CN114807741A - 一种基于碳化物析出提高奥氏体不锈钢性能的方法 - Google Patents

一种基于碳化物析出提高奥氏体不锈钢性能的方法 Download PDF

Info

Publication number
CN114807741A
CN114807741A CN202111025252.6A CN202111025252A CN114807741A CN 114807741 A CN114807741 A CN 114807741A CN 202111025252 A CN202111025252 A CN 202111025252A CN 114807741 A CN114807741 A CN 114807741A
Authority
CN
China
Prior art keywords
austenitic stainless
alloy
improving
deformation
carbide precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111025252.6A
Other languages
English (en)
Other versions
CN114807741B (zh
Inventor
王旻
梁田
张龙
查向东
高明
马颖澈
刘奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202111025252.6A priority Critical patent/CN114807741B/zh
Publication of CN114807741A publication Critical patent/CN114807741A/zh
Application granted granted Critical
Publication of CN114807741B publication Critical patent/CN114807741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种基于碳化物析出提高奥氏体不锈钢性能的方法,属于金属材料制造领域。本发明针对低Ti/C比、含Si奥氏体不锈钢进行,首先在合金制备过程中利用真空自耗重熔和高温均匀化等方法促进一次碳化物溶解,其次采用冷加工变形在合金中制备出大量变形孪晶,最后通过低温时效处理在合金中实现二次碳化物TiC的细小弥散析出。碳化物颗粒能够钉扎位错提高材料强度,同时提供大量非共格相界面吸收空位提高材料的抗辐照肿胀性能。

Description

一种基于碳化物析出提高奥氏体不锈钢性能的方法
技术领域
本发明涉及金属材料制造技术领域,具体涉及一种基于碳化物析出提高奥氏体不锈钢性能的方法。
背景技术
316Ti、15-15Ti等奥氏体不锈钢材料因具有良好的综合力学性能和加工性能,在***先进核能***的燃料包壳制造中获得了广泛应用。这类核级奥氏体不锈钢材料均为奥氏体单相组织,晶内析出相数量较少,主要依靠固溶强化、晶界强化和变形强化。T91等铁素体/马氏体不锈钢是另一类具有较高应用潜力的燃料包壳结构材料,其马氏体晶粒内部存在大量马氏体板条和析出相。由于大量晶内界面和第二相的存在,这使得在中低温条件下铁马钢的合金强度和抗辐照肿胀性能要优于奥氏体不锈钢。因此,有必要进一步针对奥氏体不锈钢的化学成分和加工工艺进行改进,提高其中温强度和抗辐照肿胀性能。
发明内容
为了提高奥氏体不锈钢的强度和抗辐照肿胀性能,本发明的目的在于提供一种基于碳化物析出提高奥氏体不锈钢性能的方法,该方法能够促进碳化物在奥氏体不锈钢中细小弥散析出,具体为通过施加冷变形在奥氏体不锈钢晶粒内形成变形孪晶,再进行低温时效处理促使碳化物在变形孪晶区域内析出。利用第二相钉扎位错和相界面吸收空位提高材料强度和抗肿胀性能。
为实现上述技术目的,本发明所采用的技术方案如下:
一种基于碳化物析出提高奥氏体不锈钢性能的方法,该方法包括以下步骤:
(1)合金冶炼与热变形:将奥氏体不锈钢进行双真空冶炼与热变形开坯;
(2)合金冷加工变形:将热变形开坯后的合金进行多道次的冷变形加工;
(3)时效处理:通过低温长期时效热处理诱导碳化物析出,从而提高奥氏体不锈钢的中温强度和抗辐照肿胀性能。
步骤(1)中,冶炼前奥氏体不锈钢的化学成分为(wt.%):C 0.04-0.08%、Cr15.5-20.0%、Ni 14.5-16.5%、Si 0.4-2.0%、Mn 1.5-3.0%、Ti 0.2-0.5%、Mo 1.3-2.5%、B 0.003-0.004%,余量为Fe。
步骤(1)中,合金化学成分中Ti/C重量比不大于5,低Ti/C能够减少合金在冶炼过程中碳化物TiC的析出。
步骤(1)中,合金化学成分Si含量优选为1.0-2.0wt.%,Si元素添加能够降低C在熔体中的活度,抑制TiC析出。同时还能降低合金层错能,促进变形孪晶形成。
步骤(1)中,合金冶炼采用真空感应熔炼加真空自耗重熔工艺的双真空冶炼工艺,真空自耗重熔过程能够进一步降低铸锭中TiC的数量。
步骤(1)中,自耗锭在热变形开坯前在1200-1250℃进行12-15h的高温均匀化处理并水冷,溶解铸锭中已经析出的TiC碳化物,促进元素均匀化扩散,避免已溶解的碳化物在后续热变形过程中再次析出;合金热变形完成后水淬冷却,避免碳化物在冷却过程中析出。
步骤(2)冷变形加工中通过多道次冷轧将合金加工成厚度为1.0-3.0mm的板材;每道冷轧变形后进行退火处理,每次的退火处理温度为1020-1060℃,退火时间不超过30min,减少TiC在退火过程中的析出;每道冷轧变形后的退火处理采用气淬冷却,增大冷却速率避免TiC在冷却过程中析出;最后一次退火处理完成后对板材进行15-30%的冷变形,在合金组织中制备出变形孪晶。
步骤(3)中,对合金进行低温时效处理,时效温度为400-500℃,时效时间为100-500h。
所述合金板材在最后一道冷轧变形完成后可在晶粒内部形成大量变形孪晶。所述冷变形合金板材在低温时效处理后可在变形孪晶区域中形成大量细小TiC碳化物颗粒,尺寸不大于100nm。
TiC是含Ti奥氏体不锈钢中的重要第二相,一般具有几何外形,尺寸数微米左右,在晶内离散分布。这些大尺寸TiC颗粒属于一次碳化物,主要形成于合金冶炼过程中的液相熔体。由于一次碳化物数量较少、尺寸较大,对合金强度贡献较小。除在液相中形成外,TiC碳化物也可能在合金的热变形或热处理过程中析出。这些在固相中析出的碳化物称为二次碳化物。二次TiC颗粒尺寸较小,约数百纳米,一般优先在晶界、位错等缺陷位置形核析出,能够起到一定的沉淀强化作用。
本发明通过冷变形在晶内引入大量变形孪晶。变形孪晶具有片层密度高、片层厚度小的特点,能够为碳化物析出提供大量初始形核位置。在低温、长时的时效处理中,TiC在变形孪晶区域内的孪晶面和位错线上大量形核。由于热处理温度较低,碳化物的析出以形核为主、长大为辅,形成了细小、弥散的分布状态。从组织-性能关系分析入手,细小弥散分布的TiC颗粒能够为奥氏体不锈钢主要带来两点性能改善。首先,TiC能够阻碍位错运动提高合金强度。其次,由于TiC与奥氏体基体一般不存在共格关系,大量碳化物析出将在合金中产生大量非共格相界面。非共格界面是常见的空位阱,能够有效吸收空位,避免辐照过程中空位聚集形成空洞,进而提高材料的抗辐照肿胀性能。
本发明具有如下有益效果:
本发明针对低Ti/C比、含Si奥氏体不锈钢进行,该工艺方法通过冷变形在合金中制备出大量变形孪晶,孪晶界和位错为碳化物析出提供大量形核位置,在低温、长时时效处理中引发TiC在合金晶内的细小弥散析出,提高合金的强度与抗辐照肿胀性能。
附图说明
图1是实施例1所得样品的SEM显微组织形貌照片。
图2是对比例1所得样品的SEM显微组织形貌照片。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。
实施例1:
采用真空感应熔炼加真空自耗重熔制备母合金铸锭,冶炼前合金配料成分为(wt.%):C 0.06%、Cr 17.0%、Ni 15.0%、Si 2.0%、Mn 1.5%、Ti 0.24%、Mo 1.50%,余量为Fe。合金Ti/C重量比为4。自耗锭冶炼完成后在马弗炉中进行1200℃×12h的高温均匀化处理,完成后水冷冷却。自耗锭经锻造与热轧形成10mm厚热轧板。热轧板经两道冷轧与两道退火处理制备成2.5mm厚的冷轧板材。冷轧板材的退火热处理在真空气淬炉中进行,热处理制度为1050℃×20min。最后一道热处理完成后通过冷轧对板材施加冷变形,变形后板材厚度为1.9mm,变形量约为24%。在冷变形板材上取样进行450℃×120h的低温长时热处理。所得样品的SEM显微组织如图1所示。
实施例2:
采用真空感应熔炼加真空自耗重熔制备母合金铸锭,冶炼前合金配料成分为(wt.%):C 0.06%、Cr 17.0%、Ni 15.0%、Si 2.0%、Mn 1.5%、Ti 0.24%、Mo 1.50%,余量为Fe。合金Ti/C重量比为4。自耗锭冶炼完成后在马弗炉中进行1200℃×12h的高温均匀化处理,完成后水冷冷却。自耗锭经锻造与热轧形成10mm厚热轧板。热轧板经两道冷轧与两道退火处理制备成2.5mm厚的冷轧板材。冷轧板材的退火热处理在真空气淬炉中进行,热处理制度为1050℃×20min。最后一道热处理完成后通过冷轧对板材施加冷变形,变形后板材厚度为2.0mm,变形量约为20%。在冷变形板材上取样进行450℃×480h的低温长时热处理。
对比例1:
采用真空感应熔炼加真空自耗重熔制备母合金铸锭,冶炼前合金配料成分为(wt.%):C 0.06%、Cr 16.0%、Ni 15.0%、Si 0.4%、Mn 1.5%、Ti 0.36%、Mo 1.50%,余量为Fe。合金Ti/C重量比为6。自耗锭冶炼完成后在马弗炉中进行1200℃×12h的高温均匀化处理,完成后水冷冷却。自耗锭经锻造与热轧形成10mm厚热轧板。热轧板经两道冷轧与两道退火处理制备成2.5mm厚的冷轧板材。冷轧板材的退火热处理在真空气淬炉中进行,热处理制度为1050℃×20min。最后一道热处理完成后通过冷轧对板材施加冷变形,变形后板材厚度为2.05mm,变形量约为18%。在冷变形板材上取样进行550℃×120h的低温长时热处理。所得样品的SEM显微组织如图2所示。
对上述实施例和对比例所得样品进行室温拉伸性能测试,其结果见表1。
表1实施例与对比例所得样品室温拉伸性能对比
屈服强度(MPa) 抗拉强度(MPa) 延伸率(%)
实施例1 892 978 20
实施例2 868 969 24
对比例1 618 750 33
以上实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (9)

1.一种基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:该方法包括以下步骤:
(1)合金冶炼与热变形:将奥氏体不锈钢进行双真空冶炼与热变形开坯;
(2)合金冷加工变形:将热变形开坯后的合金进行多道次的冷变形加工;
(3)时效处理:通过低温长期时效热处理诱导碳化物析出。
2.根据权利要求1所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(1)中,冶炼前奥氏体不锈钢按重量百分比计的化学成分为:C 0.04-0.08%、Cr 15.5-20.0%、Ni 14.5-16.5%、Si 0.4-2.0%、Mn 1.5-3.0%、Ti 0.2-0.5%、Mo 1.3-2.5%、B0.003-0.004%,余量为Fe。
3.根据权利要求1所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(1)中,合金化学成分中,Ti/C重量比不大于5,合金化学成分Si含量为1.0-2.0wt.%。
4.根据权利要求1所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(1)中,合金冶炼采用真空感应熔炼加真空自耗重熔工艺的双真空冶炼工艺。
5.根据权利要求1所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(1)中,自耗锭在热变形开坯前在1200-1250℃进行12-15h的高温均匀化处理并水冷;合金热变形完成后水淬冷却,再进行步骤(2)。
6.根据权利要求1所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(2)冷变形加工中,每道冷轧变形后进行退火处理,每次退火温度为1020-1060℃,退火处理时间不超过30min,退火处理采用气淬冷却。
7.根据权利要求6所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(2)中,最后一次退火处理完成后对板材进行15-30%的冷变形。
8.根据权利要求1所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(3)中,对合金进行低温时效处理,时效温度为400-500℃,时效时间为100-500h。
9.根据权利要求1所述的基于碳化物析出提高奥氏体不锈钢性能的方法,其特征在于:步骤(3)中,制备的奥氏体不锈钢样品在变形孪晶区域中形成大量细小TiC碳化物颗粒,尺寸不大于100nm。
CN202111025252.6A 2021-09-02 2021-09-02 一种基于碳化物析出提高奥氏体不锈钢性能的方法 Active CN114807741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111025252.6A CN114807741B (zh) 2021-09-02 2021-09-02 一种基于碳化物析出提高奥氏体不锈钢性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111025252.6A CN114807741B (zh) 2021-09-02 2021-09-02 一种基于碳化物析出提高奥氏体不锈钢性能的方法

Publications (2)

Publication Number Publication Date
CN114807741A true CN114807741A (zh) 2022-07-29
CN114807741B CN114807741B (zh) 2023-09-22

Family

ID=82526061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111025252.6A Active CN114807741B (zh) 2021-09-02 2021-09-02 一种基于碳化物析出提高奥氏体不锈钢性能的方法

Country Status (1)

Country Link
CN (1) CN114807741B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491612A (zh) * 2022-09-26 2022-12-20 中国科学院金属研究所 一种高强度低活化钢及其制备方法
CN115652210A (zh) * 2022-11-07 2023-01-31 鞍钢股份有限公司 一种超低碳化物含量奥氏体不锈钢坯及其制造方法
CN115948694A (zh) * 2022-11-07 2023-04-11 鞍钢股份有限公司 一种45mm以下高性能奥氏体不锈钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949015A (ja) * 1995-08-09 1997-02-18 Daido Steel Co Ltd 高強度オーステナイト系ステンレス鋼圧延材の製造方法
US20060266449A1 (en) * 2005-05-24 2006-11-30 Korea Atomic Energy Research Institute Cerium-containing austenitic nickel-base alloy having enhanced intergranular attack and stress corrosion cracking resistances, and preparation method thereof
US20120034126A1 (en) * 2009-01-30 2012-02-09 Sandvik Intellectual Property Ab STAINLESS AUSTENITIC LOW Ni STEEL ALLOY
CN103173698A (zh) * 2013-04-09 2013-06-26 北京科技大学 弥散析出相强化高Cr高Ni奥氏体不锈钢及热加工方法
US20150329947A1 (en) * 2012-12-19 2015-11-19 Centro Sviluppo Materiali S.P.A. Austenitic twip stainless steel, its production and use
CN109355558A (zh) * 2018-11-01 2019-02-19 中广核研究院有限公司 奥氏体不锈钢及其制备方法、应用
CN112795847A (zh) * 2021-01-14 2021-05-14 江苏武进不锈股份有限公司 钠冷快堆用不锈钢无缝管以及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949015A (ja) * 1995-08-09 1997-02-18 Daido Steel Co Ltd 高強度オーステナイト系ステンレス鋼圧延材の製造方法
US20060266449A1 (en) * 2005-05-24 2006-11-30 Korea Atomic Energy Research Institute Cerium-containing austenitic nickel-base alloy having enhanced intergranular attack and stress corrosion cracking resistances, and preparation method thereof
US20120034126A1 (en) * 2009-01-30 2012-02-09 Sandvik Intellectual Property Ab STAINLESS AUSTENITIC LOW Ni STEEL ALLOY
US20150329947A1 (en) * 2012-12-19 2015-11-19 Centro Sviluppo Materiali S.P.A. Austenitic twip stainless steel, its production and use
CN103173698A (zh) * 2013-04-09 2013-06-26 北京科技大学 弥散析出相强化高Cr高Ni奥氏体不锈钢及热加工方法
CN109355558A (zh) * 2018-11-01 2019-02-19 中广核研究院有限公司 奥氏体不锈钢及其制备方法、应用
CN112795847A (zh) * 2021-01-14 2021-05-14 江苏武进不锈股份有限公司 钠冷快堆用不锈钢无缝管以及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张建;李秀艳;戎利建;廖彬;范瑛;谭云;梅军;: "锻造变形量对FeNi基奥氏体合金力学性能的影响", 材料研究学报, no. 05 *
王志楠 等: "时效处理对20%冷变形15Cr-15Ni含Ti奥氏体不锈钢组织和650℃拉伸性能的影响", vol. 47, no. 11, pages 3504 - 3511 *
龚志华;定巍;富小阳;: "时效时间对S30432钢组织的影响", 金属热处理, no. 05 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491612A (zh) * 2022-09-26 2022-12-20 中国科学院金属研究所 一种高强度低活化钢及其制备方法
CN115652210A (zh) * 2022-11-07 2023-01-31 鞍钢股份有限公司 一种超低碳化物含量奥氏体不锈钢坯及其制造方法
CN115948694A (zh) * 2022-11-07 2023-04-11 鞍钢股份有限公司 一种45mm以下高性能奥氏体不锈钢板及其制造方法

Also Published As

Publication number Publication date
CN114807741B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN114807741B (zh) 一种基于碳化物析出提高奥氏体不锈钢性能的方法
CN105088118B (zh) 一种镍基高温合金板材的超细晶化方法
CN110396633B (zh) 一种超细晶双峰组织中熵合金的制备方法
CN107988550B (zh) 一种压水堆核电站压力容器支承用钢及其制造方法
CN109136652B (zh) 核电关键设备用镍基合金大截面棒材及其制造方法
CN107557616B (zh) 一种镍基耐蚀合金管材及其制造方法
CN109811116B (zh) 一种耐事故包壳用FeCrAl基合金纳米晶材料的制备方法
CN106995902B (zh) 一种FeCrAl基合金包壳材料及其制备方法
CN114032459B (zh) 一种屈服强度690MPa级高强韧性低屈强比中厚钢板的制备方法
CN112553434A (zh) 一种低温韧性的Ni-Mo-Cr系钢及预备热处理工艺
CN103650659B (zh) 一种核反应堆用锆基合金板材的制备方法
CN115612813A (zh) 一种提高低碳高合金马氏体不锈钢综合力学性能的热处理方法
CN117187705B (zh) 一种低Cr且高强韧合金的热处理方法
CN108385045B (zh) 一种控制IN718合金均匀析出δ相的热处理方法
CN107815527B (zh) 提高不锈钢管材的低∑csl晶界比例的gbe工艺方法
CN113897546A (zh) 一种17-4ph不锈钢
CN113528979B (zh) 一种成分优化的高强度rafm钢及其热处理工艺
CN110004368B (zh) 提高具有fcc晶体结构合金耐晶间腐蚀性能的加工方法
JP2001192730A (ja) 高Crフェライト系耐熱鋼およびその熱処理方法
CN109055691B (zh) 一种Fe-Cr-Zr系铁素体耐热合金及其制备方法
CN113667806B (zh) 一种解决含Gd双相不锈钢热加工裂纹的多级热处理方法
CN115354227A (zh) 一种反应堆燃料包壳材料用铁素体马氏体钢及其热处理工艺
CN113667913B (zh) 提高Hastelloy N合金ΣCSL晶界比例的工艺方法
KR102411794B1 (ko) 기계적 물성이 우수한 Ti 함유 저방사 강재 및 그 제조방법
CN115029528A (zh) 储氢用低铁素体热轧不锈钢中板及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant