CN114707292B - 含电动汽车配电网电压稳定性分析方法 - Google Patents

含电动汽车配电网电压稳定性分析方法 Download PDF

Info

Publication number
CN114707292B
CN114707292B CN202210071063.0A CN202210071063A CN114707292B CN 114707292 B CN114707292 B CN 114707292B CN 202210071063 A CN202210071063 A CN 202210071063A CN 114707292 B CN114707292 B CN 114707292B
Authority
CN
China
Prior art keywords
load
charging
node
travel
voltage stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210071063.0A
Other languages
English (en)
Other versions
CN114707292A (zh
Inventor
黄南天
胡乾坤
王日俊
贺庆奎
杨冬锋
刘闯
孔令国
张良
蔡国伟
高旭
姜雨晴
郭笑林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202210071063.0A priority Critical patent/CN114707292B/zh
Publication of CN114707292A publication Critical patent/CN114707292A/zh
Application granted granted Critical
Publication of CN114707292B publication Critical patent/CN114707292B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了含电动汽车配电网电压稳定性分析方法,具体按照以下步骤实施:首先,计及目的地类型与时刻相关性建立出行链模型,结合蒙特卡洛仿真方法,实现出行模拟,生产海量充电负荷场景;其次,计及多节点空间相关性,基于条件Wasserstein梯度惩罚生成对抗网络建立常规负荷生成模型,生成大量常规负荷场景;然后,筛选出典型、极端充电负荷场景和典型、极端常规负荷场景,并构造潜在小概率极端负荷场景、典型负荷场景;最后,基于快速电压稳定指标和电压稳定裕度指标分析配电网电压稳定性,解决了规划结果与实际需求不平衡,导致充电站容量冗余的问题,能使电动汽车配电网电压稳定性分析结果更可靠。

Description

含电动汽车配电网电压稳定性分析方法
技术领域
本发明属于配电网电压稳定性分析技术领域,具体涉及含电动汽车配电网电压稳定性分析方法。
背景技术
“双碳”目标下,能源转型战略和智慧城市建设使电动汽车得到进一步应用和普及。预计2030年,中国电动汽车保有量将达8000万辆,现有的城市充电设施不能满足快速增长下的电动汽车充电需求。随着电动汽车的不断发展,充电负荷占配电网总负荷的比例不断上升,但是充电负荷和常规负荷(除电动汽车充电负荷外配电网其他负荷)时-空特性具有明显差异,使得规划结果与实际需求不平衡,导致充电站容量冗余的问题。
发明内容
本发明的目的是提供含电动汽车配电网电压稳定性分析方法,解决了规划结果与实际需求不平衡,导致充电站容量冗余的问题。
本发明所采用的技术方案是,含电动汽车配电网电压稳定性分析方法,具体按照以下步骤实施:
步骤1、建立计及目的地类型与时刻相关性的出行链模型,结合蒙特卡洛仿真模拟生成电动汽车充电负荷场景集;
步骤2、建立计及节点空间相关性的常规负荷生成模型,生成常规负荷场景集;
步骤3、基于电动汽车充电负荷场景集、常规负荷场景集,构建潜在小概率极端负荷场景和典型负荷场景;
步骤4、基于快速电压稳定指标和电压稳定裕度,分析电动汽车接入后配电网电压稳定性。
本发明的特点还在于:
步骤1具体过程为:
步骤1.1、对电动汽车出行数据进行统计分析,获取表征出行链的特征变量概率分布;
步骤1.2、电动汽车当前位置类型、当前时刻已知时,计算出发去往下一目的地的条件概率p(lnext|lcur,tcur),建立计及目的地类型与时刻相关性的出行链模型;
步骤1.3、基于蒙特卡洛仿真,进行多辆电动汽车的出行模拟,形成出行链,并计算电动汽车在各个节点的充电负荷。
步骤1.1中电动汽车出行数据包括:初始出发地点Ld、初始出发时间Td、行驶时间td、目的地Le、停车时间tp、行程级数N、日出行次数n,其中,日出行次数表示用户每日出行多少次;行程级数表示用户每一次出行时经过目的地的数目。
步骤1.2计算出发去往下一目的地的条件概率p(lnext|lcur,tcur)过程为:获取计及目的地类型和时刻相关性的功能区出行条件概率p(lnext|lcur,tcur),采用Lcur和Lnext表示当前位置和下一目的地,Tcur表示当前位置出发时间,则当前位置为lcur,出发时间为tcur时,下一出行目的地为lnext的概率为:
s.t.0≤tcur≤96
式中,lcur、lnext为实验区域内当前位置和下一目的地,tcur为当前时刻,Tra1和Tra为满足条件的行程数;
步骤1.3具体过程为:
步骤1.3.1、对于配电网***的母线节点进行编号,并定义电动汽车的数目为M;
步骤1.3.2、定义变量j,并初始化为0;
步骤1.3.3、令j=j+1,抽取第j辆电动汽车EVj的初始荷电状态SOC、日出行次数、行程级数、初始出行时间、初始出发地点、停车时间,根据出行链模型生成第j辆电动汽车EVj出行链Ttrip,Ttrip维行向量,共包含/>级行程;
步骤1.3.4、基于Floyd算法规划最优行驶路径,并计算电动汽车EVj到达k节点时的荷电状态表示为:
式(3)中,Qc表示出发前电池电量等于电池容量,表示出发前荷电状态,单位耗电量e与行驶距离d的乘积表示路程耗电量;
步骤1.3.5、设置开始充电阈值S2,若则计算第j辆电动汽车t时刻在k节点充电量Δsj,k和充电功率Pj,k(t),表示为:
其中,充电时段为为到达节点k的时间;
Pj,k(t)包含慢充功率P1和快充功率P2,计算在节点k的停车时间慢充方式下充至满电所需时间tc,1,快充方式下充至满电所需时间tc,2,充电功率Pj,k(t),表示为:
考虑里程焦虑及充/放电深度影响,设定充电阈值S1、S2,即SOC小于等于S2时开始充电,SOC大于等于S1时充电结束;
继续行驶直到完成整个出行链;
步骤1.3.6、判断j是否等于M,如果是执行步骤1.3.7,否则,返回步骤1.3.3;
步骤1.3.7、计算每个节点各时刻的充电功率即负荷;
m表示在k节点充电的EV数目,
步骤1.3.8、进行多次仿真模拟,生成海量充电负荷场景。
步骤2具体过程为:
步骤2.1、采用条件Wasserstein梯度惩罚生成对抗网络,包含生成器和判别器,将条件变量设置为包含工作日、非工作日的日期类型,以0(非工作日),1(工作日)表示,构建基于数据驱动的条件Wasserstein梯度惩罚生成对抗网络,即常规负荷场景生成模型;
步骤2.2、通过电表获取配电网各节点中除电动汽车充电负荷外其他负荷作为原始常规负荷数据,将多个节点的原始常规负荷数据重塑成多维矩阵输入条件Wasserstein梯度惩罚生成对抗网络,生成海量常规负荷场景。
步骤2.2将多个节点的原始常规负荷数据重塑成多维矩阵过程为:将每天获取的原始常规负荷数据作为行,将获取原始常规负荷数据天数作为列,形成一个多维矩阵。
步骤3具体过程为:
步骤3.1、将步骤1得到的电动汽车充电负荷场景集分为工作日充电负荷场景集和非工作日充电负荷场景集,对工作日和非工作日充电负荷场景集,分别选取各节点充电负荷均值作为典型充电场景,选取各节点充电负荷上边界作为极端充电场景;
步骤3.2、将步骤2生成的常规负荷生成场景集分为工作日常规负荷场景集和非工作日常规负荷场景集,采用K-means聚类算法分别将其进行聚类,选取最佳聚类数下各聚类簇的聚类中心作为各节点典型常规负荷场景,各聚类簇中峰谷差最大的场景作为各节点极端常规负荷场景;
步骤3.3、分别将工作日和非工作日对应的各节点充电负荷场景和常规负荷场景对应叠加,将叠加后得到场景中含有极端充电场景或极端常规负荷场景的作为潜在小概率极端负荷场景,将叠加后不含极端充电场景或极端常规负荷场景的场景作为典型负荷场景。
步骤4具体过程为:通过快速电压稳定指标和电压稳定裕度分别计算每个潜在小概率极端负荷场景和每个典型负荷场景的支路稳定性和节点稳定性:
快速电压稳定指标FVSIik计算公式为:
其中,i和k为线路首末节点,Qk为接受端无功功率,Vi为线路首端电压,Xik为线路电抗值,Zik为线路阻抗值,FVSI越接近0,则***电压稳定性越高,相反地,若FVSI值越大,则电压稳定性越低,当FVSI接近1时,***将失去稳定性;
电压稳定裕度计算公式为:
VSM(k)=Vi 4-4(P(k)Xik-Q(k)Rik)2-4Vi 2(P(k)Rik+Q(k)Xik) (9)
s.t.i,k=2,3,…,33
式中,Rik为线路电阻值,P(k)是k节点外所有节点的有功负荷、k节点本身的有功负荷、k节点外所有支路有功损耗之和;Q(k)是k节点外所有节点的无功负荷、k节点本身的无功负荷、k节点外所有支路无功损耗之和,VSM是判别节点电压是否接近崩溃的重要指标,其值介于0到1之间,VSM越小,该节点越达到崩溃临界。
本发明有益效果是:
本发明含电动汽车配电网电压稳定性分析方法,建立出行链模型计及目的地类型与时刻相关性,使出行行为的模拟更符合实际出行行为,充电负荷仿真结果更准确;建立的常规负荷生成模型计及多节点空间相关性,使常规负荷生成结果更真实;最后,基于快速电压稳定指标和电压稳定裕度指标进行支路稳定性和节点稳定性分析,使分析结果更可靠。
附图说明
图1是本发明含电动汽车配电网电压稳定性分析方法流程图;
图2是本发明实施例中交通路网与配电网耦合网络图;
图3是本发明实施例中电动汽车出行次数和行程级数概率分布图;
图4是本发明实施例中电动汽车初始出行时间概率分布图;
图5是本发明实施例中计及目的地类型与时刻相关性的出行概率分布图;
图6是本发明实施例中电动汽车行驶距离概率分布图;
图7是本发明实施例中常规负荷实验数据集构建过程图;
图8是本发明实施例中常规负荷生成场景与历史场景概率分布图;
图9是本发明实施例中常规负荷生成场景时序特性及覆盖能力分析图;
图10是本发明实施例中工作日典型、极端负荷场景图;
图11是本发明实施例中非工作日典型、极端负荷场景图;
图12是本发明实施例中各场景快速电压稳定指标结果图;
图13是本发明实施例中各场景电压稳定裕度指标结果图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明含电动汽车配电网电压稳定性分析方法,具体按照以下步骤实施:
步骤1、建立计及目的地类型与时刻相关性的出行链模型,结合蒙特卡洛仿真模拟生成电动汽车充电负荷场景集;具体过程为:
步骤1.1、对电动汽车出行数据进行统计分析,电动汽车出行数据包括初始出发地点Ld、初始出发时间Td、行驶时间td、目的地Le、停车时间tp、行程级数N、日出行次数n,其中,日出行次数表示用户每日出行多少次;行程级数表示用户每一次出行时经过目的地的数目,获取表征出行链的特征变量概率分布;
步骤1.2、电动汽车当前位置类型、当前时刻已知时,获取计及目的地类型和时刻相关性的功能区出行条件概率p(lnext|lcur,tcur),采用Lcur和Lnext表示当前位置和下一目的地,Tcur表示当前位置出发时间,则当前位置为lcur,出发时间为tcur时,下一出行目的地为lnext的概率为:
s.t.0≤tcur≤96
式中,lcur、lnext为实验区域内当前位置和下一目的地,tcur为当前时刻,Tra1和Tra为满足条件的行程数;
根据电动汽车出行数据形成的出行变量建立计及目的地类型与时刻相关性的出行链模型;
步骤1.3、基于蒙特卡洛仿真,将Ld、Td、td、tp、N、n作为独立分布的特征变量,进行随机抽取,然后根据p(lnext|lcur,tcur)选择每一级行程的目的地,进行多辆电动汽车的出行模拟,形成出行链,并计算电动汽车在各个节点的充电负荷;具体过程为:
步骤1.3.1、对于配电网***的母线节点进行编号,并定义电动汽车的数目为M;
步骤1.3.2、定义变量j,并初始化为0;
步骤1.3.3、令j=j+1,抽取第j辆电动汽车EVj的初始荷电状态SOC、日出行次数、行程级数、初始出行时间、初始出发地点、停车时间,根据出行链模型生成第j辆电动汽车EVj出行链Ttrip,Ttrip维行向量,共包含/>级行程;
次出行时/>级行程出行链/>如式(2)所示,每辆EV每天产生n条式(2)所示出行链。
步骤1.3.4、基于Floyd算法规划最优行驶路径(例如,假设从功能区A至功能区B共有4条路线,选择的路线为4条路线中距离最短的路线),并计算电动汽车EVj到达k节点时的荷电状态等于出发前电池电量减去路程耗电量所得结果与电池容量的比值,表示为:
式(3)中,Qc表示出发前电池电量等于电池容量,表示出发前荷电状态,单位耗电量e与行驶距离d的乘积表示路程耗电量;
步骤1.3.5、设置开始充电阈值S2,若则计算第j辆电动汽车t时刻在k节点充电量Δsj,k和充电功率Pj,k(t),表示为:
其中,充电时段为为到达节点k的时间;
Pj,k(t)包含慢充功率P1和快充功率P2,计算在节点k的停车时间慢充方式下充至满电所需时间tc,1,快充方式下充至满电所需时间tc,2,充电功率Pj,k(t),表示为:
考虑里程焦虑及充/放电深度影响,设定充电阈值S1、S2,即SOC小于等于S2时开始充电,SOC大于等于S1时充电结束;
继续行驶直到完成整个出行链;
步骤1.3.6、判断j是否等于M,如果是执行步骤1.3.7,否则,返回步骤1.3.3;
步骤1.3.7、计算每个节点各时刻的充电功率即负荷;
m表示在k节点充电的EV数目,
步骤1.3.8、进行多次仿真模拟,生成海量充电负荷场景。
步骤2、建立计及节点空间相关性的常规负荷生成模型,生成常规负荷场景集;具体过程为:
步骤2.1、采用条件Wasserstein梯度惩罚生成对抗网络,包含生成器和判别器,将条件变量设置为包含工作日、非工作日的日期类型,以0(非工作日),1(工作日)表示,构建基于数据驱动的条件Wasserstein梯度惩罚生成对抗网络,即常规负荷场景生成模型;
步骤2.2、通过电表获取配电网各节点中除电动汽车充电负荷外其他负荷作为原始常规负荷数据,将每天获取的原始常规负荷数据作为行,将获取原始常规负荷数据天数作为列,形成一个多维矩阵。将多维矩阵输入条件Wasserstein梯度惩罚生成对抗网络,生成海量常规负荷场景。
步骤3、基于电动汽车充电负荷场景集、常规负荷场景集,构建潜在小概率极端负荷场景和典型负荷场景;具体过程为:
步骤3.1、将步骤1得到的电动汽车充电负荷场景集分为工作日充电负荷场景集和非工作日充电负荷场景集,对工作日和非工作日充电负荷场景集,分别选取各节点充电负荷均值作为典型充电场景,选取各节点充电负荷上边界作为极端充电场景;
步骤3.2、将步骤2生成的常规负荷生成场景集分为工作日常规负荷场景集和非工作日常规负荷场景集,采用K-means聚类算法分别将其进行聚类,选取最佳聚类数下各聚类簇的聚类中心作为各节点典型常规负荷场景,各聚类簇中峰谷差最大的场景作为各节点极端常规负荷场景;
步骤3.3、分别将工作日和非工作日对应的各节点充电负荷场景和常规负荷场景对应叠加,将叠加后得到场景中含有极端充电场景或极端常规负荷场景的作为潜在小概率极端负荷场景,将叠加后不含极端充电场景或极端常规负荷场景的场景作为典型负荷场景。
步骤4、基于快速电压稳定指标和电压稳定裕度,分析电动汽车接入后配电网电压稳定性;具体过程为:通过快速电压稳定指标和电压稳定裕度分别计算每个潜在小概率极端负荷场景和每个典型负荷场景的支路稳定性和节点稳定性:
快速电压稳定指标FVSIik计算公式为:
其中,i和k为线路首末节点,Qk为接受端无功功率,Vi为线路首端电压,Xik为线路电抗值,Zik为线路阻抗值,FVSI越接近0,则***电压稳定性越高,相反地,若FVSI值越大,则电压稳定性越低,当FVSI接近1时,***将失去稳定性;
电压稳定裕度计算公式为:
VSM(k)=Vi 4-4(P(k)Xik-Q(k)Rik)2-4Vi 2(P(k)Rik+Q(k)Xik) (9)
s.t.i,k=2,3,…,33
式中,Rik为线路电阻值,P(k)是k节点外所有节点的有功负荷、k节点本身的有功负荷、k节点外所有支路有功损耗之和;Q(k)是k节点外所有节点的无功负荷、k节点本身的无功负荷、k节点外所有支路无功损耗之和,VSM是判别节点电压是否接近崩溃的重要指标,其值介于0到1之间,VSM越小,该节点越达到崩溃临界。
实施例
1、电动汽车充电负荷场景生产
实施例选用某城市实际交通网络与IEEE 33节点标准***耦合得到的耦合网络为基础,如图2所示。
基于2017年某地区家庭旅行调查数据建立计及目的地类型与时刻相关性的出行链模型,模拟用户出行。日出行次数及行程级数的概率分布如图3所示,由子图a)可知,日出行次数最多达9次,普遍集中在1-4次;由子图b)可知,行程级数最高达11级,普遍集中在2-7级。
初始出发地点类型比例如表1所示,可知工作日用户出行时从居民区出发的概率是61.03%,从商业区出发的概率是24.54%,从工作区出发的概率是14.43%;非工作日从居民区和商业区出发的概率较工作日明显增加,从工作区出发的概率明显减少。
表1
不同初始出发点下的初始出行时间概率分布如图4所示。采用1h时间分辨率,通过概率质量函数统计用户从各个功能区出发的初始出发时间离散概率分布,并利用概率密度函数将统计结果连续化,以得到任意时刻出发概率。
由子图a)可知,工作日用户从居民区出发的高峰时段集中在6:00至10:00,从工作区出发情况与居民区基本相同,从商业区出发高峰时段集中在7:00至12:00,稍晚于居民区和工作区;由子图b)可知,非工作日从居民区出发和从工作区出发的高峰时段集中在7:00至17:00,从商业区出发的高峰时段集中在8:00至12:00,时间明显晚于工作日,其中非工作日多进行娱乐活动或者玩出游玩,多往返于家和商业区。对比可知,数据结论符合实际生活认知。
采用1h时间分辨率,通过PMF统计用户从各个功能区出发的出发时间概率分布,所以利用PDF将统计结果连续化,结果如图5所示。每个子图中,同一时刻,3条实线之和为1,3条虚线之和为1,即去往3个功能区概率之和为1(不出行的情况认为是去往和当前位置类型相同的功能区)。由子图a)可知,工作日早高峰时段(6:00-8:00)居民区去往工作区的概率最高,去往商业区的概率次之,去往居民区的概率最小,20:00之后去往居民区概率不断增加;非工作日去往工作区概率较工作日明显降低;由子图b)可知,工作日早高峰时段(6:00-8:00)工作区去往工作区概率最高,去往商业区的概率次之,去往居民区的概率最小,晚高峰时段(17:00-19:00)去往居民区概率最高,去往商业区的概率次之,去往居民区的概率最小;非工作日变化趋势与工作日差别不大;由子图c)可知,工作日早高峰时段(6:00-8:00)商业区去往工作区的概率最高,去往居民区的概率次之,去往商业的概率最小,晚高峰时段(17:00-19:00)去往居民区概率最高,去往商业区的概率次之,去往工作区概率最小;非工作日与工作日趋势基本一致。
对生成出行链的行程类型占比、日行驶里程进行检验,以验证本发明建立的出行链模型有效性。模拟了12000辆(进行了多次实验,12000辆时效果趋于稳定)电动汽车在连续360天内的运行情况。设定实验区域内共包含12000辆EV,充电效率ηc=90%,电池容量Qc=40kWh,单位里程耗电量e=0.188kWh/km,采用两级充电功率,其中慢充功率P1=3.7kW,快充功率P2=30kW,充电完成阈值S1=0.9,开始充电阈值S2=0.2。
行程类型占比的仿真结果和真实数据对比结果如表2所示,计及相关性的出行链仿真结果相对误差均值为3.88%和5.94%,各变量独立建模的相对误差均值为13.42%和16.32%,可见本发明建立的出行链模型质量显著提高。
表2
行程的行驶里程的仿真结果如图6所示。计及相关性的出行链模型概率分布结果较独立建模而言,与真实数据更为接近;并以均方根误差(root mean square error,RMSE)和皮尔逊相关系数(peareon correlation coefficient,PCC)量化仿真结果与真实数据的平均偏差和相似程度,工作日计及相关性的出行链模型的RMSEC和PCCC为8.74%和98.87%,各变量独立建模的RMSEI和PCCI为16.27%和88.12%,非工作日计及相关性的出行链模型的RMSEC和PCCC为2.30%和98.76%,各变量独立建模的RMSEI和PCCI为12.52%和89.03%,进一步验证了计及相关性的出行链模型对模拟用户出行的准确性。
2、常规负荷场景生成
实验数据集构建过程如图7所示。实验采用某地区2009年1月至2010年12月的智能电表数据,包含6435户共730天的负荷数据,采样周期为30min,每天包含48个负荷值,将实验区域内32个节点1天的负荷数据共48×32个负荷值重塑成48×32的矩阵作为条件Wasserstein梯度惩罚生成对抗网络输入,共730组数据样本,按照4:1的比例将数据分为训练集与测试集。生成5000组数据,包含3570个工作日,1430个非工作日。
高质量多节点常规负荷生成场景应具备以下特征:1)概率分布特性与历史场景的概率分布特性相似;2)能体现单节点常规负荷时序特性,能有效覆盖未知场景。
采用经验累积分布函数(empirical cumulative distribution function,ECDF)分析生成场景的概率分布特性,生成场景集与历史场景集各节点的ECDF如图8所示。由图可知,相较于各节点单独进行场景生成,多节点联合场景生成数据集的ECDF曲线几乎高度拟合,生成场景具有与历史场景相似的概率分布特性,表明模型具有实现场景概率建模的学习能力,可以更有效捕捉历史数据的概率特征、变化趋势、短期特征(峰谷变化)、长期特征(功率概率分布)。
生成场景对未知场景的覆盖效果如图9所示,由图可知,生成场景的负荷均值曲线能较好的反应历史场景集曲线特征(增减趋势、峰谷变化),且与历史场景的负荷均值曲线较为相似,时序变化基本一致,具有与历史数据较强的时序相似性;各节点常规负荷生成场景的上边缘更高,下边缘更低,上下边缘组成的区间更大,覆盖范围更广,能较为完整的包裹住测试集场景,具有较强的未知场景覆盖能力。
图10为工作日场景,组合1表示工作日典型充电场景叠加工作日典型常规负荷,组合2表示工作日极端充电场景叠加工作日典型常规负荷,组合3表示工作日典型充电负荷叠加工作日极端常规负荷,组合4表示工作日极端充电负荷叠加工作日极端常规负荷。电动汽车EV充电负荷显著增加了凌晨时段配电网负荷,且进一步增加了晚高峰(18:00—22:00)负荷,充电负荷使配电网负荷增加了20.12%(EL-2)至92.63%(EL-7)。
图11为非工作日场景,组合1表示非工作日典型充电场景叠加非工作日典型常规负荷,组合2表示非工作日极端充电场景叠加非工作日典型常规负荷,组合3表示非工作日典型充电负荷叠加非工作日极端常规负荷,组合4表示非工作日极端充电负荷叠加非工作日极端常规负荷。充电负荷显著增加了凌晨时段和晚高峰时段负荷,与工作日影响基本一致,充电负荷使配电网负荷增加了22.83%(EL-26)至93.72%(EL-43),相较于工作日,充电负荷在总负荷中占比有所增加。
各个场景FVSI指标结果如图12所示。由图可知,叠加电动汽车充电负荷前各支路FVSI值均小于0.6,多数稳定在0至0.3之间,配电网支路电压整体处于稳定状态,对于非工作日场景,较工作日负荷更大、波动更强,FVSI指标较工作日逐渐增大,不稳定支路集中在2、5、7、8、9、27等支路;EV充电负荷的增加,使得各支路FVSI均有所增加,最大值达0.998(EL-12场景,支路5),已接近失稳,需要着重考虑;以支路2为例,对比44个负荷场景,计及充电负荷后,工作日和非工作日各场景的FVSI值变化较大,波动性更强,一定程度上改变了工作日场景普遍低于非工作日场景的指标特性;计及充电负荷后不稳定支路集中在2、3、4、5、7、8、9、27、28、29、30等支路,不稳定支路数比只计及常规负荷时有所增加。
各个场景的节点VSM指标如图13所示,充电负荷接入后显著降低了各节点VSM值,即降低了电压稳定性;不同节点电压稳定性存在差异,节点21、22、23、24、25等接入充电负荷前后变化较小,即这些节点更加稳定。综合全部场景下各节点VSM结果,可知最为薄弱的节点是7、14、17、18、29、32、33等节点,其他节点VSM指标均高于0.243,相对较稳定。
通过上述方式,本发明公开了含电动汽车配电网电压稳定性分析方法,考虑多节点负荷间空间相关性的负荷场景生成,本发明方法能更有效分析配网空间内EV充电负荷和常规负荷时-空分布,更有利于提高配电网电压稳定性分析准确性。

Claims (5)

1.含电动汽车配电网电压稳定性分析方法,其特征在于,具体按照以下步骤实施:
步骤1、建立计及目的地类型与时刻相关性的出行链模型,结合蒙特卡洛仿真模拟生成电动汽车充电负荷场景集;具体过程为:
步骤1.1、对电动汽车出行数据进行统计分析,获取表征出行链的特征变量概率分布;
所述电动汽车出行数据包括:初始出发地点L d、初始出发时间T d、行驶时间t d、目的地L e、停车时间t p、行程级数N、日出行次数n,其中,日出行次数表示用户每日出行多少次;行程级数表示用户每一次出行时经过目的地的数目;
步骤1.2、电动汽车当前位置类型、当前时刻已知时,计算出发去往下一目的地的条件概率,建立计及目的地类型与时刻相关性的出行链模型;
所述计算出发去往下一目的地的条件概率过程为:获取计及目的地类型和时刻相关性的功能区出行条件概率/>,采用L curL next表示当前位置和下一目的地,T cur表示当前位置出发时间,则当前位置为l cur,出发时间为t cur时,下一出行目的地为l next的概率为:
(1)
式中,和/>为满足条件的行程数;
步骤1.3、基于蒙特卡洛仿真,进行多辆电动汽车的出行模拟,形成出行链,并计算电动汽车在各个节点的充电负荷;具体过程为:
步骤1.3.1、对于配电网***的母线节点进行编号,并定义电动汽车的数目为M;
步骤1.3.2、定义变量j,并初始化为0;
步骤1.3.3、令j=j+1,抽取第j辆电动汽车EVj的初始荷电状态SOC、日出行次数、行程级数、初始出行时间、初始出发地点、停车时间,根据出行链模型生成第j辆电动汽车EVj出行链T tripT trip维行向量,共包含/>级行程;
步骤1.3.4、基于Floyd算法规划最优行驶路径,并计算电动汽车EVj到达k节点时的荷电状态,表示为:
(3)
式(3)中,表示出发前电池电量等于电池容量,/>表示出发前荷电状态,单位耗电量与行驶距离/>的乘积表示路程耗电量;
步骤1.3.5、设置开始充电阈值,若/>,则计算第j辆电动汽车t时刻在k节点充电量/>和充电功率/>,表示为:
(4)
其中,充电时段为[,/>],/>为到达节点k的时间;
包含慢充功率/>和快充功率/>,计算在节点k的停车时间/>,慢充方式下充至满电所需时间/>,快充方式下充至满电所需时间/>,充电功率/>,表示为:
(5)
(6)
考虑里程焦虑及充/放电深度影响,设定充电阈值S1、S2,即SOC小于等于S2时开始充电,SOC大于等于S1时充电结束;
,继续行驶直到完成整个出行链;
步骤1.3.6、判断j是否等于M,如果是执行步骤1.3.7,否则,返回步骤1.3.3;
步骤1.3.7、计算每个节点各时刻的充电功率即负荷;
(7)
m表示在k节点充电的EV数目,
步骤1.3.8、进行多次仿真模拟,生成海量充电负荷场景;
步骤2、建立计及节点空间相关性的常规负荷生成模型,生成常规负荷场景集;
步骤3、基于电动汽车充电负荷场景集、常规负荷场景集,构建潜在小概率极端负荷场景和典型负荷场景;
步骤4、基于快速电压稳定指标和电压稳定裕度,分析电动汽车接入后配电网电压稳定性。
2.根据权利要求1所述含电动汽车配电网电压稳定性分析方法,其特征在于,步骤2具体过程为:
步骤2.1、采用条件Wasserstein梯度惩罚生成对抗网络,包含生成器和判别器,将条件变量设置为包含工作日、非工作日的日期类型,以0表示非工作日,1表示工作日,构建基于数据驱动的条件Wasserstein梯度惩罚生成对抗网络,即常规负荷场景生成模型;
步骤2.2、通过电表获取配电网各节点中除电动汽车充电负荷外其他负荷作为原始常规负荷数据,将多个节点的原始常规负荷数据重塑成多维矩阵输入条件Wasserstein梯度惩罚生成对抗网络,生成海量常规负荷场景。
3.根据权利要求1所述含电动汽车配电网电压稳定性分析方法,其特征在于,步骤2.2所述将多个节点的原始常规负荷数据重塑成多维矩阵过程为:将每天获取的原始常规负荷数据作为行,将获取原始常规负荷数据天数作为列,形成一个多维矩阵。
4.根据权利要求1所述含电动汽车配电网电压稳定性分析方法,其特征在于,步骤3具体过程为:
步骤3.1、将步骤1得到的电动汽车充电负荷场景集分为工作日充电负荷场景集和非工作日充电负荷场景集,对工作日和非工作日充电负荷场景集,分别选取各节点充电负荷均值作为典型充电场景,选取各节点充电负荷上边界作为极端充电场景;
步骤3.2、将步骤2生成的常规负荷生成场景集分为工作日常规负荷场景集和非工作日常规负荷场景集,采用K-means聚类算法分别将其进行聚类,选取最佳聚类数下各聚类簇的聚类中心作为各节点典型常规负荷场景,各聚类簇中峰谷差最大的场景作为各节点极端常规负荷场景;
步骤3.3、分别将工作日和非工作日对应的各节点充电负荷场景和常规负荷场景对应叠加,将叠加后得到场景中含有极端充电场景或极端常规负荷场景的作为潜在小概率极端负荷场景,将叠加后不含极端充电场景或极端常规负荷场景的场景作为典型负荷场景。
5.根据权利要求1所述含电动汽车配电网电压稳定性分析方法,其特征在于,步骤4具体过程为:通过快速电压稳定指标和电压稳定裕度分别计算每个潜在小概率极端负荷场景和每个典型负荷场景的支路稳定性和节点稳定性:
快速电压稳定指标计算公式为:
(8)
其中,和/>为线路首末节点,/>为接受端无功功率,/>为线路首端电压,/>为线路电抗值,/>为线路阻抗值,FVSI越接近0,则***电压稳定性越高,相反地,若FVSI值越大,则电压稳定性越低,当FVSI接近1时,***将失去稳定性;
电压稳定裕度计算公式为:
(9)
式中,R ik为线路电阻值,P(k)k节点外所有节点的有功负荷、k节点本身的有功负荷、k节点外所有支路有功损耗之和;Q(k)k节点外所有节点的无功负荷、k节点本身的无功负荷、k节点外所有支路无功损耗之和,VSM是判别节点电压是否接近崩溃的重要指标,其值介于0到1之间,VSM越小,该节点越达到崩溃临界。
CN202210071063.0A 2022-01-21 2022-01-21 含电动汽车配电网电压稳定性分析方法 Active CN114707292B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210071063.0A CN114707292B (zh) 2022-01-21 2022-01-21 含电动汽车配电网电压稳定性分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210071063.0A CN114707292B (zh) 2022-01-21 2022-01-21 含电动汽车配电网电压稳定性分析方法

Publications (2)

Publication Number Publication Date
CN114707292A CN114707292A (zh) 2022-07-05
CN114707292B true CN114707292B (zh) 2024-05-24

Family

ID=82166281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210071063.0A Active CN114707292B (zh) 2022-01-21 2022-01-21 含电动汽车配电网电压稳定性分析方法

Country Status (1)

Country Link
CN (1) CN114707292B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116029329A (zh) * 2023-02-15 2023-04-28 武汉工程大学 一种焦虑里程值预测方法、装置、***以及存储介质
CN117370825B (zh) * 2023-10-11 2024-06-21 国网经济技术研究院有限公司 基于注意力条件生成对抗网络的长期场景生成方法及***
CN118133058B (zh) * 2024-05-10 2024-07-09 珠海汇众能源科技有限公司 用于小直流母线串联微网配电的电压稳定性监测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712037A (zh) * 2016-11-28 2017-05-24 武汉大学 一种考虑电动汽车充电特性和负荷波动极限的电力***静态电压稳定性评估方法
CN108376985A (zh) * 2018-02-02 2018-08-07 国家电网公司 一种电动汽车充电负荷模型建立及节点电压计算方法
CN109840635A (zh) * 2019-01-29 2019-06-04 三峡大学 基于电压稳定性和充电服务质量的电动汽车充电站规划方法
CN110350535A (zh) * 2018-09-07 2019-10-18 国网甘肃省电力公司电力科学研究院 一种计及大规模风电和电动汽车并网的配电网电压稳定概率评估方法
CN111047120A (zh) * 2020-01-17 2020-04-21 东南大学 一种路-电耦合网络下电动汽车充电负荷预测方法
CN111327041A (zh) * 2020-03-27 2020-06-23 上海电力大学 电动汽车虚拟惯性控制策略调控的直流配电网控制方法
CN111799827A (zh) * 2020-05-20 2020-10-20 国网江苏省电力有限公司苏州供电分公司 一种含光储充电站的台区负荷调控方法
CN112332431A (zh) * 2020-11-25 2021-02-05 哈尔滨工业大学 一种计及电动汽车参与调频的配电网重构方法
WO2021098352A1 (zh) * 2019-11-22 2021-05-27 国网福建省电力有限公司 一种考虑电动汽车充电站选址定容的主动配电网规划模型的建立方法
CN113094852A (zh) * 2021-03-31 2021-07-09 东北电力大学 一种电动汽车充电负荷时-空分布计算方法
CN113836678A (zh) * 2021-10-09 2021-12-24 国核电力规划设计研究院有限公司 一种含电动汽车负荷的直流配电***稳定性分析方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712037A (zh) * 2016-11-28 2017-05-24 武汉大学 一种考虑电动汽车充电特性和负荷波动极限的电力***静态电压稳定性评估方法
CN108376985A (zh) * 2018-02-02 2018-08-07 国家电网公司 一种电动汽车充电负荷模型建立及节点电压计算方法
CN110350535A (zh) * 2018-09-07 2019-10-18 国网甘肃省电力公司电力科学研究院 一种计及大规模风电和电动汽车并网的配电网电压稳定概率评估方法
CN109840635A (zh) * 2019-01-29 2019-06-04 三峡大学 基于电压稳定性和充电服务质量的电动汽车充电站规划方法
WO2021098352A1 (zh) * 2019-11-22 2021-05-27 国网福建省电力有限公司 一种考虑电动汽车充电站选址定容的主动配电网规划模型的建立方法
CN111047120A (zh) * 2020-01-17 2020-04-21 东南大学 一种路-电耦合网络下电动汽车充电负荷预测方法
CN111327041A (zh) * 2020-03-27 2020-06-23 上海电力大学 电动汽车虚拟惯性控制策略调控的直流配电网控制方法
CN111799827A (zh) * 2020-05-20 2020-10-20 国网江苏省电力有限公司苏州供电分公司 一种含光储充电站的台区负荷调控方法
CN112332431A (zh) * 2020-11-25 2021-02-05 哈尔滨工业大学 一种计及电动汽车参与调频的配电网重构方法
CN113094852A (zh) * 2021-03-31 2021-07-09 东北电力大学 一种电动汽车充电负荷时-空分布计算方法
CN113836678A (zh) * 2021-10-09 2021-12-24 国核电力规划设计研究院有限公司 一种含电动汽车负荷的直流配电***稳定性分析方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Shan Cheng 等.Charging Load Prediction and Distribution Network Reliability Evaluation Considering Electric Vehicles' Spatial-Temporal Transfer Randomness.IEEE Access.2020,第8卷124084-124096. *
Voltage stability analysis of distribution systems in presence of electric vehicle charging stations with coordinated charging scheme;Nihith Koundinya Sistla Pavan Venkat Sai 等;Research Article;20211109;1-16 *
含电动汽车配电网多节点负荷联合生成及电压稳定性分析;胡乾坤;中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑;20230115(第第01期期);C042-1903 *
基于电压稳定性的电动汽车充电站最优规划;程杉 等;电力科学与技术学报;20200728;第35卷(第04期);3-12 *
电动汽车接入方式对配电网静态电压稳定裕度的影响分析;唐开宇 等;电网与清洁能源;20180125;第34卷(第01期);137-143 *
电动汽车随机负荷建模及对配电网节点电压分布的影响;杜习超 等;电力自动化设备;20180604;第38卷(第06期);124-130 *

Also Published As

Publication number Publication date
CN114707292A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN114707292B (zh) 含电动汽车配电网电压稳定性分析方法
CN106651059B (zh) 一种电动汽车充电站优化配置的方法
CN112131733B (zh) 计及电动汽车充电负荷影响的分布式电源规划方法
CN104022552B (zh) 一种用于电动汽车充电控制的智能检测方法
CN106355294A (zh) 一种大规模复杂配电网的电动汽车充电站选址定容方法
CN112238781B (zh) 一种基于分层架构的电动汽车有序充电控制方法
CN109934403A (zh) 基于数学模型的电动汽车居民区域充电负荷分析预测方法
CN111199320B (zh) 基于出行概率矩阵的电动汽车充电负荷时空分布预测方法
CN112347615A (zh) 一种计及光储快充一体站的配电网混合优化调度方法
CN112865190A (zh) 计及光伏和充电需求的光储充电站优化调度方法和***
CN110866636A (zh) 一种综合考虑电动汽车充电站及分布式能源的微电网规划方法
Darabi et al. Plug-in hybrid electric vehicles: Charging load profile extraction based on transportation data
CN115063184A (zh) 电动汽车充电需求建模方法、***、介质、设备及终端
CN114662762A (zh) 一种电力现货市场背景下储能电站调控方法
CN113964854A (zh) 一种电动汽车v2g智能充放电方法
Gao et al. Charging load forecasting of electric vehicle based on Monte Carlo and deep learning
CN105262167A (zh) 区域内电动汽车有序充电控制方法
CN113326467A (zh) 基于多重不确定性的多站融合综合能源***多目标优化方法、存储介质及优化***
CN112928766B (zh) 一种基于多影响因素的配电网接纳电动汽车能力评估方法
Darabi et al. Extracting probability distribution functions applicable for PHEVs charging load profile
Boulakhbar et al. Electric vehicles arrival and departure time prediction based on deep learning: the case of Morocco
Gandhi et al. Smart Electric Vehicle (EVs) Charging Network Management Using Bidirectional GRU-AM Approaches
Baghali et al. Analyzing the travel and charging behavior of electric vehicles-a data-driven approach
CN110472841B (zh) 一种电动汽车快速充电站的储能配置方法
CN116596105A (zh) 一种考虑配电网发展的充电站负荷预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant