CN114653382A - 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用 - Google Patents

一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用 Download PDF

Info

Publication number
CN114653382A
CN114653382A CN202210298995.9A CN202210298995A CN114653382A CN 114653382 A CN114653382 A CN 114653382A CN 202210298995 A CN202210298995 A CN 202210298995A CN 114653382 A CN114653382 A CN 114653382A
Authority
CN
China
Prior art keywords
stannous sulfide
zinc stannate
solution
sns
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210298995.9A
Other languages
English (en)
Other versions
CN114653382B (zh
Inventor
徐芬
王颖晶
孙立贤
李亚莹
王瑜
周天昊
杨瑜锴
劳剑浩
邹勇进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210298995.9A priority Critical patent/CN114653382B/zh
Publication of CN114653382A publication Critical patent/CN114653382A/zh
Application granted granted Critical
Publication of CN114653382B publication Critical patent/CN114653382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种p‑n型硫化亚锡‑锡酸锌半导体材料,通过水热制备硫化亚锡,再与L‑色氨酸、乙酸锌和五水四氯化锡进行水热反应,然后进行洗样、干燥制得。所得材料的微观形貌为锡酸锌呈多面体结构,粒径为100‑150 nm;硫化亚锡呈纳米微粒状,均匀负载于锡酸锌多面体的表面。其制备方法包括以下步骤:1:硫化亚锡(SnS)的制备;2:反应液的准备;3:p‑n型硫化亚锡‑锡酸锌半导体材料的制备。作为降解有机染料的催化剂用于废水处理,光催化降解亚甲基蓝(浓度为10 mg/L),在60 min内亚甲基蓝的降解率为70.6‑94.5%,其降解速率为0.0167‑0.0331 min‑1

Description

一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用
技术领域
本发明属于环境材料制备技术领域,具体涉及一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用。
背景技术
随着全球工业的迅速发展、生态环境不断恶化,研发利用太阳能高效降解工业废水中有机染料的材料已成为当前研究的热点;为了有效去除水中的化学污染物(如染料),半导体材料光催化技术由于其耗能低、环保而引起研究人员的广泛关注。到目前为止,通过研究人员的努力,开发了各种用于水污染修复的光催化剂,如金属氧化物、金属硫化物、层状双金属氧化物等。
对于光催化剂来说,提高光催化性能的主要思路是:提高光能利用效率、加快电子传输速度及抑制光生载流子的复合。其中,Zn2SnO4材料作为光催化剂有较快的电子传输速度,但存在太阳光利用率较低、光生电子空穴快速复合等影响性能提升的问题。
针对太阳光利用率较低的问题,将具有调谐带隙作用的半导体与Zn2SnO4复合,缩短材料带隙,提高太阳光利用率。
针对光生电子空穴快速复合的问题,可以通过形成异质结复合材料来抑制光生载流子的快速复合。其中,p-n结作为特殊的异质结,与高电子迁移率的Zn2SnO4进行搭配,使光生电子可以被及时导走,进而使载流子的复合几率也得到降低。相较于传统材料,一维纳米材料具有更高的比表面积和更高的化学活性,制备纳米级光催化材料同样是当前提高光催化效率的有效方式之一。
因此,结合上述两种方法,将p型半导体材料与窄带隙半导体结合用于Zn2SnO4光催化材料可以有效解决上述技术问题。从提高光生电子-空穴对的分离效果的角度,初步探索n型半导体与p型半导体材料进行复合的光催化效果,即通过形成p-n结,利用其内建电场和两半导体自身的导带、价带的相对位置将所产生的光生电子-空穴对进行有效的分离。
现有文献1,Qingqing Zhao等人(《Polyhedral Zn2SnO4: Synthesis, enhancedgas sensing and photocatalytic performance Applied Surface Science》Sensors and Actuators B: Chemical, 463, 1001-1010. doi: 10.1016/j.snb.2016.01.129)二氯化锌作为锌源,使用氢氧化钠进行矿化,实现Zn2SnO4纳米材料的制备。
现有文献2,Xiaofei Hu等人(《Hydrothermal synthesis, characterizationand enhanced visible-light photocatalytic activity of Co-doped Zn2SnO4nanoparticles》, Chemical physics, 2017, 490 :38-46. doi: 10.1016/j.chemphys.2017.04.001.)通过Co2+金属离子掺杂Zn2SnO4增强可见光吸收能力,Co掺杂使得Zn2SnO4的导带与价带间形成了掺杂能级,减小了电子与空穴的复合率,将Zn2SnO4的光催化性能提高了两倍。
Co2+掺杂Zn2SnO4光敏化反应方程式如下:
RhB + hv → RhB*
RhB* + ZTO → RhB·+ + ZTO(e-)
ZTO(e-) + O2 → O2 ·
RhB+ + O2/O2 ·→ decomposition products
但掺杂的Co2+作为电子和空穴的捕获陷讲,导致Co+和Co3+的形成,而Co+和Co3+非常不稳定,所以被捕获的电荷容易被释放再生成Co2+,性能不稳定且对材料性能改善较小,因此达不到预期的效果。
针对以上问题,通过半导体复合的改性方法进行解决。因为不同半导体材料的导带、价带和禁带宽度不同,所以当两个半导体的能带交叠时,会产生耦合作用。受到光照后,光生电子从导带较高的半导体材料跃迁至导带较低的半导体材料,而空穴从价带较低的半导体材料跃迁至价带较高的半导体材料,利用两种半导体之间的能级差异使光生电子和空穴得到有效分离。
半导体的复合方式有多种,可以是稀土氧化物与半导体的复合、氧化物载体与半导体的复合以及半导体之间的复合。这些复合方式中,p-n型半导体材料的复合最受关注,因为n型半导体与p型半导体复合能高效地促进光生电子和空穴的分离,进而提高光催化性能。
现有文献3,Houran Li 等人(《Facile Fabrication of p-BiOI/n-Zn2SnO4Heterostructures with Highly Enhanced Visible Light PhotocatalyticPerformances》, Mater. Res. Bull. 2014, 55, 196-204. doi:10.1016/j.materresbull.201 4.04.023)通过简单的水浴法将n型Zn2SnO4纳米颗粒固定在p型 BiOI的纳米片上制备出新型的BiOI/Zn2SnO4 p-n异质结,2 h对甲基橙降解率达到86 %。虽利用p-n结提高了光催化性能,但BiOI作为类光敏剂,对Zn2SnO4的降解率改善仍不理想。
而SnS作为p型半导体材料之一,常作为光敏剂,带隙在1.2-1.5,可以和太阳光中的可见光很好匹配,通常作为太阳能电池中的光吸收层,也应用于p-n型复合半导体材料的制备,但是SnS/Zn2SnO4在光催化领域的应用还从未被实现。
发明内容
本发明提供一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用。
本发明针对现有技术存在的技术问题,采用以下方式来解决上述问题:
1、首先利用氢氧化钠作为锡酸锌的矿化剂,在合成过程中对锡酸锌前驱体进行矿化,以控制锡酸锌微观形貌;
2、将硫化亚锡与锡酸锌金属盐溶液进行水热复合,这一方法可解决调节材料带隙的问题;
为了实现上述发明目的,本发明采用的技术方案为:
一种p-n型硫化亚锡-锡酸锌半导体材料,通过水热制备硫化亚锡,再与L-色氨酸、乙酸锌和五水四氯化锡进行水热反应,接着进行洗样、干燥制得,所得材料的微观形貌为,锡酸锌呈多面体结构,粒径为100-150 nm,硫化亚锡呈纳米微粒状,均匀负载于锡酸锌多面体的表面。
一种p-n型硫化亚锡-锡酸锌半导体材料的制备方法,包括以下步骤:
步骤1,硫化亚锡SnS的制备,称取二水合二氯化锡、硫代乙酰胺和葡萄糖溶于水中超声处理后,进行第一次水热反应,所得反应产物经洗涤、干燥,即可得到硫化亚锡SnS;
所述步骤1中二水合二氯化锡、硫代乙酰胺和葡萄糖的质量比为3:2:5;
所述步骤1第一次水热反应的条件为:反应温度为160 ℃,反应时间为24 h;所述步骤1干燥的条件为:干燥温度为60 ℃,干燥时间为6-8 h;
步骤2,反应液的准备,称取L-色氨酸水浴加热至溶解,得到溶液A,再将乙酸锌和五水四氯化锡溶于溶液A并搅拌,得到溶液B,然后,继续向溶液B中缓慢滴入NaOH调节溶液的pH值,即可得到溶液C,其中,溶液C中的溶质为锡酸锌;
所述步骤2中,L-色氨酸、乙酸锌和五水四氯化锡的摩尔质量比为5:2:1;
所述步骤2中,L-色氨酸水浴加热的条件为:水浴温度为60 ℃;
所述步骤2调节pH值的条件为,滴加NaOH后溶液C的pH值为10,滴加NaOH的过程进行搅拌;
步骤3,p-n型硫化亚锡-锡酸锌半导体材料的制备,向步骤2所得溶液C中加入步骤1所得SnS并搅拌后,进行第二次水热反应,所得沉淀物经洗涤、离心和干燥,即可得到p-n型硫化亚锡-锡酸锌半导体材料;
所述步骤3中,溶液C中的锡酸锌和SnS的质量比为100:(3-9);
所述步骤3第二次水热反应的条件为:反应温度为200 ℃,反应时间为24 h。
一种p-n型硫化亚锡-锡酸锌半导体材料作为光催化剂降解有机染料废水的应用,光催化降解浓度为10 mg/L的亚甲基蓝时,在60 min内,其光催化降解率为70.6-94.5 %,其降解速率为0.0167-0.0331 min-1
本发明技术效果经实验检测,具体内容如下:
经XRD检测可知:SnS/Zn2SnO4复合材料两相结晶型良好,复合成功。
经TEM检测可知:Zn2SnO4呈现多面体形态,SnS/Zn2SnO4复合材料呈现SnS纳米微粒均匀负载在Zn2SnO4多面体上的微观结构,粒径为100-150 nm。
经SEM检测可知:SZS-x粒径为100-150 nm,而SZS-N粒径为4-5 μm,SZS-N较SZS-x纳米颗粒显著增大。
因此,经TEM、SEM、XRD等实验检测可知,本发明的SnS/Zn2SnO4复合材料对于现有技术,具有以下优点:
1、本发明制备的SnS/Zn2SnO4的粒径为100-150 nm,较现有文献1的1-2 μm更小,因此,SnS/Zn2SnO4具有更大的比表面积;
2、本发明制备的SnS/Zn2SnO4的最大光催化降解速率为0.0331 min-1,较Zn2SnO4的0.0076 min-1提升了4.36倍,而现有文献2的Co掺杂 Zn2SnO4的最大降解速率为0.01802min-1较Zn2SnO4的0.00894 min-1只提升了2倍,因此SnS/Zn2SnO4的光催化降解性能提升更高。
3、本发明制备的SnS/Zn2SnO4采用的是一锅水热法制备法,而现有文献3的制备需要分别溶解在不同溶剂中经滴加后搅拌再进行油浴等繁琐步骤,较现有文献3制备的BiOI/Zn2SnO4具有更简单的制备方法。
附图说明:
图1为本发明实施例1、2、3和对比例3所制备的SnS/Zn2SnO4以及对比例1制备的Zn2SnO4和对比例2的SnS的X射线衍射图;
图2为对比例1制备的Zn2SnO4和对比例2的SnS的X射线衍射图以及PDF卡片;
图3为本发明实施例1制备得到的SnS/Zn2SnO4透射电子显微镜图;
图4为本发明实施例1制备得到的SnS/Zn2SnO4的EDS图谱;
图5为本发明实施例1、2、3和对比案例3所制备的SnS/Zn2SnO4以及对比例1制备的Zn2SnO4和对比例2的SnS的光催化降解亚甲基蓝染料废水时对应的降解图;
图6为本发明实施例1、2、3和对比例3所制备的SnS/Zn2SnO4以及对比例1制备的Zn2SnO4和对比例2的SnS的光催化降解亚甲基蓝染料废水时对应的降解动力学机制;
图7 为本发明对比例1所制备的Zn2SnO4光催化剂的透射电子显微镜图;
图8 为本发明实施例5所制备的SZS-N与实施例1所制备的SZS-6降解亚甲基蓝染料废水时对应的降解图;
图9 为本发明实施例5所制备的SZS-N的扫描电子显微镜图。
具体实施方式
本发明通过实施例,结合说明书附图对本发明内容作进一步详细说明,但不是对本发明的限定。
以下通过具体实例并结合附图对本发明进一步阐述。
实施例1
一种锡酸锌和SnS的质量比为100:6的p-n型硫化亚锡-锡酸锌半导体材料(简称SnS/Zn2SnO4)的制备方法,包括以下步骤:
步骤1,硫化亚锡SnS的制备,称取0.288 g 两水合二氯化锡、0.188 g硫代乙酰胺和0.5 g葡萄糖溶于超纯水中,超声处理4 h后,在反应温度为160 ℃,反应时间为24 h的条件下进行第一次水热反应,所得反应产物用无水乙醇洗涤3次后,在干燥温度为60 ℃,干燥时间为6 h的条件下进行干燥,即可得到硫化亚锡,简称为SnS;
步骤2,反应液的准备,称取0.4 g L-色氨酸在60 ℃条件下水浴加热至溶解,得到溶液A,再将0.2214 g乙酸锌和0.263 g五水四氯化锡溶于溶液A并搅拌10 min,然后继续向上述溶液A中缓慢滴入0.29 g 5 mL 的NaOH调节溶液pH=10并搅拌30 min,即可得到溶液B;
步骤3,p-n型硫化亚锡-锡酸锌半导体材料的制备,向步骤2所得溶液B中加入0.012 g步骤1所得硫化亚锡并搅拌30 min后,在反应温度为200 ℃,反应时间为24 h的条件下进行第二次水热反应,所得沉淀物经洗涤、离心和干燥,即可得到质量比为100:6的p-n型硫化亚锡-锡酸锌半导体材料,命名为SZS-6。
为了证明p-n型硫化亚锡-锡酸锌复合成功,且没有产生其他杂质,进行XRD测试。测试结果分别如图1和图2所示,p-n型硫化亚锡-锡酸锌半导体材料同时含有硫化亚锡和锡酸锌的特征峰,并且,不存在其他杂质产物。
为了证明在锡酸锌的表面成功复合硫化亚锡,对SZS-6进行 TEM表征。测试结果如图3所示,硫化亚锡纳米微粒负载于锡酸锌八面体表面。
为了进一步证明上述结论,进行TEM-mapping测试。测试结果如图4所示,SZS-6含有Sn、Zn、O、S元素,且元素分布可以证明硫化亚锡纳米微粒负载于锡酸锌八面体表面。
SnS/Zn2SnO4的光催化降解性能测试,具体方法为:称取0.001 g亚甲基蓝染料配置10 mg/L溶液,在称取0.02 g SnS/Zn2SnO4加入配置好的亚甲基蓝溶液中,在搅拌状态下暗处理30 min后,打开氙灯模拟太阳光进行降解实验,测试其光催化降解性能。
SZS-6的光催化降解性能测试结果如图5和表1所示,SZS-6对染料降解率为94.5%。
为了更直观的证明催化剂的性能,对SZS-6的反应速率进行计算,结果如图6所示,SZS-6的降解速率为0.0331 min-1
表1 初始材料和SZS-x的性能表
Figure DEST_PATH_IMAGE002
为了证明SnS与Zn2SnO4在复合材料中各自所起的作用,提供对比例1和对比例2,分别为单独存在Zn2SnO4和SnS的材料。
对比例1
一种锡酸锌的制备方法,未特别说明的步骤与实施例1相同,不同之处在于:不进行所述步骤1,同时,所述步骤2不添加步骤1所得SnS,即可得到Zn2SnO4,命名为ZSO。
为了证明SnS对ZSO微观形貌的影响,对ZSO进行SEM形貌表征。测试结果如图7所示,所得ZSO为表面光滑的八面体;与图3对比可知,实施例1所制备SnS/Zn2SnO4中,ZSO表面附着的颗粒为SnS颗粒。
对ZSO进行光催化测试,测试方法与实施例1相同。检测结果如图5和表1所示,在60min内光催化降解,在亚甲基蓝浓度10 mg/L时,降解率为41.6 %。
为了进一步对比,降解速率如图6所示,在相同降解条件下,SZS-6复合材料的降解速率明显高于ZSO材料,其降解速率提高了4.36倍左右,表明ZSO材料在经过水热复合之后,在ZSO材料表面附着SnS微粒可较好地提升材料的光催化性能,证明了SnS/Zn2SnO4具有良好的光催化性能。
通过对比例1,可以发现未负载SnS的ZSO光催化性能明显低于SZS-6,ZSO材料的光催化降解率仅为41.6 %,证明了SnS和ZSO材料复合是提高光催化性能的一个有效方式。
对比例2
一种硫化亚锡的制备方法,未特别说明的步骤与实施例1相同,不同之处在于:直接使用步骤1所得SnS进行后续测试。
将得到的SnS材料进行光催化降解测试,测试方法与实施例1相同,检测结果如图5和表1所示,在60 min内光催化降解,在亚甲基蓝浓度10 mg/L时,光催化降解率为41.9 %,而SZS-6复合材料的光催化降解率为94.5 %,是SnS的2.16倍,SnS/Zn2SnO4的光催化降解性能显著优于纯SnS材料。
为了证明不同硫化亚锡占锡酸锌的质量百分比(简写为“SnS含量为x %”)对SnS/Zn2SnO4的性能的影响,提供实施例2、3和对比例3,即分别制备不同SnS含量的SnS/Zn2SnO4
实施例2
一种Zn2SnO4和SnS的质量比为100:3的SnS/Zn2SnO4的制备方法,未特别说明的步骤与实施例1相同,不同之处在于:所述步骤3中,添加SnS的质量为0.006 g,所得产物命名为SZS-3。
将得到的SZS-3进行光催化降解测试,测试方法与实施例1相同,检测结果如图5和表1所示,在60 min内光催化降解,在亚甲基蓝浓度10 mg/L时,光催化降解率为77.2 %,而SZS-6的光催化降解率为94.5 %,SZS-6复合材料的光催化降解性能优于SZS-3。
实施例3
一种Zn2SnO4和SnS的质量比为100:9的SnS/Zn2SnO4的制备方法,未特别说明的步骤与实施例1相同,不同之处在于:所述步骤3中,添加SnS的质量为0.018 g,所得产物命名为SZS-9。
将得到的SZS-9进行光催化降解测试,测试方法与实施例1相同,检测结果如图5和表1所示,在60 min内光催化降解,在亚甲基蓝浓度10 mg/L时,光催化降解率为70.6 %,而SZS-6的光催化降解率为94.5 %,SZS-6的光催化降解性能优于SZS-9。
对比例3
一种Zn2SnO4和SnS的质量比为100:12的SnS/Zn2SnO4的制备方法,未特别说明的步骤与实施例1相同,不同之处在于:所述步骤3中,添加SnS的质量为0.024 g,所得产物命名为SZS-12。
将得到的SZS-12进行光催化降解测试,测试方法与实施例1相同,检测结果如图5和表1所示,在60 min内光催化降解,在亚甲基蓝浓度10 mg/L时,光催化降解率为65.3 %,而SZS-6的光催化降解率为94.5 %,SZS-6的光催化降解性能优于SZS-12。
通过实施例1、2、3和对比例3的测试结果表明:
1、实施案例1中的SnS/Zn2SnO4对亚甲基蓝的去除效果最佳,降解效率为94.49 %,降解速率为0.0331 min-1
2、ZSO对亚甲基蓝的降解效率为41.63 %、降解速率为0.0076 min-1
3、与ZSO相比,实施案例1的SZS-6降解速率提高了4.36倍。
通过实施例1、2、3和对比例3的对比可知,导致该现象的主要原因为:本发明的光催化剂提高了半导体中电子-空穴的分离效率,形成p-n异质结,提高了光催化活性。
为了证明制备方法步骤2中,pH值对SnS/Zn2SnO4的性能的影响,提供实施例5,即pH=13条件下制备的SnS/Zn2SnO4
实施例5
一种SnS/Zn2SnO4的制备方法,未特别说明的步骤与实施例1相同,不同之处在于:所述步骤2中,NaOH的添加量为0.31 g,即调节溶液的pH=13,所得产物命名为SZS-N。
将得到的SZS-N进行光催化降解测试,测试方法与实施例1相同,检测结果如图8所示,在60 min内光催化降解,在亚甲基蓝浓度10 mg/L时,光催化降解率为84.63 %,而SZS-6的光催化降解率为94.49 %,SZS-6的光催化降解性能优于SZS-N,证明了pH值影响SnS/Zn2SnO4的光催化降解性能,pH=10可以得到性能最好的SnS/Zn2SnO4
为了进一步证明pH值对SnS/Zn2SnO4的作用,进行了SEM形貌表征。测试结果如图9所示,SZS-N的多面体直径为4.5 μm,是SZS-6的30倍左右;进一步根据材料学基础知识可知,SnS/Zn2SnO4材料的微观形貌,由于多面体越大,导致比表面积越小,进而显著影响光催化降解性能。即同时证明pH值对对比表面积影响显著,对SnS/Zn2SnO4光催化性能影响显著。
因此,所得半导体材料只有通过本发明提供的工艺技术,才能充分发挥其的光催化性能。

Claims (6)

1.一种p-n型硫化亚锡-锡酸锌半导体材料,其特征在于:通过水热制备硫化亚锡,再与L-色氨酸、乙酸锌和五水四氯化锡进行水热反应,然后进行洗样、干燥制得;所得材料的微观形貌为锡酸锌呈多面体结构,粒径为100-150 nm;硫化亚锡呈纳米微粒状,均匀负载于锡酸锌多面体的表面。
2.一种p-n型硫化亚锡-锡酸锌半导体材料的制备方法,其特征包括以下步骤:
步骤1,硫化亚锡SnS的制备,称取二水合二氯化锡、硫代乙酰胺和葡萄糖溶于水中超声处理后,进行第一次水热反应,所得反应产物经洗涤、干燥,即可得到硫化亚锡SnS;
步骤2,反应液的准备,称取L-色氨酸于水浴中加热至溶解,得到溶液A;再将乙酸锌和五水四氯化锡溶于溶液A并搅拌,得到溶液B;然后,继续向溶液B中缓慢滴入NaOH调节溶液的pH值,即可得到溶液C,其中,溶液C中的溶质为锡酸锌;
步骤3,p-n型硫化亚锡-锡酸锌半导体材料的制备,向步骤2所得溶液C中加入步骤1所得SnS并搅拌后,进行第二次水热反应,所得沉淀物经洗涤、离心和干燥,即可得到p-n型硫化亚锡-锡酸锌半导体材料。
3.根据权利要求2所述的制备方法,其特征在于:所述步骤1中二水合二氯化锡、硫代乙酰胺和葡萄糖的质量比为3:2:5;
所述步骤2中,L-色氨酸、乙酸锌和五水四氯化锡的摩尔质量比为5:2:1;
所述步骤3中,溶液C中溶质锡酸锌和SnS的质量比为100:(3-9)。
4.根据权利要求2所述的制备方法,其特征在于:所述步骤1第一次水热反应的条件为:反应温度为160 ℃,反应时间为24 h;所述步骤1干燥的条件为:干燥温度为60 ℃,干燥时间为6-8 h;
所述步骤2中,L-色氨酸水浴加热的条件为:水浴温度为60 ℃;
所述步骤3第二次水热反应的条件为:反应温度为200 ℃,反应时间为24 h。
5.根据权利要求2所述的制备方法,其特征在于:所述步骤2调节pH值的条件为:滴加NaOH后溶液C的pH值为10,滴加NaOH的过程进行搅拌。
6.一种p-n型硫化亚锡-锡酸锌半导体材料作为降解有机染料的催化剂在废水处理中的应用,其特征在于:光催化降解浓度为10 mg/L的亚甲基蓝时,在60 min内亚甲基蓝的降解率达到70.6-94.5 %,其降解速率为0.0167-0.0331 min-1
CN202210298995.9A 2022-03-25 2022-03-25 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用 Active CN114653382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210298995.9A CN114653382B (zh) 2022-03-25 2022-03-25 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210298995.9A CN114653382B (zh) 2022-03-25 2022-03-25 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114653382A true CN114653382A (zh) 2022-06-24
CN114653382B CN114653382B (zh) 2023-07-04

Family

ID=82031146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210298995.9A Active CN114653382B (zh) 2022-03-25 2022-03-25 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114653382B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117696045A (zh) * 2024-02-05 2024-03-15 浙江师范大学杭州校区 一种兼具高效光催化和压电催化的s-型异质结催化剂及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100294728A1 (en) * 2010-06-28 2010-11-25 Leila Asgharnejad Preparation of nanosized compound zno/sno2 photocatalysts
WO2014081921A1 (en) * 2012-11-21 2014-05-30 The University Of North Carolina At Chapel Hill Assemblies and methods of stabilization
US20140318978A1 (en) * 2014-05-05 2014-10-30 National Institute Of Standards And Technology Photoactive article, process for making, and use of same
CN107442139A (zh) * 2017-07-11 2017-12-08 河南师范大学 用于高效降解龙胆紫的片状Z型SnS2/Bi2MoO6异质结光催化材料的制备方法
US20180008953A1 (en) * 2016-07-08 2018-01-11 Soochow University Composite with synergistic effect of adsorption and visible light catalytic degradation and preparation method and application thereof
CN109286009A (zh) * 2018-09-25 2019-01-29 陕西科技大学 一种纳米片自组装三维纳米花硫化锡/石墨化氮化碳锂离子电池负极材料的制备方法
CN111777095A (zh) * 2020-07-20 2020-10-16 洛阳布鲁姆电子科技有限公司 一种二硫化锡微米球的合成方法
CN111939937A (zh) * 2020-08-26 2020-11-17 杭州电子科技大学 一种锡酸锌/硫化铟带刺纳米花压电/光催化剂及其制备方法
CN113731395A (zh) * 2021-09-28 2021-12-03 杭州师范大学 一种富含氧空位的锡酸锌光催化剂、制备方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100294728A1 (en) * 2010-06-28 2010-11-25 Leila Asgharnejad Preparation of nanosized compound zno/sno2 photocatalysts
WO2014081921A1 (en) * 2012-11-21 2014-05-30 The University Of North Carolina At Chapel Hill Assemblies and methods of stabilization
US20140318978A1 (en) * 2014-05-05 2014-10-30 National Institute Of Standards And Technology Photoactive article, process for making, and use of same
US20180008953A1 (en) * 2016-07-08 2018-01-11 Soochow University Composite with synergistic effect of adsorption and visible light catalytic degradation and preparation method and application thereof
CN107442139A (zh) * 2017-07-11 2017-12-08 河南师范大学 用于高效降解龙胆紫的片状Z型SnS2/Bi2MoO6异质结光催化材料的制备方法
CN109286009A (zh) * 2018-09-25 2019-01-29 陕西科技大学 一种纳米片自组装三维纳米花硫化锡/石墨化氮化碳锂离子电池负极材料的制备方法
CN111777095A (zh) * 2020-07-20 2020-10-16 洛阳布鲁姆电子科技有限公司 一种二硫化锡微米球的合成方法
CN111939937A (zh) * 2020-08-26 2020-11-17 杭州电子科技大学 一种锡酸锌/硫化铟带刺纳米花压电/光催化剂及其制备方法
CN113731395A (zh) * 2021-09-28 2021-12-03 杭州师范大学 一种富含氧空位的锡酸锌光催化剂、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU-FENWANG ET AL.,: "HierarchicalZn2SnO4 nanosheets consisting of nanoparticlesforefficient dye-sensitized solar cells", 《NANO ENERGY》, vol. 2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117696045A (zh) * 2024-02-05 2024-03-15 浙江师范大学杭州校区 一种兼具高效光催化和压电催化的s-型异质结催化剂及其制备方法和应用
CN117696045B (zh) * 2024-02-05 2024-04-12 浙江师范大学杭州校区 一种兼具高效光催化和压电催化的s-型异质结催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN114653382B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Guo et al. Construction of Cu3P-ZnSnO3-g-C3N4 pnn heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics
Goktas et al. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance
Guo et al. MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight
Mahajan et al. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles
Wang et al. Facile preparation of ZnS/CdS core/shell nanotubes and their enhanced photocatalytic performance
CN107790160B (zh) 一种磷掺杂硫化锌镉固溶体催化剂、光催化体系及分解水制氢的方法
Abdolhoseinzadeh et al. Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO
Nandi et al. ZnO-CuxO heterostructure photocatalyst for efficient dye degradation
Martínez et al. Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation
Yang et al. Preparation of flower-like ZnO@ ZnS core-shell structure enhances photocatalytic hydrogen production
Papadas et al. Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells
Xu et al. Ternary system of ZnO nanorods/reduced graphene oxide/CuInS2 quantum dots for enhanced photocatalytic performance
Abdelkader et al. Synthesis, characterization and UV-A light photocatalytic activity of 20 wt% SrO–CuBi2O4 composite
Raj et al. Significance of Ni doping on structure-morphology-photoluminescence, optical and photocatalytic activity of CBD grown ZnO nanowires for opto-photocatalyst applications
Chen et al. Fabrication of visible-light driven CoP/ZnSnO3 composite photocatalyst for high-efficient photodegradation of antibiotic pollutant
Wei et al. Preparation and characterization of pn heterojunction photocatalyst Cu2O/In2O3 and its photocatalytic activity under visible and UV light irradiation
CN105964277A (zh) 一种CdS/BiVO4复合光催化剂及其制备方法
Qiao et al. Bandgap modulation of ZnO/ZnS heterostructures through ion exchange and their efficient transport properties
Alharbi et al. Sunlight activated S-scheme ZnO-CoTe binary photocatalyst for effective degradation of dye pollutants from wastewater
Luo et al. Enhancing visible-light photocatalytic performance and stability of Ag3PO4 nanoparticles by coupling with hierarchical flower-like In2S3 microspheres
Liu et al. Nano composite of CuInS2/ZnO with improved photocatalytic activity of degradation and hydrogen production
Yang et al. Construction of shell-core Co2P/Cd0. 9Zn0. 1S photocatalyst by electrostatic attraction for enhancing H2 evolution
Lu et al. Microwave-assisted synthesis and characterization of BiOI/BiF 3 p–n heterojunctions and its enhanced photocatalytic properties
Yang et al. Fabrication of Cu2O/MTiO3 (M= Ca, Sr and Ba) pn heterojunction for highly enhanced photocatalytic hydrogen generation
CN114653382B (zh) 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant