CN114678151B - 一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用 - Google Patents

一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用 Download PDF

Info

Publication number
CN114678151B
CN114678151B CN202210298320.4A CN202210298320A CN114678151B CN 114678151 B CN114678151 B CN 114678151B CN 202210298320 A CN202210298320 A CN 202210298320A CN 114678151 B CN114678151 B CN 114678151B
Authority
CN
China
Prior art keywords
bismuth
radiation protection
flexible transparent
protection film
ethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210298320.4A
Other languages
English (en)
Other versions
CN114678151A (zh
Inventor
张玉海
张相周
陈召来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202210298320.4A priority Critical patent/CN114678151B/zh
Publication of CN114678151A publication Critical patent/CN114678151A/zh
Priority to US18/125,126 priority patent/US20230326620A1/en
Application granted granted Critical
Publication of CN114678151B publication Critical patent/CN114678151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用,将铋化合物纳米颗粒,聚乙烯醇,微量甘油混合,制得柔性透明辐射防护膜。本发明将纳米颗粒分散于水中,形成稳定分散液,保证了纳米颗粒与聚乙烯醇混合所得溶胶的均匀性,避免纳米颗粒因团聚导致的复合膜透明度下降,实现在可见光波段(400‑800nm)实现70%以上的光透过率;并在微量甘油的作用下,实现辐射防护膜柔性的长期稳定性。

Description

一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用
技术领域
本发明涉及光电、医疗器件与陶瓷技术领域,尤其涉及一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用。
背景技术
电离辐射应用技术作为新兴领域,极大的促进了经济的发展以及社会进步,尤其是医疗辐射照射,涌现出一大批诊断和治疗技术;与此同时,电离辐射也对人类健康存在着重大的为威胁,因此,辐射防护必不可少。通常,物质屏蔽是作为辐射防护的重要手段之一,即在辐射源与受照对象之间设置适当的屏蔽物,然而对于X射线以及伽马射线而言,用原子序数高的物质效果最好。
传统的辐射防护材料主要分为两类,一类是金属基防护材料,以铅板为代表,具有较好的防护能力,但便携性较差,适宜在固定场合使用;另一类是重金属复合材料,以铅基复合材料为主,例如铅橡胶,铅玻璃,部分实现了柔性以及透明性,但仍存在较大的不足,一是铅具有生物毒性,稳定性较差,易挥发,影响神经***以及其生物组织器官,尤其是对儿童而言;二是传统的辐射防护材料性能单一,很难实现柔性,透明性,轻质等多种特性的统一,限制了其应用范围。
发明内容
本发明提供了一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用,以解决现有技术的上述问题。
本发明的方案是:
一种基于铋化合物的柔性透明辐射防护膜制备方法,包括下列步骤:
1)反应物铋源Bi(NO3)3·5H2O与氟源NH4F按摩尔比1:3组成,反应溶剂为乙二醇;
2)将步骤1)称取的反应物铋源跟氟源分别在乙二醇中溶解,持续搅拌,至溶液呈透明状态;
3)在搅拌状态下,将含有铋源的乙二醇溶液跟氟源的乙二醇溶液混合,反应持续1分钟;
4)将步骤3)的反应产物,离心分离得到沉淀,分散在去离子水中,得到纳米颗粒分散液;
5)将步骤4)所述的纳米颗粒分散液与聚乙烯醇水溶液按不同质量比混合,加入0.1v%甘油,搅拌混合均匀后,得混合水溶胶;
6)取步骤5)中所述混合水溶胶1~100v%通过成膜法用到衬底上,放入烘箱,30~100℃条件干燥,得到柔性透明辐射防护膜。
作为优选的技术方案,所述步骤4)中纳米颗粒分散液的核纳米晶尺寸分布在10~100nm。
作为优选的技术方案,所述铋源为硝酸铋、氯化铋其中的一种;氟源为氟化铵,氢氟酸,氟化钠其中的一种。
作为优选的技术方案,所述步骤3)在快速搅拌下,将硝酸铋的乙二醇溶液缓慢倾倒入氟化铵的乙二醇溶液中;
作为优选的技术方案,所述步骤6)中水溶性核壳纳米晶质量占柔性透明辐射防护膜总质量的大于60%。
作为优选的技术方案,所述步骤6)中成膜法包括滴涂、旋涂、印刷其中的一种。
作为优选的技术方案,所述步骤6)中衬底材质包括聚丙烯,玻璃,聚四氟乙烯、透明陶瓷其中的一种。
本发明还公开了一种基于铋化合物的柔性透明辐射防护膜在医疗、光电器件与陶瓷领域中的应用。
由于采用了上述技术方案一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用,包括以下步骤:1)反应物铋源Bi(NO3)3·5H2O与氟源NH4F按摩尔比1:3组成,反应溶剂为乙二醇;2)将步骤1)称取的反应物铋源跟氟源分别在乙二醇中溶解,持续搅拌,至溶液呈透明状态;3)在搅拌状态下,将含有铋源的乙二醇溶液跟氟源的乙二醇溶液混合,反应持续1分钟;4)将步骤3)的反应产物,离心分离得到沉淀,分散在去离子水中,得到纳米颗粒分散液;5)将步骤4)所述的纳米颗粒分散液与聚乙烯醇水溶液按不同质量比混合,加入0.1v%甘油,搅拌混合均匀后,得混合水溶胶;6)取步骤5)中步骤中所述混合水溶胶1~100v%通过成膜法用到衬底上,放入烘箱,30~100℃条件干燥,得到柔性透明辐射防护膜。
本发明的优点:
本发明通过将纳米颗粒分散于水中,形成稳定分散液,保证了纳米颗粒与聚乙烯醇混合所得溶胶的均匀性,避免纳米颗粒因团聚导致的复合膜透明度下降,实现在可见光波段(400-800nm)实现70%以上的光透过率;并在微量甘油的作用下,实现辐射防护膜柔性的长期稳定性。
本发明在保持了柔性透明辐射防护膜的高透明度的前提下,实现了对X射线的有效吸收,减少X射线的透过率,实现了对辐射敏感成分的防护,尤其可保护人员免受核电和工业设施、实验室以及医疗中心的辐射影响。
附图说明
图1本发明的纳米晶以及柔性透明辐射防护膜的XRD;
图2本发明的柔性透明辐射防护膜与铜片以及铅片的防护效果比较以及透明展示。
具体实施方式
为了弥补传统防护材料的不足,本发明提供了一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用以解决上述背景技术中的问题。
一种基于铋化合物的柔性透明辐射防护膜制备方法,包括下列步骤:
1)反应物铋源Bi(NO3)3·5H2O与氟源NH4F按摩尔比1:3组成,反应溶剂为乙二醇;
2)将步骤1)称取的反应物铋源跟氟源分别在乙二醇中溶解,持续搅拌,至溶液呈透明状态;
3)在搅拌状态下,将含有铋源的乙二醇溶液跟氟源的乙二醇溶液混合,反应持续1分钟;
4)将步骤3)的反应产物,离心分离得到沉淀,分散在去离子水中,得到纳米颗粒分散液;
5)将步骤4)所述的纳米颗粒分散液与聚乙烯醇水溶液按不同质量比混合,加入0.1v%甘油,搅拌混合均匀后,得混合水溶胶;
6)取步骤5)中所述混合水溶胶1~100v%通过成膜法用到衬底上,放入烘箱,30~100℃条件干燥,得到柔性透明辐射防护膜。
所述步骤4)中纳米颗粒分散液的核纳米晶尺寸分布在10~100nm。
所述铋源为硝酸铋、氯化铋其中的一种;氟源为氟化铵,氢氟酸,氟化钠其中的一种。
所述步骤3)在快速搅拌下,将硝酸铋的乙二醇溶液缓慢倾倒入氟化铵的乙二醇溶液中;
所述步骤6)中水溶性核壳纳米晶质量占柔性透明辐射防护膜总质量的大于60%。
所述步骤6)中成膜法包括滴涂、旋涂、印刷其中的一种。
所述步骤6)中衬底材质包括聚丙烯,玻璃,聚四氟乙烯、透明陶瓷其中的一种。
本发明还公开了一种基于铋化合物的柔性透明辐射防护膜在医疗、光电器件与陶瓷领域中的应用。
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1:
1)反应物铋源Bi(NO3)3·5H2O与氟源NH4F按摩尔比1:3组成,反应溶剂为乙二醇;
2)将步骤1)称取的反应物铋源跟氟源分别在乙二醇中溶解,持续搅拌,至溶液呈透明状态;
3)在搅拌状态下,将含有铋源的乙二醇溶液跟氟源的乙二醇溶液混合,反应持续1分钟;
4)将步骤3)的反应产物,离心分离得到沉淀,分散在去离子水中,得到纳米颗粒分散液;
5)将步骤4)所述的纳米颗粒分散液与聚乙烯醇水溶液按不同质量比混合,加入0.1v%甘油,搅拌混合均匀后,得混合水溶胶;
6)取步骤5)中所述混合水溶胶1~100v%通过成膜法用到衬底上,放入烘箱,30~100℃条件干燥,得到柔性透明辐射防护膜。
所述步骤4)中纳米颗粒分散液的核纳米晶尺寸分布在10~100nm。
所述铋源为硝酸铋、氯化铋其中的一种;氟源为氟化铵,氢氟酸,氟化钠其中的一种。
所述步骤3)在快速搅拌下,将硝酸铋的乙二醇溶液缓慢倾倒入氟化铵的乙二醇溶液中;
所述步骤6)中水溶性核壳纳米晶质量占柔性透明辐射防护膜总质量的大于60%。
所述步骤6)中成膜法包括滴涂、旋涂、印刷其中的一种。
所述步骤6)中衬底材质包括聚丙烯,玻璃,聚四氟乙烯、透明陶瓷其中的一种。
实施例2:
1)反应物铋源Bi(NO3)3·5H2O与氟源NH4F按摩尔比1:3组成,反应溶剂为乙二醇;
2)将步骤1)称取的反应物铋源跟氟源分别在乙二醇中溶解,持续搅拌,至溶液呈透明状态;
3)在搅拌状态下,将含有铋源的乙二醇溶液跟氟源的乙二醇溶液混合,反应持续1分钟;
4)将步骤3)的反应产物,离心分离得到沉淀,分散在去离子水中,得到纳米颗粒分散液;
5)将步骤4)所述的纳米颗粒分散液与聚乙烯醇水溶液按不同质量比混合,加入0.1v%甘油,搅拌混合均匀后,得混合水溶胶;
6)取步骤5)中所述混合水溶胶1~100v%通过成膜法用到衬底上,放入烘箱,30~100℃条件干燥,得到柔性透明辐射防护膜。
所述步骤4)中纳米颗粒分散液的核纳米晶尺寸分布在10~100nm。
所述步骤3)在快速搅拌下,将硝酸铋的乙二醇溶液缓慢倾倒入氟化铵的乙二醇溶液中;
所述步骤6)中水溶性核壳纳米晶质量占柔性透明辐射防护膜总质量的 0.1%-99.9%。
所述步骤6)中成膜法包括滴涂、旋涂、印刷其中的一种。
所述步骤1)反应物铋源为为硝酸铋,氟源为氟化铵;
所述步骤6)衬底材质为聚丙烯;
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种基于铋基氟化物的柔性透明辐射防护膜的制备方法,其特征在于,包括下列步骤:
1)反应物铋源Bi(NO3)3·5H2O与氟源NH4F按摩尔比1:3组成,反应溶剂为乙二醇;
2)将步骤1)称取的反应物铋源跟氟源分别在乙二醇中溶解,持续搅拌,至溶液呈透明状态;
3)在搅拌状态下,将含有铋源的乙二醇溶液跟氟源的乙二醇溶液混合,反应持续1分钟;
4)将步骤3)的反应产物,离心分离得到沉淀,分散在去离子水中,得到纳米颗粒分散液;
5)将步骤4)所述的纳米颗粒分散液与聚乙烯醇水溶液按不同质量比混合,加入0.1v%甘油,搅拌混合均匀后,得混合水溶胶;
6)取步骤5)中所述混合水溶胶1~100v%通过成膜法用到衬底上,放入烘箱,30~100℃条件干燥,得到柔性透明辐射防护膜;成膜法为滴涂、旋涂、印刷其中的一种。
2.如权利要求1所述的一种基于铋基氟化物的柔性透明辐射防护膜的制备
方法,其特征在于:所述步骤4)中纳米颗粒分散液的核纳米晶尺寸分布在10~100nm。
3.如权利要求1所述的一种基于铋基氟化物的柔性透明辐射防护膜的制备方法,其特征在于:所述铋源为硝酸铋、氯化铋其中的一种;氟源为氟化铵,氢氟酸,氟化钠其中的一种。
4.如权利要求1所述的一种基于铋基氟化物的柔性透明辐射防护膜的制备方法,其特征在于:所述步骤6)中水溶性核壳纳米晶质量占柔性透明辐射防护膜总质量的大于60%。
5.如权利要求1所述的一种基于铋基氟化物的柔性透明辐射防护膜的制备方法,其特征在于:所述步骤6)中衬底材质包括聚丙烯,玻璃,聚四氟乙烯、透明陶瓷其中的一种。
6.一种如权利要求1至5所述的方法制备的基于铋基氟化物的柔性透明辐射防护膜在医疗、光电器件与陶瓷领域中的应用。
CN202210298320.4A 2022-03-24 2022-03-24 一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用 Active CN114678151B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210298320.4A CN114678151B (zh) 2022-03-24 2022-03-24 一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用
US18/125,126 US20230326620A1 (en) 2022-03-24 2023-03-23 Preparation method of a flexible transparent radiation shielding film based on bismuth compounds and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210298320.4A CN114678151B (zh) 2022-03-24 2022-03-24 一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114678151A CN114678151A (zh) 2022-06-28
CN114678151B true CN114678151B (zh) 2024-01-23

Family

ID=82074961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210298320.4A Active CN114678151B (zh) 2022-03-24 2022-03-24 一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用

Country Status (2)

Country Link
US (1) US20230326620A1 (zh)
CN (1) CN114678151B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918785A1 (fr) * 2007-07-13 2009-01-16 Lemer Prot Anti X Par Abrevati Materiau radio attenuateur, et procede pour l'obtention d'un tel materiau
WO2011022188A2 (en) * 2009-08-17 2011-02-24 Laird Technologies, Inc. Formation of high electrical conductivity polymer composites with multiple fillers
CN103841848A (zh) * 2011-05-11 2014-06-04 施特姆拉德有限公司 辐射防护装置及其方法
WO2014097316A2 (en) * 2012-12-18 2014-06-26 Centre for Materials for Electronics Technology (C-MET) X-ray shielding material and method of preparation thereof
CN104228208A (zh) * 2014-09-26 2014-12-24 中国科学院合肥物质科学研究院 银纳米线-m相二氧化钒纳米颗粒复合薄膜及其制备方法
WO2016033519A1 (en) * 2014-08-29 2016-03-03 University Of Louisville Research Foundation, Inc. Core-shell nanostructures and related inks, films, and methods
CN107383573A (zh) * 2017-07-13 2017-11-24 北京华腾新材料股份有限公司 一种含有近红外吸收和反射复合颜料多功能透明隔热涂层和聚烯烃共挤薄膜及制备
CN108480657A (zh) * 2018-05-21 2018-09-04 许昌学院 一种铋纳米片、其制备方法及其应用
CN109608890A (zh) * 2018-12-13 2019-04-12 西南科技大学 一种硅橡胶辐射防护纳米复合材料的制备方法
CN114005564A (zh) * 2021-11-02 2022-02-01 山东大学 一种柔性的聚合物-铋基卤化物纳米颗粒复合x射线防护材料及制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918785A1 (fr) * 2007-07-13 2009-01-16 Lemer Prot Anti X Par Abrevati Materiau radio attenuateur, et procede pour l'obtention d'un tel materiau
WO2011022188A2 (en) * 2009-08-17 2011-02-24 Laird Technologies, Inc. Formation of high electrical conductivity polymer composites with multiple fillers
CN103841848A (zh) * 2011-05-11 2014-06-04 施特姆拉德有限公司 辐射防护装置及其方法
WO2014097316A2 (en) * 2012-12-18 2014-06-26 Centre for Materials for Electronics Technology (C-MET) X-ray shielding material and method of preparation thereof
WO2016033519A1 (en) * 2014-08-29 2016-03-03 University Of Louisville Research Foundation, Inc. Core-shell nanostructures and related inks, films, and methods
CN104228208A (zh) * 2014-09-26 2014-12-24 中国科学院合肥物质科学研究院 银纳米线-m相二氧化钒纳米颗粒复合薄膜及其制备方法
CN107383573A (zh) * 2017-07-13 2017-11-24 北京华腾新材料股份有限公司 一种含有近红外吸收和反射复合颜料多功能透明隔热涂层和聚烯烃共挤薄膜及制备
CN108480657A (zh) * 2018-05-21 2018-09-04 许昌学院 一种铋纳米片、其制备方法及其应用
CN109608890A (zh) * 2018-12-13 2019-04-12 西南科技大学 一种硅橡胶辐射防护纳米复合材料的制备方法
CN114005564A (zh) * 2021-11-02 2022-02-01 山东大学 一种柔性的聚合物-铋基卤化物纳米颗粒复合x射线防护材料及制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
单分散纳米氧化铋的制备;李卫;中南大学学报(自然科学版)(第02期);全文 *
微乳液法制备CdTe纳米颗粒的表征;董翠芝;张丽芳;崔志敏;刘丽妹;张庆军;;山东陶瓷(第01期);全文 *
快速均匀沉淀法制备纳米微粒ZnS;杨富国, 朱琼霞, 方正;中南工业大学学报(自然科学版)(第03期);全文 *
电子束辐照法制备纳米Fe_3O_4颗粒及其分散性能;张雪平;陈海文;周光来;张志凯;周瑞敏;;机械工程材料(第09期);全文 *

Also Published As

Publication number Publication date
CN114678151A (zh) 2022-06-28
US20230326620A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
Wang et al. Electrochemical deposition of Eu3+-doped CeO2 nanobelts with enhanced optical properties
KR102036253B1 (ko) 비방사성 안정 동위원소를 이용한 친환경 열 차폐 필름 및 그 제조방법
Sen et al. Organic–inorganic composite films based on Gd3Ga3Al2O12: Ce scintillator nanoparticles for X-ray imaging applications
Shangguan et al. The stability of metal halide perovskite nanocrystals—A key issue for the application on quantum-dot-based micro light-emitting diodes display
CN102522454A (zh) 一种CdSe纳米晶半导体薄膜的制备方法
Thabit et al. Development of Ag-doped ZnO thin films and thermoluminescence (TLD) characteristics for radiation technology
Rajkumar et al. Seed mediated synthesis of nanosized zinc oxide and its electron transporting activity in dye-sensitized solar cells
CN109401442A (zh) 一种uv固化纳米镀银导电油墨及其制备方法
CN108046768B (zh) 双掺杂稀土离子的钆镓铝闪烁陶瓷及其制备方法
CN114678151B (zh) 一种基于铋化合物的柔性透明辐射防护膜制备方法及其应用
Zhao et al. PbS quantum dots band gap tuning via Eu doping
Abdel-Salam et al. Investigating the impact of growth time of CdSe quantum dots on the structure and optical properties of its nanocomposites with SiO2 for improvement of optical devices
Alkahtani et al. Lithium-Based Upconversion Nanoparticles for High Performance Perovskite Solar Cells
Nadafan et al. Influence of Cr doping on the structural, optical, and third-order nonlinear optical properties of ZnAl2O4 nanoceramics
Manjunatha et al. Effect of zinc doping on the radiation shielding properties of calcium ferrite nanoparticles synthesized via green extract approach
Lim et al. Gd2 O 3: Eu Phosphor Particles Prepared from the Polymeric Precursors in Spray Pyrolysis
CN114015088B (zh) 一种有机-无机纳米复合闪烁体材料制备方法及其应用
CN112678864B (zh) 一种硫化铅溶胶的制备方法
Yu et al. Energy transfer and luminescent properties in Tb3+ and Eu3+ co-doped CaMoO4/SrMoO4 thin films
CN104843647A (zh) 一种纳米金属氧化物及其制备方法
CN114675316B (zh) 一种基于氟化物的柔性透明闪烁体薄膜制备方法及其应用
CN109728171B (zh) 一种钙钛矿太阳电池的电子传输层及其制备方法
Taunk et al. Optical and Structural characterization of pure and zinc-doped lead oxide nanostructures synthesized by chemical root method
El-Badry Effect of Gamma Radiation on the Properties of Poly (Methyl Methacrylate)/Titanium Dioxide Nanocomposite Films
WO2021238130A1 (zh) 量子棒及其制作方法、液晶显示面板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant