ml)。
(2)在转染前分至24孔板中,待密度达到70%-80%时进行转染。
(3)以脂质体转染为例,按照LipofectamineTM LTX和PIUS Transfection Reagent(Invitrogen,15338-100)操作手册,以mCherry-ORF3报告质粒为例,将100ng mCherry-ORF3质粒与300ng NLS-Cas13d-NLS及600ng gRNA表达质粒混匀,共转染至每孔细胞中,6-8h后换液,48h后进行切割效率的鉴定及检测。
(4)mRNA切割效率分析
a、转染细胞48h后,使用PBS清洗细胞两次,补充500ul浓度10%FBS的培养基,进行细胞荧光成像拍照;
b、收取细胞使用Trizol法进行总RNA提取,提取的RNA进行浓度测定,使用反转试剂进行反转录获取cDNA。
去除gDNA的反应体系为:1μg mRNA,2μl 5×gDNA Eraser Buffer,1μl gDNAEraser,不含RNase的ddH2O,补齐至10μl。
去除gDNA程序:42℃,2min;4℃保持。
反转录体系(以1μg为例):10μl上述反应液,1μl PrimeScript RT Enzyme Mix I,1μl RT Primer Mix,4μl 5×PrimeScript Buffer 2(for Real Time),4μl不含RNase的ddH2O。
反转录程序:37℃,15min;85℃ 5s;4℃保持。
c、实时荧光定量PCR:针对PEDV基因ORF3、E、M和N,分别设计Q-PCR检测引物,利用反转录产物(稀释10倍)进行Q-PCR检测转染48h后mCherry-ORF3、 mCherry-E、mCherry-M和mCherry-N mRNA的相对表达量。
Q-PCR反应体系:2μl cDNA,10μl 2×Q-PCR Mix,0.8μl正向引物,0.8μl反向引物,不含RNase的ddH2O,补齐至20μl。
Q-PCR反应程序:95℃预变性30s;95℃变性5s,60℃退火34s,40个循环;按照仪器操作说明选择熔解曲线分析:95℃ 15s,60℃ 1min,95℃ 15s,利用2-△△CT法分析定量数据。Q-PCR引物如下:
PEDV-ORF3:
qPCR-ORF3-F(1):AGTGTTTTTATCTACTTCTT
qPCR-ORF3-R(1):TTATAGCGCCAGGAGTAAAA
qPCR-ORF3-R(3):TTCTTGCCATCAAGAAGCTC
qPCR-ORF3-F(3):ACACTTTCTTTCCTCAATGG
PEDV-E:
qPCR-E-F:ATGCTACAATTAGTGAATGA
qPCR-E-R:TTATACGTCAATAACAGTAC
PEDV-M:
qPCR-M-F(2):GGTCAATTGGGTCTTTTTTG
qPCR-M-R(2):CTTATAGCCCTCTACAAGCA
qPCR-M-F(3):ACTGGCGTACAGGTAAGTCA
qPCR-M-R(3):TGAAGCACTTTCTCACTATC
PEDV-N:
qPCR-N-F(2):ATTGGATACTGGAATGAGCA
qPCR-N-R(2):ACCCAGGTTAGTGGGTTCAG
qPCR-N-F(3):GTAACAACAGAGGCAATAACC
qPCR-N-R(3):CCAAAGATTTAAGGGCATCC
GAPDH(内参基因):
GAPDH-F:AGAAGGCTGGGGCTCATTTG
GAPDH-R:AGGGGCCATCCACAGTCTTC
结果表明,mCherry-PEDV-ORFs报告质粒mRNA发生了高效的敲降,其中靶向同一基因的串联sgRNA和靶向不同基因的串联sgRNA的敲降效率要高于单个sgRNA 的敲降效率,并且靶向不同基因的串联sgRNA的敲降效率要更高(图4)。
本发明利用CRISPR-Cas13d***精准的对PEDV特定ORF的切割,从而提供比传统RNA敲降方法更高效、更精确以及更少脱靶效应的RNA病毒敲降策略,为RNA病毒介导疾病的治疗提供了新的思路及方向。
实施例3 PEDV病毒的敲降
设计工程化NLS-/NES-Cas13d,在vero细胞上进行PEDV病毒的敲降。
(1)将vero细胞接种培养于添加10%FBS的DMEM高糖培养液中(Gbico),其中含青霉素(100U/ml)和链霉素(100μg/ml)。
(2)在转染前分至24孔板中,待密度达到70%-80%时进行转染。
(3)转染以脂质体转染为例。按照LipofectamineTM 3000Transfection Reagent(Invitrogen)的操作手册,将400ng NES-/NLS-Cas13d及600ng pC0043-PspCas13b crRNAbackbone质粒混匀,共转染至每孔细胞中,6-8h后换液(设置不同转染组别,分别用于不同时间段细胞上清液中病毒滴度的测定,特定时间点细胞内部病毒蛋白表达情况的检测)。
(4)RNA病毒感染细胞:细胞转染12h后进行PEDV病毒的感染实验(控制滴度 MOI=0.01)。弃掉细胞培养液,将病毒与无血清培养基DMEM、胰酶混匀后添加至各孔细胞,37℃培养2h后补充10%FBS完全培养基,继续培养,收集病毒感染0h,12h, 24h,36h,48h等不同时间段的培养基上清,进行病毒滴度测定,同时在第14h时进行细胞的western blot检测细胞内部病毒蛋白的表达水平。
(5)病毒滴度测定(TCID50法)
转染细胞感染PEDV病毒0-48h时间范围内,分别收集0h,12h,24h,36h,48h,等时间点的细胞培养液,使用TCID50法进行病毒滴度的测定。
TCID50法测定病毒滴度:
A、细胞准备:将vero细胞经过24-48h培养后,传代至96孔板中,通过细胞计数法使每个96孔板中的细胞为2×104,每孔100μl,置于37℃,5%CO2培养箱中培养12-24h,接种病毒前使细胞长至80-90%汇合度。
B、病毒准备:每个病毒样品取100μl,加入900μl 2%FBS和1%PS的DMEM维持培养基,再取100μl原液稀释10倍,设置9-10个梯度进行稀释。
C、细胞接毒:将细胞用PBS清洗一遍,弃掉上清液,按照稀释倍数由高到低的顺序加入病毒液100μl,每个梯度接种8个孔,注意过程中不要使细胞变干。同时设置至少5孔对照组不加病毒,只添加维持培养基。
D、病毒培养:接种后的培养皿于37℃,5%CO2培养箱中培养,每天观察细胞病变装并作记录。
E、滴度计算:细胞培养4-5天后,统计每个梯度的病变孔数,使用Reed-Muench 的方法进行计算TCID50值。
(7)Western Blot检测细胞内RNA病毒的蛋白表达量
A、提取细胞蛋白
B、BCA检测蛋白浓度,样品上样量为20-30μg,上样体积为30ul,加入5×蛋白上样缓冲液6μL,混匀,在沸水中水浴10min。
C、制作分离胶和浓缩胶
D、将蛋白样品上样,进行电泳,电压先用60V 30min,90V继续电泳,直至蓝色的前沿条带将将跑出分离胶底部,停止电泳。
E、取出SDS-PAGE,切掉浓缩胶部分,将PVDF膜按尺寸(6cm×8cm)裁剪好,先泡入无水甲醛中处理10s,然后在转膜缓冲液中平衡。
F、将准备好的滤纸、海绵垫和PVDF膜按顺序组装转膜装置,赶走气泡。
G、转膜完毕后,转移到封闭液中,室温震荡1h,弃去封闭液,加入一抗,孵育过夜。
H、PBST洗膜3次,加入二抗,室温1h,PBST洗膜3次,显影。
PEDV病毒在转染Cas13d的vero细胞中的敲降效果见图4。
(8)转染细胞的活性检测
转染细胞48h后,利用cck8 assay试剂盒进行细胞活性的检测。
PEDV病毒在vero细胞上的敲降效果见图5。
结果表明,NLS-Cas13d***介导PEDV病毒发生了高效的敲降,细胞活性未出现明显变化,且无脱靶情况发生。
实施例1~3中,对照组(Mock)中的NC-sgRNA为不靶向任何基因的一段随机序列形成的sgRNA(TCACCAGAAGCGTACCATACTCACGAACAG),连接 pC0043-PspCas13b crRNAbackbone质粒。
本发明利用CRISPR-Cas13d***建立了ssRNA切割技术,通过精准的RNA病毒特定ORF的切割,从而提供比传统RNA敲降方法更高效、更精确以及更少脱靶效应的 RNA病毒敲降策略,为RNA病毒介导疾病的治疗提供了新的思路及方向。
本发明中涉及的序列如下:
mCherry-ORF3,SEQ ID NO:1;mCherry-E,SEQ ID NO:2;mCherry-M,SEQ ID NO:3;mCherry-N,SEQ ID NO:4;Cas13d表达载体,SEQ ID NO:5;PEDV-ORF3, SEQ ID NO:6;PEDV-E,SEQ ID NO:7;PEDV-M,SEQ ID NO:8;PEDV-N,SEQ ID NO:9;PEDV-ORFs,SEQ ID NO:10;ORF3-sgRNA3,SEQ ID NO:11;E-sgRNA2, SEQ ID NO:12;M-sgRNA5,SEQ ID NO:13;N-sgRNA2,SEQ ID NO:14;N-sgRNA10, SEQ ID NO:15;NLS-Cas13d-NLS,SEQ ID NO:16;NES-Cas13d-NES,SEQ ID NO:17。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
参考文献:
[1]Catherine A.Freije,Cameron Myhrvold,Chloe K.Boehm,etal.Programmable Inhibition and Detection of RNA Viruses Using Cas13.MolecularCell 76,Pages 1-12(2019).
[2]Silvana Konermann,PeterLotfy,Nicholas J.Brideau.TranscriptomeEngineering with RNA-Targeting Type VI-D CRISPR Effectors.Cell 173(3),665-676(2018).
[3]Winston X.Yan,Shaorong Chong,Huaibin Zhang,et al.Cas13d Is aCompact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.Molecular Cell 70,Pages 327-339(2018).
[4]Li G,Wang X,Liu Y,et al.Porcine reproductive and respiratorysyndrome virus(PRRSV)inhibition with engineered Cas13d.J Genet Genomics.2020;S1673-8527(20)30048-5。
序列表
<110> 中国农业大学
<120> 用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***
<130> KHP201114917.6
<160> 17
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1383
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 60
gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 120
cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 180
ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 240
cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa gtgggagcgc 300
gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc cctgcaggac 360
ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga cggccccgta 420
atgcagaaga agaccatggg ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc 480
gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca ctacgacgct 540
gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc 600
aacatcaagt tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgaa 660
cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagat gtttcttgga 720
ctttttcaat acacgattga cacagttgtc aaagatgtct caaagtctgc taacttgtct 780
ttggatgctg tccaagagtt ggagctcaat gtagttccaa ttagacaagc ttcaaatgtg 840
acgggttttc ttttcaccag tgtttttatc tacttctttg cactgtttaa agcgtcttct 900
ttgaggcgca attatattat gttggcagcg cgttttgctg tcattgttct ttattgccca 960
cttttatatt attgtggtgc atttttagat gcaactatta tttgttgcac acttattggc 1020
aggctttgtt tagtctgctt ttactcctgg cgctataaaa atgcgctctt tattattttt 1080
aatactacga cactttcttt cctcaatggt aaagcagctt attatgacgg caaatccatt 1140
gtgattttag aaggtggtga ccattacatc acttttggca actcttttgt tgctttcgtt 1200
agtagcatcg acttgtatct agctatacgt gggcggcaag aagctgacct acagctgttg 1260
cgaactgttg agcttcttga tggcaagaag ctttatgtct tttcgcaaca tcaaattgtt 1320
ggcattacta atgctgcatt tgactcaatt caactagacg agtatgctac aattagtgaa 1380
tga 1383
<210> 2
<211> 942
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 60
gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 120
cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 180
ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 240
cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa gtgggagcgc 300
gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc cctgcaggac 360
ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga cggccccgta 420
atgcagaaga agaccatggg ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc 480
gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca ctacgacgct 540
gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc 600
aacatcaagt tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgaa 660
cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagta aatgctacaa 720
ttagtgaatg ataatggtct agtagttaat gttatacttt ggcttttcgt actctttttc 780
ctgcttatta taagcattac tttcgtccaa ttggttaatc tgtgcttcac ttgtcaccgg 840
ttgtgtaata gcgcagttta cacacctata gggcgtttgt atagagttta taagtcttac 900
atgcaaatag accccttccc cagtactgtt attgacgtat aa 942
<210> 3
<211> 1389
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 60
gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 120
cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 180
ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 240
cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa gtgggagcgc 300
gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc cctgcaggac 360
ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga cggccccgta 420
atgcagaaga agaccatggg ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc 480
gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca ctacgacgct 540
gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc 600
aacatcaagt tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgaa 660
cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagat gtctaacggt 720
tctattcccg ttgatgaggt gattcaacac cttagaaact ggaatttcac atggaatatc 780
atactgacga tactacttgt agtgcttcag tatggccatt acaagtactc tgcgttcttg 840
tatggtgtca agatggctat tctatggata ctttggcctc ttgtgttagc actgtcactt 900
tttgatgcat gggctagctt tcaggtcaat tgggtctttt ttgctttcag catccttatg 960
gcttgcatca ctcttatgct gtggataatg tactttgtca atagcattcg gttgtggcgc 1020
aggacacatt cttggtggtc tttcaatcct gaaacagacg cgcttctcac tacttctgtg 1080
atgggccgac aggtctgcat tccagtgctt ggagcaccaa ctggtgtaac gctaacactc 1140
cttagtggta cattgcttgt agagggctat aaggttgcta ctggcgtaca ggtaagtcaa 1200
ttacctaatt tcgtcacagt cgccaaggcc actacaacaa ttgtctacgg acgtgttggt 1260
cgttcagtca atgcttcatc tggcactggt tgggctttct atgtccggtc caaacacggc 1320
gactactcag ctgtgagtaa tccgagttcg gttctcacag atagtgagaa agtgcttcat 1380
ttagtctaa 1389
<210> 4
<211> 2034
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 60
gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 120
cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 180
ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 240
cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa gtgggagcgc 300
gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc cctgcaggac 360
ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga cggccccgta 420
atgcagaaga agaccatggg ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc 480
gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca ctacgacgct 540
gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc 600
aacatcaagt tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgaa 660
cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagat ggcttctgtc 720
agttttcagg atcgtggccg caaacgggtg ccattatccc tctatgcccc tcttagggtt 780
actaatgaca aacccctttc taaggtactt gcaaataatg ctgtacccac taataaagga 840
aataaggacc agcaaattgg atactggaat gagcaaattc gctggcgcat gcgccgtggt 900
gagcgaattg aacaaccttc caattggcat ttctactacc tcggaacagg acctcacgcc 960
gacctccgct ataggactcg tactgagggt gttttctggg ttgctaaaga aggcgcaaag 1020
actgaaccca ctaacctggg tgtcagaaag gcgtctgaaa agccaatcat tccaaatttc 1080
tctcaacagc ttcccagcgt agttgagatt gttgaaccta acacacctcc tacttcacgt 1140
gcaaattcac gtagcaggag tcgtggtaat ggcaacaaca ggtccagatc tccaagtaac 1200
aacagaggca ataaccagtc ccgcggtaat tcacagaatc gtggaaataa ccagggtcgt 1260
ggagcttctc agaacagagg aggcaataat aataacaata acaagtctcg taaccagtcc 1320
aagaacagaa accagtcaaa tgaccgtggt ggtgtaacat cacgcgatga tctggtggct 1380
gctgtcaagg atgcccttaa atctttgggt attggcgaaa accctgacaa gcttaagcaa 1440
cagcagaagc ccaaacagga aaggtctgac agcagcggca aaaatacacc taagaagaac 1500
aaatccagag ccacttcgaa agaacgtgac ctcaaagaca tcccagagtg gaggagaatt 1560
cccaagggcg aaaatagcgt agcagcttgc ttcggaccca ggggaggctt caaaaatttt 1620
ggagatgcgg aatttgtcga aaaaggtgtt gatgcctcag gctatgctca gatcgccagt 1680
ttagcaccaa atgttgcagc attgctcttt ggtggtaatg tggctgttcg tgagctagcg 1740
gactcttacg agattacata taattataaa atgactgtgc caaagtctga tccaaatgta 1800
gagcttcttg tttcacaggt ggatgcattt aaaactggga atgcaaaacc ccagagaaag 1860
aaggaaaaga agaacaagcg tgaaaccacg cagcagctga atgaagaggc catctacgat 1920
gatgtgggtg tgccatctga ttcgactcat gccaatttgg aatgggacac agctgtagac 1980
ggtggtgaca cggccgttga aattatcaac gagatcttcg acacaggaaa ttaa 2034
<210> 5
<211> 2898
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atcgagaaga agaagagctt cgccaagggc atgggagtga agagcaccct ggtgtccggc 60
tctaaggtgt acatgaccac atttgctgag ggaagcgacg ccaggctgga gaagatcgtg 120
gagggcgata gcatcagatc cgtgaacgag ggagaggctt tcagcgccga gatggctgac 180
aagaacgctg gctacaagat cggaaacgcc aagttttccc acccaaaggg ctacgccgtg 240
gtggctaaca acccactgta caccggacca gtgcagcagg acatgctggg actgaaggag 300
acactggaga agaggtactt cggcgagtcc gccgacggaa acgataacat ctgcatccag 360
gtcatccaca acatcctgga tatcgagaag atcctggctg agtacatcac aaacgccgct 420
tacgccgtga acaacatctc cggcctggac aaggatatca tcggcttcgg aaagttttct 480
accgtgtaca catacgacga gttcaaggat ccagagcacc accgggccgc ttttaacaac 540
aacgacaagc tgatcaacgc catcaaggct cagtacgacg agttcgataa ctttctggat 600
aaccccaggc tgggctactt cggacaggct ttcttttcta aggagggcag aaactacatc 660
atcaactacg gaaacgagtg ttacgacatc ctggccctgc tgagcggact gaggcactgg 720
gtggtgcaca acaacgagga ggagtctcgg atcagccgca cctggctgta caacctggac 780
aagaacctgg ataacgagta catctccaca ctgaactacc tgtacgacag gatcaccaac 840
gagctgacaa acagcttctc caagaactct gccgctaacg tgaactacat cgctgagacc 900
ctgggcatca acccagctga gttcgctgag cagtacttca gattttccat catgaaggag 960
cagaagaacc tgggcttcaa catcacaaag ctgagagaag tgatgctgga cagaaaggat 1020
atgtccgaga tcaggaagaa ccacaaggtg ttcgattcta tcagaaccaa ggtgtacaca 1080
atgatggact ttgtgatcta caggtactac atcgaggagg atgccaaggt ggccgctgcc 1140
aacaagagcc tgcccgacaa cgagaagtct ctgagcgaga aggatatctt cgtgatcaac 1200
ctgagaggct cctttaacga cgatcagaag gacgctctgt actacgatga ggccaacagg 1260
atctggagaa agctggagaa catcatgcac aacatcaagg agttccgggg aaacaagacc 1320
cgcgagtaca agaagaagga cgctccaagg ctgcctagga tcctgcctgc tggaagggac 1380
gtgagcgcct tcagcaagct gatgtacgcc ctgacaatgt ttctggacgg aaaggagatc 1440
aacgatctgc tgaccacact gatcaacaag ttcgacaaca tccagtcttt tctgaaagtg 1500
atgcctctga tcggcgtgaa cgctaagttc gtggaggagt acgccttctt taaggacagc 1560
gccaagatcg ctgatgagct gcggctgatc aagtcctttg ccaggatggg agagccaatc 1620
gctgacgcta ggagagctat gtacatcgat gccatccgga tcctgggaac caacctgtct 1680
tacgacgagc tgaaggctct ggccgacacc ttcagcctgg atgagaacgg caacaagctg 1740
aagaagggca agcacggaat gcgcaacttc atcatcaaca acgtgatcag caacaagcgg 1800
tttcactacc tgatcagata cggcgaccca gctcacctgc acgagatcgc taagaacgag 1860
gccgtggtga agttcgtgct gggacggatc gccgatatcc agaagaagca gggccagaac 1920
ggaaagaacc agatcgaccg ctactacgag acctgcatcg gcaaggataa gggaaagtcc 1980
gtgtctgaga aggtggacgc tctgaccaag atcatcacag gcatgaacta cgaccagttc 2040
gataagaaga gatctgtgat cgaggacacc ggaagggaga acgccgagag agagaagttt 2100
aagaagatca tcagcctgta cctgacagtg atctaccaca tcctgaagaa catcgtgaac 2160
atcaacgcta gatacgtgat cggcttccac tgcgtggagc gcgatgccca gctgtacaag 2220
gagaagggat acgacatcaa cctgaagaag ctggaggaga agggctttag ctccgtgacc 2280
aagctgtgcg ctggaatcga cgagacagcc cccgacaaga ggaaggatgt ggagaaggag 2340
atggccgaga gagctaagga gagcatcgac tccctggagt ctgctaaccc taagctgtac 2400
gccaactaca tcaagtactc cgatgagaag aaggccgagg agttcaccag gcagatcaac 2460
agagagaagg ccaagaccgc tctgaacgcc tacctgagga acacaaagtg gaacgtgatc 2520
atccgggagg acctgctgcg catcgataac aagacctgta cactgttccg gaacaaggct 2580
gtgcacctgg aggtggctcg ctacgtgcac gcctacatca acgacatcgc cgaggtgaac 2640
tcctactttc agctgtacca ctacatcatg cagaggatca tcatgaacga gagatacgag 2700
aagtctagcg gcaaggtgtc tgagtacttc gacgccgtga acgatgagaa gaagtacaac 2760
gatagactgc tgaagctgct gtgcgtgcct ttcggatact gtatcccacg gtttaagaac 2820
ctgagcatcg aggccctgtt cgaccgcaac gaggctgcca agtttgataa ggagaagaag 2880
aaggtgagcg gcaactcc 2898
<210> 6
<211> 675
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
atgtttcttg gactttttca atacacgatt gacacagttg tcaaagatgt ctcaaagtct 60
gctaacttgt ctttggatgc tgtccaagag ttggagctca atgtagttcc aattagacaa 120
gcttcaaatg tgacgggttt tcttttcacc agtgttttta tctacttctt tgcactgttt 180
aaagcgtctt ctttgaggcg caattatatt atgttggcag cgcgttttgc tgtcattgtt 240
ctttattgcc cacttttata ttattgtggt gcatttttag atgcaactat tatttgttgc 300
acacttattg gcaggctttg tttagtctgc ttttactcct ggcgctataa aaatgcgctc 360
tttattattt ttaatactac gacactttct ttcctcaatg gtaaagcagc ttattatgac 420
ggcaaatcca ttgtgatttt agaaggtggt gaccattaca tcacttttgg caactctttt 480
gttgctttcg ttagtagcat cgacttgtat ctagctatac gtgggcggca agaagctgac 540
ctacagctgt tgcgaactgt tgagcttctt gatggcaaga agctttatgt cttttcgcaa 600
catcaaattg ttggcattac taatgctgca tttgactcaa ttcaactaga cgagtatgct 660
acaattagtg aatga 675
<210> 7
<211> 231
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
atgctacaat tagtgaatga taatggtcta gtagttaatg ttatactttg gcttttcgta 60
ctctttttcc tgcttattat aagcattact ttcgtccaat tggttaatct gtgcttcact 120
tgtcaccggt tgtgtaatag cgcagtttac acacctatag ggcgtttgta tagagtttat 180
aagtcttaca tgcaaataga ccccttcccc agtactgtta ttgacgtata a 231
<210> 8
<211> 681
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
atgtctaacg gttctattcc cgttgatgag gtgattcaac accttagaaa ctggaatttc 60
acatggaata tcatactgac gatactactt gtagtgcttc agtatggcca ttacaagtac 120
tctgcgttct tgtatggtgt caagatggct attctatgga tactttggcc tcttgtgtta 180
gcactgtcac tttttgatgc atgggctagc tttcaggtca attgggtctt ttttgctttc 240
agcatcctta tggcttgcat cactcttatg ctgtggataa tgtactttgt caatagcatt 300
cggttgtggc gcaggacaca ttcttggtgg tctttcaatc ctgaaacaga cgcgcttctc 360
actacttctg tgatgggccg acaggtctgc attccagtgc ttggagcacc aactggtgta 420
acgctaacac tccttagtgg tacattgctt gtagagggct ataaggttgc tactggcgta 480
caggtaagtc aattacctaa tttcgtcaca gtcgccaagg ccactacaac aattgtctac 540
ggacgtgttg gtcgttcagt caatgcttca tctggcactg gttgggcttt ctatgtccgg 600
tccaaacacg gcgactactc agctgtgagt aatccgagtt cggttctcac agatagtgag 660
aaagtgcttc atttagtcta a 681
<210> 9
<211> 1326
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
atggcttctg tcagttttca ggatcgtggc cgcaaacggg tgccattatc cctctatgcc 60
cctcttaggg ttactaatga caaacccctt tctaaggtac ttgcaaataa tgctgtaccc 120
actaataaag gaaataagga ccagcaaatt ggatactgga atgagcaaat tcgctggcgc 180
atgcgccgtg gtgagcgaat tgaacaacct tccaattggc atttctacta cctcggaaca 240
ggacctcacg ccgacctccg ctataggact cgtactgagg gtgttttctg ggttgctaaa 300
gaaggcgcaa agactgaacc cactaacctg ggtgtcagaa aggcgtctga aaagccaatc 360
attccaaatt tctctcaaca gcttcccagc gtagttgaga ttgttgaacc taacacacct 420
cctacttcac gtgcaaattc acgtagcagg agtcgtggta atggcaacaa caggtccaga 480
tctccaagta acaacagagg caataaccag tcccgcggta attcacagaa tcgtggaaat 540
aaccagggtc gtggagcttc tcagaacaga ggaggcaata ataataacaa taacaagtct 600
cgtaaccagt ccaagaacag aaaccagtca aatgaccgtg gtggtgtaac atcacgcgat 660
gatctggtgg ctgctgtcaa ggatgccctt aaatctttgg gtattggcga aaaccctgac 720
aagcttaagc aacagcagaa gcccaaacag gaaaggtctg acagcagcgg caaaaataca 780
cctaagaaga acaaatccag agccacttcg aaagaacgtg acctcaaaga catcccagag 840
tggaggagaa ttcccaaggg cgaaaatagc gtagcagctt gcttcggacc caggggaggc 900
ttcaaaaatt ttggagatgc ggaatttgtc gaaaaaggtg ttgatgcctc aggctatgct 960
cagatcgcca gtttagcacc aaatgttgca gcattgctct ttggtggtaa tgtggctgtt 1020
cgtgagctag cggactctta cgagattaca tataattata aaatgactgt gccaaagtct 1080
gatccaaatg tagagcttct tgtttcacag gtggatgcat ttaaaactgg gaatgcaaaa 1140
ccccagagaa agaaggaaaa gaagaacaag cgtgaaacca cgcagcagct gaatgaagag 1200
gccatctacg atgatgtggg tgtgccatct gattcgactc atgccaattt ggaatgggac 1260
acagctgtag acggtggtga cacggccgtt gaaattatca acgagatctt cgacacagga 1320
aattaa 1326
<210> 10
<211> 2911
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
atgtttcttg gactttttca atacacgatt gacacagttg tcaaagatgt ctcaaagtct 60
gctaacttgt ctttggatgc tgtccaagag ttggagctca atgtagttcc aattagacaa 120
gcttcaaatg tgacgggttt tcttttcacc agtgttttta tctacttctt tgcactgttt 180
aaagcgtctt ctttgaggcg caattatatt atgttggcag cgcgttttgc tgtcattgtt 240
ctttattgcc cacttttata ttattgtggt gcatttttag atgcaactat tatttgttgc 300
acacttattg gcaggctttg tttagtctgc ttttactcct ggcgctataa aaatgcgctc 360
tttattattt ttaatactac gacactttct ttcctcaatg gtaaagcagc ttattatgac 420
ggcaaatcca ttgtgatttt agaaggtggt gaccattaca tcacttttgg caactctttt 480
gttgctttcg ttagtagcat cgacttgtat ctagctatac gtgggcggca agaagctgac 540
ctacagctgt tgcgaactgt tgagcttctt gatggcaaga agctttatgt cttttcgcaa 600
catcaaattg ttggcattac taatgctgca tttgactcaa ttcaactaga cgagtatgct 660
acaattagtg aatgataatg gtctagtagt taatgttata ctttggcttt tcgtactctt 720
tttcctgctt attataagca ttactttcgt ccaattggtt aatctgtgct tcacttgtca 780
ccggttgtgt aatagcgcag tttacacacc tatagggcgt ttgtatagag tttataagtc 840
ttacatgcaa atagacccct tccccagtac tgttattgac gtataaacga aatatgtcta 900
acggttctat tcccgttgat gaggtgattc aacaccttag aaactggaat ttcacatgga 960
atatcatact gacgatacta cttgtagtgc ttcagtatgg ccattacaag tactctgcgt 1020
tcttgtatgg tgtcaagatg gctattctat ggatactttg gcctcttgtg ttagcactgt 1080
cactttttga tgcatgggct agctttcagg tcaattgggt cttttttgct ttcagcatcc 1140
ttatggcttg catcactctt atgctgtgga taatgtactt tgtcaatagc attcggttgt 1200
ggcgcaggac acattcttgg tggtctttca atcctgaaac agacgcgctt ctcactactt 1260
ctgtgatggg ccgacaggtc tgcattccag tgcttggagc accaactggt gtaacgctaa 1320
cactccttag tggtacattg cttgtagagg gctataaggt tgctactggc gtacaggtaa 1380
gtcaattacc taatttcgtc acagtcgcca aggccactac aacaattgtc tacggacgtg 1440
ttggtcgttc agtcaatgct tcatctggca ctggttgggc tttctatgtc cggtccaaac 1500
acggcgacta ctcagctgtg agtaatccga gttcggttct cacagatagt gagaaagtgc 1560
ttcatttagt ctaaacagaa actttatggc ttctgtcagt tttcaggatc gtggccgcaa 1620
acgggtgcca ttatccctct atgcccctct tagggttact aatgacaaac ccctttctaa 1680
ggtacttgca aataatgctg tacccactaa taaaggaaat aaggaccagc aaattggata 1740
ctggaatgag caaattcgct ggcgcatgcg ccgtggtgag cgaattgaac aaccttccaa 1800
ttggcatttc tactacctcg gaacaggacc tcacgccgac ctccgctata ggactcgtac 1860
tgagggtgtt ttctgggttg ctaaagaagg cgcaaagact gaacccacta acctgggtgt 1920
cagaaaggcg tctgaaaagc caatcattcc aaatttctct caacagcttc ccagcgtagt 1980
tgagattgtt gaacctaaca cacctcctac ttcacgtgca aattcacgta gcaggagtcg 2040
tggtaatggc aacaacaggt ccagatctcc aagtaacaac agaggcaata accagtcccg 2100
cggtaattca cagaatcgtg gaaataacca gggtcgtgga gcttctcaga acagaggagg 2160
caataataat aacaataaca agtctcgtaa ccagtccaag aacagaaacc agtcaaatga 2220
ccgtggtggt gtaacatcac gcgatgatct ggtggctgct gtcaaggatg cccttaaatc 2280
tttgggtatt ggcgaaaacc ctgacaagct taagcaacag cagaagccca aacaggaaag 2340
gtctgacagc agcggcaaaa atacacctaa gaagaacaaa tccagagcca cttcgaaaga 2400
acgtgacctc aaagacatcc cagagtggag gagaattccc aagggcgaaa atagcgtagc 2460
agcttgcttc ggacccaggg gaggcttcaa aaattttgga gatgcggaat ttgtcgaaaa 2520
aggtgttgat gcctcaggct atgctcagat cgccagttta gcaccaaatg ttgcagcatt 2580
gctctttggt ggtaatgtgg ctgttcgtga gctagcggac tcttacgaga ttacatataa 2640
ttataaaatg actgtgccaa agtctgatcc aaatgtagag cttcttgttt cacaggtgga 2700
tgcatttaaa actgggaatg caaaacccca gagaaagaag gaaaagaaga acaagcgtga 2760
aaccacgcag cagctgaatg aagaggccat ctacgatgat gtgggtgtgc catctgattc 2820
gactcatgcc aatttggaat gggacacagc tgtagacggt ggtgacacgg ccgttgaaat 2880
tatcaacgag atcttcgaca caggaaatta a 2911
<210> 11
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ttcactaatt gtagcatact cgtctagttg 30
<210> 12
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
ctagaccatt atcattcact aattgtagca 30
<210> 13
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
aggccaaagt atccatagaa tagccatct 29
<210> 14
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
attagtaacc ctaagagggg cat 23
<210> 15
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
acgctatttt cgcccttggg aattctcctc cactc 35
<210> 16
<211> 2964
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
cctaaaaaga aaagaaaggt gggttctggt atcgagaaga agaagagctt cgccaagggc 60
atgggagtga agagcaccct ggtgtccggc tctaaggtgt acatgaccac atttgctgag 120
ggaagcgacg ccaggctgga gaagatcgtg gagggcgata gcatcagatc cgtgaacgag 180
ggagaggctt tcagcgccga gatggctgac aagaacgctg gctacaagat cggaaacgcc 240
aagttttccc acccaaaggg ctacgccgtg gtggctaaca acccactgta caccggacca 300
gtgcagcagg acatgctggg actgaaggag acactggaga agaggtactt cggcgagtcc 360
gccgacggaa acgataacat ctgcatccag gtcatccaca acatcctgga tatcgagaag 420
atcctggctg agtacatcac aaacgccgct tacgccgtga acaacatctc cggcctggac 480
aaggatatca tcggcttcgg aaagttttct accgtgtaca catacgacga gttcaaggat 540
ccagagcacc accgggccgc ttttaacaac aacgacaagc tgatcaacgc catcaaggct 600
cagtacgacg agttcgataa ctttctggat aaccccaggc tgggctactt cggacaggct 660
ttcttttcta aggagggcag aaactacatc atcaactacg gaaacgagtg ttacgacatc 720
ctggccctgc tgagcggact gaggcactgg gtggtgcaca acaacgagga ggagtctcgg 780
atcagccgca cctggctgta caacctggac aagaacctgg ataacgagta catctccaca 840
ctgaactacc tgtacgacag gatcaccaac gagctgacaa acagcttctc caagaactct 900
gccgctaacg tgaactacat cgctgagacc ctgggcatca acccagctga gttcgctgag 960
cagtacttca gattttccat catgaaggag cagaagaacc tgggcttcaa catcacaaag 1020
ctgagagaag tgatgctgga cagaaaggat atgtccgaga tcaggaagaa ccacaaggtg 1080
ttcgattcta tcagaaccaa ggtgtacaca atgatggact ttgtgatcta caggtactac 1140
atcgaggagg atgccaaggt ggccgctgcc aacaagagcc tgcccgacaa cgagaagtct 1200
ctgagcgaga aggatatctt cgtgatcaac ctgagaggct cctttaacga cgatcagaag 1260
gacgctctgt actacgatga ggccaacagg atctggagaa agctggagaa catcatgcac 1320
aacatcaagg agttccgggg aaacaagacc cgcgagtaca agaagaagga cgctccaagg 1380
ctgcctagga tcctgcctgc tggaagggac gtgagcgcct tcagcaagct gatgtacgcc 1440
ctgacaatgt ttctggacgg aaaggagatc aacgatctgc tgaccacact gatcaacaag 1500
ttcgacaaca tccagtcttt tctgaaagtg atgcctctga tcggcgtgaa cgctaagttc 1560
gtggaggagt acgccttctt taaggacagc gccaagatcg ctgatgagct gcggctgatc 1620
aagtcctttg ccaggatggg agagccaatc gctgacgcta ggagagctat gtacatcgat 1680
gccatccgga tcctgggaac caacctgtct tacgacgagc tgaaggctct ggccgacacc 1740
ttcagcctgg atgagaacgg caacaagctg aagaagggca agcacggaat gcgcaacttc 1800
atcatcaaca acgtgatcag caacaagcgg tttcactacc tgatcagata cggcgaccca 1860
gctcacctgc acgagatcgc taagaacgag gccgtggtga agttcgtgct gggacggatc 1920
gccgatatcc agaagaagca gggccagaac ggaaagaacc agatcgaccg ctactacgag 1980
acctgcatcg gcaaggataa gggaaagtcc gtgtctgaga aggtggacgc tctgaccaag 2040
atcatcacag gcatgaacta cgaccagttc gataagaaga gatctgtgat cgaggacacc 2100
ggaagggaga acgccgagag agagaagttt aagaagatca tcagcctgta cctgacagtg 2160
atctaccaca tcctgaagaa catcgtgaac atcaacgcta gatacgtgat cggcttccac 2220
tgcgtggagc gcgatgccca gctgtacaag gagaagggat acgacatcaa cctgaagaag 2280
ctggaggaga agggctttag ctccgtgacc aagctgtgcg ctggaatcga cgagacagcc 2340
cccgacaaga ggaaggatgt ggagaaggag atggccgaga gagctaagga gagcatcgac 2400
tccctggagt ctgctaaccc taagctgtac gccaactaca tcaagtactc cgatgagaag 2460
aaggccgagg agttcaccag gcagatcaac agagagaagg ccaagaccgc tctgaacgcc 2520
tacctgagga acacaaagtg gaacgtgatc atccgggagg acctgctgcg catcgataac 2580
aagacctgta cactgttccg gaacaaggct gtgcacctgg aggtggctcg ctacgtgcac 2640
gcctacatca acgacatcgc cgaggtgaac tcctactttc agctgtacca ctacatcatg 2700
cagaggatca tcatgaacga gagatacgag aagtctagcg gcaaggtgtc tgagtacttc 2760
gacgccgtga acgatgagaa gaagtacaac gatagactgc tgaagctgct gtgcgtgcct 2820
ttcggatact gtatcccacg gtttaagaac ctgagcatcg aggccctgtt cgaccgcaac 2880
gaggctgcca agtttgataa ggagaagaag aaggtgagcg gcaactccgg ttctggtctc 2940
gagcccaaga agaagaggaa agtc 2964
<210> 17
<211> 2976
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
ctgcctccac ttgaaagact gacactgggt tctggtatcg agaagaagaa gagcttcgcc 60
aagggcatgg gagtgaagag caccctggtg tccggctcta aggtgtacat gaccacattt 120
gctgagggaa gcgacgccag gctggagaag atcgtggagg gcgatagcat cagatccgtg 180
aacgagggag aggctttcag cgccgagatg gctgacaaga acgctggcta caagatcgga 240
aacgccaagt tttcccaccc aaagggctac gccgtggtgg ctaacaaccc actgtacacc 300
ggaccagtgc agcaggacat gctgggactg aaggagacac tggagaagag gtacttcggc 360
gagtccgccg acggaaacga taacatctgc atccaggtca tccacaacat cctggatatc 420
gagaagatcc tggctgagta catcacaaac gccgcttacg ccgtgaacaa catctccggc 480
ctggacaagg atatcatcgg cttcggaaag ttttctaccg tgtacacata cgacgagttc 540
aaggatccag agcaccaccg ggccgctttt aacaacaacg acaagctgat caacgccatc 600
aaggctcagt acgacgagtt cgataacttt ctggataacc ccaggctggg ctacttcgga 660
caggctttct tttctaagga gggcagaaac tacatcatca actacggaaa cgagtgttac 720
gacatcctgg ccctgctgag cggactgagg cactgggtgg tgcacaacaa cgaggaggag 780
tctcggatca gccgcacctg gctgtacaac ctggacaaga acctggataa cgagtacatc 840
tccacactga actacctgta cgacaggatc accaacgagc tgacaaacag cttctccaag 900
aactctgccg ctaacgtgaa ctacatcgct gagaccctgg gcatcaaccc agctgagttc 960
gctgagcagt acttcagatt ttccatcatg aaggagcaga agaacctggg cttcaacatc 1020
acaaagctga gagaagtgat gctggacaga aaggatatgt ccgagatcag gaagaaccac 1080
aaggtgttcg attctatcag aaccaaggtg tacacaatga tggactttgt gatctacagg 1140
tactacatcg aggaggatgc caaggtggcc gctgccaaca agagcctgcc cgacaacgag 1200
aagtctctga gcgagaagga tatcttcgtg atcaacctga gaggctcctt taacgacgat 1260
cagaaggacg ctctgtacta cgatgaggcc aacaggatct ggagaaagct ggagaacatc 1320
atgcacaaca tcaaggagtt ccggggaaac aagacccgcg agtacaagaa gaaggacgct 1380
ccaaggctgc ctaggatcct gcctgctgga agggacgtga gcgccttcag caagctgatg 1440
tacgccctga caatgtttct ggacggaaag gagatcaacg atctgctgac cacactgatc 1500
aacaagttcg acaacatcca gtcttttctg aaagtgatgc ctctgatcgg cgtgaacgct 1560
aagttcgtgg aggagtacgc cttctttaag gacagcgcca agatcgctga tgagctgcgg 1620
ctgatcaagt cctttgccag gatgggagag ccaatcgctg acgctaggag agctatgtac 1680
atcgatgcca tccggatcct gggaaccaac ctgtcttacg acgagctgaa ggctctggcc 1740
gacaccttca gcctggatga gaacggcaac aagctgaaga agggcaagca cggaatgcgc 1800
aacttcatca tcaacaacgt gatcagcaac aagcggtttc actacctgat cagatacggc 1860
gacccagctc acctgcacga gatcgctaag aacgaggccg tggtgaagtt cgtgctggga 1920
cggatcgccg atatccagaa gaagcagggc cagaacggaa agaaccagat cgaccgctac 1980
tacgagacct gcatcggcaa ggataaggga aagtccgtgt ctgagaaggt ggacgctctg 2040
accaagatca tcacaggcat gaactacgac cagttcgata agaagagatc tgtgatcgag 2100
gacaccggaa gggagaacgc cgagagagag aagtttaaga agatcatcag cctgtacctg 2160
acagtgatct accacatcct gaagaacatc gtgaacatca acgctagata cgtgatcggc 2220
ttccactgcg tggagcgcga tgcccagctg tacaaggaga agggatacga catcaacctg 2280
aagaagctgg aggagaaggg ctttagctcc gtgaccaagc tgtgcgctgg aatcgacgag 2340
acagcccccg acaagaggaa ggatgtggag aaggagatgg ccgagagagc taaggagagc 2400
atcgactccc tggagtctgc taaccctaag ctgtacgcca actacatcaa gtactccgat 2460
gagaagaagg ccgaggagtt caccaggcag atcaacagag agaaggccaa gaccgctctg 2520
aacgcctacc tgaggaacac aaagtggaac gtgatcatcc gggaggacct gctgcgcatc 2580
gataacaaga cctgtacact gttccggaac aaggctgtgc acctggaggt ggctcgctac 2640
gtgcacgcct acatcaacga catcgccgag gtgaactcct actttcagct gtaccactac 2700
atcatgcaga ggatcatcat gaacgagaga tacgagaagt ctagcggcaa ggtgtctgag 2760
tacttcgacg ccgtgaacga tgagaagaag tacaacgata gactgctgaa gctgctgtgc 2820
gtgcctttcg gatactgtat cccacggttt aagaacctga gcatcgaggc cctgttcgac 2880
cgcaacgagg ctgccaagtt tgataaggag aagaagaagg tgagcggcaa ctccggttct 2940
ggtctcgagc tgcctccact tgaaagactg acactg 2976

Claims (6)

1.基于CRISPR-Cas13d***的靶向猪流行性腹泻病毒基因组的sgRNA,其特征在于,选自①~⑤中的至少一条:
①靶向猪流行性腹泻病毒ORF3基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:11所示;
②靶向猪流行性腹泻病毒E基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:12所示;
③靶向猪流行性腹泻病毒M基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:13所示;
④靶向猪流行性腹泻病毒N基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:14所示;
⑤靶向猪流行性腹泻病毒N基因的sgRNA,其作用位点的核苷酸序列如SEQ ID NO:15所示。
2.猪流行性腹泻病毒基因编辑载体,其特征在于,包括基于CRISPR-Cas13d***的sgRNA表达载体和含有Cas13d蛋白的表达载体;
其中,sgRNA同权利要求1中所述。
3.根据权利要求2所述的基因编辑载体,其特征在于,sgRNA表达载体的出发载体为pC0043-PspCas13b crRNA backbone。
4.根据权利要求2所述的基因编辑载体,其特征在于,含有Cas13d蛋白的表达载体为在Cas13d蛋白的两端连有NLS序列或NES序列的载体;
优选地,所述含有Cas13d蛋白的表达载体的序列如SEQ ID NO:5所示。
5.用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***,其特征在于,包含权利要求2-4任一项所述的基因编辑载体。
6.根据权利要求5所述的***,其特征在于,所述***靶向猪流行性腹泻病毒ORF3、E、M和N基因。
CN202110145282.4A 2021-02-02 2021-02-02 用于敲降猪流行性腹泻病毒的CRISPR-Cas13d*** Active CN114836418B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110145282.4A CN114836418B (zh) 2021-02-02 2021-02-02 用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110145282.4A CN114836418B (zh) 2021-02-02 2021-02-02 用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***

Publications (2)

Publication Number Publication Date
CN114836418A true CN114836418A (zh) 2022-08-02
CN114836418B CN114836418B (zh) 2024-07-12

Family

ID=82562160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110145282.4A Active CN114836418B (zh) 2021-02-02 2021-02-02 用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***

Country Status (1)

Country Link
CN (1) CN114836418B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231561A (zh) * 2021-12-22 2022-03-25 重庆医科大学 一种基于CRISPR-Cas13d敲低动物mRNA的方法及其应用
CN116536355A (zh) * 2023-03-31 2023-08-04 中国农业大学 一种crRNA转录载体、CRISPR/Cas13d体系和RNA投送体系和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060325A (zh) * 2013-01-14 2013-04-24 韩健宝 抗猪流行性腹泻病毒pedv的反义核酸及肽核酸pna
CN110331171A (zh) * 2019-07-11 2019-10-15 华中农业大学 一种高效快速构建猪肠道冠状病毒重组病毒的方法
CN110656123A (zh) * 2019-10-12 2020-01-07 中国农业大学 基于CRISPR-Cas13d***的sgRNA高效作用靶点的筛选方法及应用
CN112063620A (zh) * 2020-06-16 2020-12-11 中国人民解放军陆军军医大学 抑制猪流行性腹泻病毒M基因表达的shRNA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060325A (zh) * 2013-01-14 2013-04-24 韩健宝 抗猪流行性腹泻病毒pedv的反义核酸及肽核酸pna
CN110331171A (zh) * 2019-07-11 2019-10-15 华中农业大学 一种高效快速构建猪肠道冠状病毒重组病毒的方法
CN110656123A (zh) * 2019-10-12 2020-01-07 中国农业大学 基于CRISPR-Cas13d***的sgRNA高效作用靶点的筛选方法及应用
CN112063620A (zh) * 2020-06-16 2020-12-11 中国人民解放军陆军军医大学 抑制猪流行性腹泻病毒M基因表达的shRNA

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIANG ZHENG等: "Porcine epidemic diarrhea virus E protein suppresses RIG-I signaling-mediated interferon-β production", VET MICROBIOL, vol. 254 *
SILVANA KONERMANN等: "Transcriptome engineering with RNA-targeting Type VI-D CRISPR effectors", CELL, vol. 173, no. 3, 15 March 2018 (2018-03-15), pages 665 - 676, XP055529705, DOI: 10.1016/j.cell.2018.02.033 *
吴雨等: "猪流行性腹泻病毒致病机理研究进展", 动物医学进展, vol. 41, no. 11, pages 1 - 4 *
易继财: "基因工程原理与实验", 30 September 2020, 北京:中国农业大学出版社, pages: 94 - 95 *
陆颖等: "猪流行性腹泻病毒反向遗传学及其研究进展", 中国畜牧兽医, no. 06, pages 66 - 73 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231561A (zh) * 2021-12-22 2022-03-25 重庆医科大学 一种基于CRISPR-Cas13d敲低动物mRNA的方法及其应用
CN116536355A (zh) * 2023-03-31 2023-08-04 中国农业大学 一种crRNA转录载体、CRISPR/Cas13d体系和RNA投送体系和应用
CN116536355B (zh) * 2023-03-31 2023-10-20 中国农业大学 一种crRNA转录载体、CRISPR/Cas13d体系和RNA投送体系和应用

Also Published As

Publication number Publication date
CN114836418B (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
CN107502608B (zh) 用于敲除人ALDH2基因的sgRNA、ALDH2基因缺失细胞株的构建方法及应用
EP3320092B1 (en) Engineered crispr-cas9 compositions and methods of use
CA3111432A1 (en) Novel crispr enzymes and systems
AU2020272668B2 (en) Integration of nucleic acid constructs into eukaryotic cells with a transposase from oryzias
CN113631704A (zh) 可用于基因编辑的多肽及使用方法
JP7418469B2 (ja) アミエロイス由来のトランスポザーゼを用いた核酸コンストラクトの真核生物のゲノムへの転移
CN112080521B (zh) 一种表达外源蛋白的重组伪狂犬病毒载体构建及重组伪狂犬病毒制备方法
CN114836418B (zh) 用于敲降猪流行性腹泻病毒的CRISPR-Cas13d***
KR20220054434A (ko) 신규한 crispr dna 표적화 효소 및 시스템
CN112941107B (zh) 原核Argonaute蛋白的基因编辑应用
WO2013144663A2 (en) Method of determination of neutral dna sequences in the genome, system for targeting sequences obtained thereby and methods for use thereof
CN116162609A (zh) Cas13蛋白、CRISPR-Cas***及其应用
CN111100868B (zh) 美洲黑杨的促雌基因ferr和抑雌基因ferr-r及其应用
CN114107176A (zh) 一种稳定表达非洲猪瘟CD2v蛋白的CHO细胞系及其构建方法和应用
CN108486115B (zh) 一种用于淡水螯虾细胞外源基因表达的转染方法及其应用
CA2474810A1 (en) Methods for retrotransposing long interspersed elements (lines)
CN117070499A (zh) Cas12g在制备哺乳动物细胞RNA编辑产品中的应用
CN101502659A (zh) Krüppel样转录因子4的新用途
CN105483156A (zh) Bac-to-Bac杆状病毒表达***在制备家蚕microRNA超量表达***中的应用
CN116832162A (zh) Cd244在作为抗非洲猪瘟的基因编辑靶点中的应用
CN117867023A (zh) 基于腺相关病毒载体的视黄酸水平可视化检测方法
CN115785247A (zh) 一种猪流行性腹泻病毒抗性相关蛋白质eif2a及其相关生物材料和应用
WO2024042479A1 (en) Cas12 protein, crispr-cas system and uses thereof
CN114214268A (zh) 一种稳定表达slam蛋白的非洲绿猴肾细胞系及其构建方法和应用
CN113388626A (zh) 新型冠状病毒nsp13基因的新用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant