CN114656864B - 一种超疏水镁合金涂料及其工艺 - Google Patents

一种超疏水镁合金涂料及其工艺 Download PDF

Info

Publication number
CN114656864B
CN114656864B CN202210352309.1A CN202210352309A CN114656864B CN 114656864 B CN114656864 B CN 114656864B CN 202210352309 A CN202210352309 A CN 202210352309A CN 114656864 B CN114656864 B CN 114656864B
Authority
CN
China
Prior art keywords
magnesium alloy
coating
super
alloy
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210352309.1A
Other languages
English (en)
Other versions
CN114656864A (zh
Inventor
蔡美丽
陈天驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202210352309.1A priority Critical patent/CN114656864B/zh
Publication of CN114656864A publication Critical patent/CN114656864A/zh
Application granted granted Critical
Publication of CN114656864B publication Critical patent/CN114656864B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2508/00Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

本发明公开了一种超疏水镁合金涂料及其工艺,所述镁合金为镁‑铝‑锌合金,铝元素的加入可以增强合金的强度以及耐腐蚀性能,锌可以提高铸件的抗蠕变性能。在镁合金的表面涂布涂层从而可以提高合金表面的疏水性,以达到耐腐蚀的目的,并且涂料中包含氧化锌、多壁碳纳米管、聚己内酯几种组分,本申请采用喷涂工艺能够降低成不和简化操作,并且获得的带有涂层的合金具备有益的超疏水性能、良好的耐腐蚀效果、良好的自清洁性能的同时还能够具备较好导电、导热以及散热功能,不会降低镁合金本身的优势,除此之外聚己内酯的加入具有较高的高分子材料相容性,可以改善结合力,提高耐用性。

Description

一种超疏水镁合金涂料及其工艺
技术领域
本发明涉及镁合金表面改性技术领域,具体为一种超疏水镁合金涂料及其工艺。
背景技术
镁合金因质量轻、比强度高、制作简单、方便回收等优点,是研发轻量化设备的理想选择。特别是交通运输、航空航天、军工、化工、通讯等行业对轻量化、环保化的需求,并且推动了镁合金研发技术,导致镁合金开始大规模的使用。镁合金是目前所知最轻的金属材料,它的比重是铝的2/3左右,是铁比重的1/4。所以对镁及其合金进行工艺研究并升级优化是促进科学技术发展、增强国防建设、发展新能源以及保护环境的局势所趋。
但由于镁合金的化学性能较为活跃而易腐蚀,因此,镁合金的易腐蚀性在实际运用当中是一大难题。目前已知镁合金耐腐蚀防护的方法有以下几种:
(1)化学转膜法:将金属样品完全浸入电解液当中,让金属样品与该电解液发生反应,使得金属表面产生一层膜;
(2)阳极氧化法:一般被应用于金属或合金的电化学氧化。由于其材质跟陶瓷差不多,因此具有一定的耐磨及耐腐蚀作用;
(3)激光表面处理法:激是指利用激光束将材料表面溶解凝固,从而在其表面形成具有一定的结构膜层,它可以改性材料的力学性能等,从而提高其耐磨耐腐蚀性;
(4)金属镀层:通过化学镀、电镀、热喷涂等在镁和镁合金表面形成金属镀层,可以提高其耐腐蚀性以及耐摩擦性,还可以根据不同环境、作用等对镁合金材料表面的金属镀层进行调节,使镁合金具有不同的性能,如导电性、钎焊性、导热性和耐磨性等;
(5)有机涂层法:为了增强镁合金的耐腐蚀性以及具有良好的装饰性,通常会将镁合金历经各种的表面预处理,再将其表面膜层涂覆一层有机涂层。
如果在镁合金表面建立超疏水表面不仅可以实现表面防水、防粘、抗污染,还可以达到自清洁、减小阻力等效果,同时耐腐蚀性也会有大大的提升。
目前国内外对固-液的浸润性有诸多研究,其中接触角(Contact an gle,CA)是表征固体浸润性的一个常用的指标。
正常情况下,当一滴液滴在固体表面并没有完全展开,且当它呈稳定状态时液滴会与固体的表面形成一定的角度,这个角度称之为接触角,而在一般情况下材料表面是疏水还是亲水也可以通过接触角得出。液滴的接触角若小于90°称之为亲水表面,而若接触角小于5°则称之为超亲水表面;反之,若液滴的接触角大于90°称之为疏水表面,而若接触角大于150°则称之为超疏水表面。
固体排斥液体的水平决定于两个因素:表面能以及表面形态。当减小了其表面能时,表面疏水性增强。表面自由能则由表面的化学成分决定,因此表面能对润湿性有很大的影响,但仅靠降低表面能是无法获得超疏水表面的。例如,带有-CF3基因的材料是具有良好疏水性的低表面能材料,但仅经它处理的平面表面接触角最高仅能达到120°。在超疏水表面上,表面形貌对润湿性的影响也是至关重要的。由于空气是一种绝对疏水性材料,接触角为180°,固体表面粗糙度增加,表面的粗糙结构可以滞留空气,在表面与也低之间形成气垫以增强其疏水性。
为此,本申请提出一种超疏水镁合金涂料及其工艺,在镁合金表面形成纳米级的颗粒和微米级的物质来构造表面,从而获得超疏水性能,以期提高镁合金的耐腐蚀性。
发明内容
本发明的目的在于提供一种超疏水镁合金涂料及其工艺,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种超疏水镁合金涂料,
所述镁合金为镁-铝-锌合金,铝元素的加入可以增强合金的强度以及耐腐蚀性能,锌可以提高铸件的抗蠕变性能。
在镁合金的表面涂布涂层从而可以提高合金表面的疏水性,以达到耐腐蚀的目的。
具体而言,涂料中包含氧化锌、多壁碳纳米管、聚己内酯几种组分。
其中氧化锌的加入可以提高超疏水涂层表面的抗菌性能,有效的防止或抑制微生物生长,且氧化锌不仅有良好的抗菌性,还有很好的耐热性、防晒性,有屏蔽紫外线的功能,其原理为吸收和散射。加入氧化锌还可以起到增加其表面的耐磨损性防止由于磨损而所导致涂层表面的耐用性,大大提高了使用寿命。
多壁碳纳米管,是一种纳米材料,作为纳米级的结构,其条状结构可以增强涂层的强度,而且多壁碳纳米管与氧化锌的混合起来还可以改善导电导热、散热功能,使镁合金在喷涂涂料过后,需要发挥其导电、导热性能时不会降低其本身的优势。同时碳纳米管还可以改善防腐、光热稳定性能、强度和耐磨等性能,选用碳纳米管来构筑镁合金表面涂层的纳米级粗糙结构可以有效的改善表面质量与性能。
聚己内酯即PCL,由于PCL的高分子材料相容性较好,则可以改善其余高聚物的结合力,且还可以使后期喷涂出来的涂料生物降解性能有所提高。
具体而言,所述镁合金中铝的含量在2.5-3%,锌的含量不超过1%。
这是由于当锌的含量过多会让合金的防腐蚀性能会有所降低,当Zn<1%时一方面,体现为自身的固溶性增强;
另一方面,还能够增强Al在Mg中的溶解度,可以有效的增强Al的固溶强化的作用。
所述镁合金中还包含锰元素,Mn可以防止、降低生成有害的间晶化合物,此外,Mn还可以细化晶粒,提高可焊性。
具体而言,所述镁合金涂料中还包含全氟癸基三甲氧基硅烷,该溶液为无色透明液体,在本文作为聚集体中较为关键的一种材料,可以达到提高其他物质的性能,对于涂层来说该物质可以提高表面的自洁性能,还可以达到憎油等液体的功能。
一种超疏水镁合金涂料工艺,包括以下步骤进行制备和喷涂过程,具体为:
M1、将镁合金进行前处理,所述前处理包括样品打磨、样品洗涤、超声波清洗几个步骤,
其中样品打磨:用砂纸将镁合金表面打毛,使得镁合金表面粗糙度较为均匀,将表面的氧化膜以及其余的残留物去除,保证镁合金的表面较为单一;
样品洗涤:由于打磨之后会在表面剩余一定量的残余物,运用无水乙醇去将表面进行冲洗,洗掉大部分表面金属残屑、油脂等污渍,并在之后用烘箱将样品合金烘干;
超声波清洗:就算是经历过清洗,也只是清洗掉镁合金金属表面大部分残渣,也还是需要进行再深一步的清洗,不然会对接下来的喷涂成膜的质量产生很大的影响,使用超声波清洗能够更高效的清除表面的污渍,使得表面更洁净,并且运用超声波清洗对镁合金样品没有腐蚀作用。清洗的介质使用无水乙醇,超声清洗5分钟。
上述前处理后,将清洗完成后再放入烘箱烘干。
M2、取适量氯化锌和氨水混合;
M3、加入适量多壁碳纳米管粉末,并经水热条件下搅拌;
M4、离心取沉淀相,加入适量水并再次水热;
M5、取步骤M4中的粉末颗粒适量,加入到适量的二氯甲烷中,二氯甲烷拥有很好的溶解力,其较低的沸点、相对于其他溶液具有较小的毒性和其好的反应惰性,因此,用二氯甲烷作为多壁碳纳米管、氧化锌粉末颗粒和PCL的分散剂极为合适;
M6、加入适量的聚己内酯、全氟癸基三甲氧基硅烷;
M7、持续搅拌,得到涂料;
M8、将涂料利用喷枪在步骤M1处理后的镁合金表面进行喷涂,得到带涂层的超疏水镁合金。
具体而言,在步骤M2中氯化锌和氨水的取用比例为,氯化锌取用81.5重量份数并配合氨水取用100的体积份数,在步骤M5中,粉末颗粒和二氯甲烷的取用比例为,粉末颗粒取用3重量份数,二氯甲烷取用150体积份数,在步骤M6中聚己内酯和全氟癸基三甲氧基硅烷的取用比例为,聚己内酯取用1.8重量份数,全氟癸基三甲氧基硅烷取用1体积份数,并且上述的配比中重量份数采用g作为当量比,体积份数采用ml作为当量比。
与现有技术相比,本发明的有益效果是:本申请以镁合金金属作为基础载体,使用喷涂法进行镁合金超疏水表面涂层的喷涂,能够降低成本以及简化制备时间和操作设备;并且采用的多壁碳纳米管可以有效的改善表面质量与性能还可以改善导电导热、散热功能;而且本申请的涂料中添加了聚己内酯增强了氧化锌与多壁碳纳米管粉末与其他分子之间的结合力,提高超疏水材料表面细微结构强度,同时还具有一定的生物降解性能;本申请还提出了镁合金涂料的工艺过程和具体工艺参数,使得该配比不仅具有优秀的超疏水性能,良好的耐腐蚀效果,同时还具有良好的自清洁性能。
附图说明
图1为本发明的粉末颗粒、氧化锌以及多壁碳纳米管的X衍射图谱;
图2为本发明的XPS分析(a)全谱图(b)C 1s精细图(c)O 1s不含ZnO精细图(d)O 1s含ZnO精细图;
图3为本发明的不同配比参数下的涂料工艺获得的涂层表面的接触角光学图;
图4为本发明的不同用量下涂料工艺获得的涂层表面的SEM图
图5为本发明的涂料工艺获得的涂层表面在不同液体下的浸润情况。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了将氧化锌(ZnO)和多壁碳纳米粉(MWCNT)颗粒进行复合,采用两种途径进行实验对比。
第一种:在天平上称量取0.35g的PCL粉末,将其倒入烧杯当中,再加入15ml的二氯甲烷溶液,然后加入0.1g的ZnO和0.1g的多壁碳纳米粉,加入转子放入搅拌台中进行搅拌。搅拌5分钟后,加入100μl的全氟癸基三甲氧基硅烷修饰剂,再次进行搅拌,12小时后进行喷涂。
第二种:取0.815g氯化锌、1ml的氨水、0.5g多壁碳纳米管经过水热120℃的搅拌,之后离心获取粉末颗粒,取粉末颗粒0.3g,再加入0.35g的PCL和15ml的二氯甲烷进行搅拌,在其搅拌的溶液中加入100μl的全氟癸基三甲氧基硅烷溶液。再放置搅拌台上进行搅拌,待搅拌5个小时,进行喷涂。
注意:(1)喷涂时喷雾的密度需均匀,不能够时断时续的,会影响喷涂后表面层的质量,导致涂层不均匀、左高右低等状态;
(2)及时清理喷嘴的通气孔或喷涂孔,以防其堵塞导致涂料不能及时从喷嘴中喷出影响涂层表面质量;
(3)在喷涂过程中,为了避免出现喷涂涂料雾化过多,使得涂层表面附着量降低,需适当减小空气压力,增大涂料输出量;
(4)喷射涂料前应进行试喷,避免空气压力过小导致喷枪的工作中断,调整空气压力的大小达到适中。
(5)在喷涂过程中,应保持距离金属表面5-10cm的距离,不得距离过远,导致还未喷涂至表面就已经产生了固化现象,影响表面质量。
对上述喷涂后的合金样品进行检测表征,具体表征包括涂料外观测评、结合力测试、耐腐蚀性测试、疏水性测试以及硬度测试。
经实验表征后发现第二种途径方案的获得合金,进行水滴实验时,发现水滴的角度可以达到153°,可以达到超疏水的效果,涂层表面光洁平整,成膜性能好,硬度可以达到铅笔硬度等级B级,耐腐蚀性能也较好,进行盐水浸泡7天以上并无出现明显缺痕和表面松动现象。由于运用的是化学反应后氧化锌、多壁碳纳米管颗粒物进行复合后与PCL粉末颗粒相结合,得出的结合力要比第一种途径效果好很多。
并且利用XRD对步骤M4中获取的粉末颗粒、氧化锌以及多壁碳纳米管进行检测,其结果如图1所示,由于MWCNT不会出现尖峰,只会在某处出现馒头状的小凸包,因此该图的MWCNT在25°时出现明显凸起,可以看出ZnO@MWCNT在衍射角30°~40°之间有三峰,根据图谱进行比对,说明在步骤M4中获取的粉末颗粒的ZnO@MWCNT中确实包含了ZnO和MWCNT。
另外经过XPS分析,如图2可知,鉴于超疏水涂层表面化学成分较为复杂,因此可以得出各元素之间化学键方面的信息。
由图2(a)全谱图所示,该图将发生反应的材料放一起进行对比如下:
(1)在ZnO@MWCNT中含有C、O和Zn元素。
(2)由于Mg中并没有和其他化合原料进行化合,仅只有C、O和Mg元素。
(3)在FAS-PCL中,由于氟硅烷和PCL发生反应,其中不仅有C、O元素,还多了F元素。
(4)超疏水表面涂料是由FAS-ZnO@MWCNT@PCL构成,其中有C、O、F和Zn元素构成。
(5)在该全谱图中除了电子轨道处会出现尖峰外,其余地方还有些小的凸起的尖峰,这是由于在送检过程中发生了小的污染导致。
由图2(b)所示,这是由于氟硅烷和PCL发生反应后,FAS-PCL中所显现出在结合能为282~296的C1s的精细图。该图表示了在FAS-PCL中含有C-C的单键、C-O单键以及C=O双键,在其内还具有CF2和CF3。PCL中碳链的断开与氟硅烷中Si-O链断开。
由图2(c)所示,在FAS-PCL上电子轨道为O1s的精细图内可以看出,在其内具有碳氧单键以及碳氧双键。而在图2(d)上可以看出,在FAS-ZnO@MWCNT@PCL上电子轨道为O1s的精细图内可以看出,该处不仅含有碳氧单键以及碳氧双键,还具有ZnO。
为了获取工艺参数的比例,将步骤M4中的获取的粉末颗粒为A粉末颗粒(ZnO@MWCNT)进行以下几组实验,并对PCL加入量、A粉末颗粒加入量以及A粉末颗粒的制备配比进行调整。其接触角光学图如图3所示,其中(a)-(i)为不同配比的拍摄照片。
当A粉末颗粒的比例用量超过0.2g之后,接触角均可大于150°从而形成超疏水表面,而且A粉末颗粒的用量在0.3g的比例后再增加,变化也不大,同时当A粉末颗粒的制备配比在0.815g氯化锌、1ml的氨水、0.5g多壁碳纳米管下获取的0.3gA粉末颗粒、0.18g的PCL、100ul的全氟癸基三甲氧基硅烷、15ml的二氯甲烷配合即可得到疏水效果较高的涂层,接触角达到158°,如图3中(g)组的结果,并且表面无明显颗粒物,喷射较为整齐,喷射的时候并无明显丝状物产生;另外在涂层表面撒上氯化锌粉末,利用水滴滴落即可洗刷带走,表面具有较高的自清洁型。
电镜表征
为了更加直观的反应涂层表面的形貌,设置(a)-(f)组实验,分别改变A粉末颗粒的用量为(a)镁片(b)纯PCL(c)0.05g A粉末(d)0.1g A粉末(e)0.3g A粉末(f)0.25g粉末,并且不同尺度的电镜(SEM)图如图4所示,由图4中的(e1)可以看出,涂层表面伴随着大量的微米级别的物质凸起,凹凸不平,相对来说较为粗糙,空隙之间间距较大;由图4(e2)可以看出微米级别物质之间存在更小的间距,且微米级的颗粒物上还有更小粒径的物质;由于图4(e3)是在16万倍的电子显微镜下观察到的,所以能更加细致的看见微米级的粒子上还存在纳米级别的颗粒,该颗粒大小在1nm~250nm不等。印证了利用MWCNT作为纳米级别的颗粒,在改性原料PCL的作用下,使得其余物质拥有了更好的聚合性能,使得既有微米级的聚集体,在其表面又有纳米级的颗粒物,综上所述,本申请发明的涂料获得的合金涂层表面达到了微-纳复合的结构,且表面有致密的空气膜,能有效的隔离液体浸润固体当中。
另外对不同的液体进行实验,如图5发现本申请工艺的涂层不仅疏水在、乙二醇、花生油、十六烷下均不会被这四种液体所浸润;并且滚动角均在5°左右具备良好的减阻性。
另外为了验证涂料涂层的耐腐蚀性,将带有本申请工艺的镁合金置于NaCl溶液当中由于是超疏水表面,所以将其浸泡在NaCl溶液中不会产生浸润。在光线较好的位置观察发现表面泛白亮的光,溶液与涂层表面由一层明显的空气薄膜将其隔开,因此保护涂层表面不发生浸润现象,经过7天的浸泡,观察发现,超疏水涂层表面并没有发生腐蚀,涂料表层依旧完好如初,烧杯内部并无气泡产生。并且超疏水表面泛一层空气膜,液体无法浸润到内部。将镁合金金属片取出放置烘箱烘干后,并称量其质量,无明显变化,15天后,再次将其取出放置烘箱内烘干后称量其重量发现并无明显变化,且在溶液中表面还是有一层空气薄膜将溶液与涂层相互隔离开,不产生浸润现象。
综上,本申请的一种超疏水镁合金涂料及其工艺,获得的涂层具有优秀的超疏水性能,同时表面不仅可以实现表面的防水、防粘、抗污染,还可以达到自清洁、减小阻力等效果,同时耐腐蚀性也会有大大的提升,另外在生物降解性能有所提高对环境友好。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (2)

1.一种带有超疏水涂层的镁合金的制备工艺,包括以下步骤:
M1、将镁合金进行前处理;
M2、取0.815g氯化锌和1ml氨水混合;
M3、加入0.5g多壁碳纳米管粉末,并经水热条件下搅拌;
M4、离心取沉淀相,加入适量水并再次水热;
M5、取步骤M4中获得的粉末颗粒0.3g,加入到15ml的二氯甲烷中;
M6、加入0.18g的聚己内酯、100μl全氟癸基三甲氧基硅烷;
M7、持续搅拌,得到涂料;
M8、将涂料利用喷枪在步骤M1处理后的镁合金表面进行喷涂,得到带涂层的超疏水镁合金。
2.根据权利要求1所述的一种带有超疏水涂层的镁合金的制备工艺,其特征在于:所述前处理包括样品打磨、样品洗涤、超声波清洗步骤。
CN202210352309.1A 2022-04-05 2022-04-05 一种超疏水镁合金涂料及其工艺 Active CN114656864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210352309.1A CN114656864B (zh) 2022-04-05 2022-04-05 一种超疏水镁合金涂料及其工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210352309.1A CN114656864B (zh) 2022-04-05 2022-04-05 一种超疏水镁合金涂料及其工艺

Publications (2)

Publication Number Publication Date
CN114656864A CN114656864A (zh) 2022-06-24
CN114656864B true CN114656864B (zh) 2022-09-27

Family

ID=82035638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210352309.1A Active CN114656864B (zh) 2022-04-05 2022-04-05 一种超疏水镁合金涂料及其工艺

Country Status (1)

Country Link
CN (1) CN114656864B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116004098A (zh) * 2023-01-09 2023-04-25 上海市徐汇区牙病防治所 口腔科治疗台水路管道的内壁涂层及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669642A (zh) * 2004-12-24 2005-09-21 中国科学院上海硅酸盐研究所 具有光催化性能的碳纳米管/氧化锌复合粉体及制备方法
CN102205238A (zh) * 2011-04-11 2011-10-05 东华大学 一种MWCNTs/ZnO纳米复合材料的制备方法
CN105749981A (zh) * 2016-04-01 2016-07-13 河海大学 一种碳纳米管/氧化锌ptfe膜及其制备方法
CN106563176A (zh) * 2016-10-14 2017-04-19 湖北大学 一种基于原子层沉积的氧化锌/碳纳米管纳米抗菌涂层的制备方法
CN111060567A (zh) * 2019-05-21 2020-04-24 天津理工大学 一种基于ZnO—MWCNT复合材料的电化学传感器及其制备方法
CN113185898A (zh) * 2021-05-18 2021-07-30 南昌航空大学 一种采用喷涂法制备超疏水双功能涂层的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211969B2 (en) * 2007-10-10 2012-07-03 University Of Central Florida Research Foundation, Inc. Dispersions of carbon nanotubes in copolymer solutions and functional composite materials and coatings therefrom
US10377907B2 (en) * 2017-11-08 2019-08-13 King Fahd University Of Petroleum And Minerals Substrate with a superhydrophobic coating and a method of fabricating thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669642A (zh) * 2004-12-24 2005-09-21 中国科学院上海硅酸盐研究所 具有光催化性能的碳纳米管/氧化锌复合粉体及制备方法
CN102205238A (zh) * 2011-04-11 2011-10-05 东华大学 一种MWCNTs/ZnO纳米复合材料的制备方法
CN105749981A (zh) * 2016-04-01 2016-07-13 河海大学 一种碳纳米管/氧化锌ptfe膜及其制备方法
CN106563176A (zh) * 2016-10-14 2017-04-19 湖北大学 一种基于原子层沉积的氧化锌/碳纳米管纳米抗菌涂层的制备方法
CN111060567A (zh) * 2019-05-21 2020-04-24 天津理工大学 一种基于ZnO—MWCNT复合材料的电化学传感器及其制备方法
CN113185898A (zh) * 2021-05-18 2021-07-30 南昌航空大学 一种采用喷涂法制备超疏水双功能涂层的方法

Also Published As

Publication number Publication date
CN114656864A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
Huang et al. Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying
Li et al. Versatile nonfluorinated superhydrophobic coating with self-cleaning, anti-fouling, anti-corrosion and mechanical stability
Rasitha et al. Template-free one-step electrodeposition method for fabrication of robust superhydrophobic coating on ferritic steel with self-cleaning ability and superior corrosion resistance
Ye et al. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications
Zheng et al. Facile fabrication of robust, biomimetic and superhydrophobic polymer/graphene-based coatings with self-cleaning, oil-water separation, anti-icing and corrosion resistance properties
Chen et al. Low cost and facile preparation of robust multifunctional coatings with self-healing superhydrophobicity and high conductivity
Ishizaki et al. Rapid fabrication of a crystalline myristic acid-based superhydrophobic film with corrosion resistance on magnesium alloys by the facile one-step immersion process
Teng et al. Robust superhydrophobic surface fabrication by fluorine-free method on filter paper for oil/water separation
Zhang et al. Micro-nano textured superhydrophobic 5083 aluminum alloy as a barrier against marine corrosion and sulfate-reducing bacteria adhesion
Aparna et al. Recent advances in superhydrophobic epoxy based nanocomposite coatings and their applications
Sun et al. Study on selective laser melting 316L stainless steel parts with superhydrophobic surface
CN114656864B (zh) 一种超疏水镁合金涂料及其工艺
Cao et al. A chemically robust and self-healing superhydrophobic polybenzoxazine coating without fluorocarbon resin modification: Fabrication and failure mechanism
Wang et al. Large-scale prepared superhydrophobic HDTMS-modified diatomite/epoxy resin composite coatings for high-performance corrosion protection of magnesium alloys
Xu et al. Fabrication of repairable superhydrophobic surface and improved anticorrosion performance based on zinc-rich coating
Wang et al. Properties of Zn-Al-Mg-TiO2 coating prepared by cold spraying
Liao et al. Fabrication of superamphiphobic surface on Cu substrate via a novel and facile dip coating method
Liu et al. Fabrication of TiO2/CeO2/PPS corrosion protective hydrophobic coating by air spraying
Zhou et al. Rational design of self-cleaning superhydrophobic coating with outstanding abrasion resistance and weatherability: Towards highly efficient oil-water separation and anti-corrosion application
Liu et al. Attapulgite-based superhydrophobic coating on aluminum alloy substrate with self-cleaning, anti-corrosion and robustness
Butt et al. The preparation of cerium nitrate and attapulgite based superhydrophobic epoxy coatings for the corrosion protection of Q355 mild steel surface
Xu et al. Preparation and droplet impact dynamics of superhydrophobic nano-aluminum films on metal substrates
Korde et al. Corrosion inhibition of 316L-type stainless steel under marine environments using epoxy/waste plastic soot coatings
Zhao et al. Mechanism of an organic-inorganic composite coating with anticorrosive and versatile superhydrophobic properties: A combined electrochemical and molecular dynamics exploration
Yang et al. Facile Fabrication of Superhydrophobic Nanocomposite Coatings Based on Water‐Based Emulsion Latex

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant