CN114574731A - 用于增材制造轻质构件的铝合金和方法 - Google Patents

用于增材制造轻质构件的铝合金和方法 Download PDF

Info

Publication number
CN114574731A
CN114574731A CN202111457894.3A CN202111457894A CN114574731A CN 114574731 A CN114574731 A CN 114574731A CN 202111457894 A CN202111457894 A CN 202111457894A CN 114574731 A CN114574731 A CN 114574731A
Authority
CN
China
Prior art keywords
aluminum alloy
weight
range
alloy
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111457894.3A
Other languages
English (en)
Inventor
弗兰克·帕姆
大卫·席姆贝克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of CN114574731A publication Critical patent/CN114574731A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0832Handling of atomising fluid, e.g. heating, cooling, cleaning, recirculating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种由铝、钛、钪和锆和可选的一种、两种或多种其他金属构成的合金,所述合金选自铪、钒、铌、铬、钼、硅、铁、钴、镍和钙。铝合金适合于增材制造用于飞行器的轻质构件。在第一步骤中,将根据本发明的铝合金的粉末通过增材制造,如在L‑PBF法(激光粉末床熔化)中的激光熔化,制造轻质构件前体,所述轻质构件前体因激光熔体的快速凝固而包含呈固熔体形式的钛、钪和锆。在第二步骤中,将轻质构件前体通过在250℃至400℃中的次级相的析出来硬化成轻质构件。获得具有高的强度的3D打印的轻质构件。

Description

用于增材制造轻质构件的铝合金和方法
技术领域
本发明涉及一种铝合金、一种用于利用由这种铝合金构成的粉末增材制造轻质构件的方法和通过所述方法制造的轻质构件。
背景技术
铝合金是对于制造用于飞行器的轻质构件而言重要的材料。飞行器的总重量与降低实现燃料成本的降低,所述总重量的降低与将这些轻质构件装入飞行器中相关联。为此,可用的铝合金必须在飞行安全方面附加地具有高的抗拉强度、延展性、韧性和耐腐蚀性。
在飞行器制造中可使用的铝合金的实例是名称为AA2024、AA7349和AA6061的合金。所述合金除基本金属外包含铝、镁和铜作为主要的合金成分并且还必须或可选地包含锰、锆、铬、铁、硅、钛和/或锌。
含有钪的铝合金是重大的改进,所述铝合金例如能够以产品名称
Figure BDA0003387147480000011
从APWorks有限公司获得。所述铝合金具有比上文中提及的合金更高的强度、延展性和耐腐蚀性。在所有过渡金属中,钪通过Al3Sc的析出硬化表现出强度的最大提高。然而,由于钪在铝中的低的溶解度(在约660℃下约为0.3重量%),
Figure BDA0003387147480000012
必须通过熔体的快速凝固,如熔体纺丝(“melt spinning”)和随后的析出硬化来制造以在铝基质中形成次级的Al3Sc析出。
有关
Figure BDA0003387147480000013
的更多信息请参阅出版物“
Figure BDA0003387147480000014
-A unique highstrength and corrosion insensitive AlMgScZr material concept”(A.J.Bosch、R.Senden、W.Entelmann、M.Knüwer、F.Palm,“第11次国际铝合金会议的会议记录:“Aluminum Alloys:Their physical and mechanical properties”,J.Hirsch、G.Gottstein、B.Skrotzki、Wiley-VCH)和“Metallurgical peculiarities in hyper-eutectic AlSc and AlMgSc engineering materials prepared by rapidsolidification processing”(F.Palm、P.Vermeer、W.von Bestebostel、D.Isheim、R.Schneider(出处同前)。
根据图1的表1示出上面给出的铝合金的化学组成,所述铝合金能够用于制造用于飞行器的轻质构件。
Figure BDA0003387147480000021
的另一优点在于,其适合于增材制造轻质构件。除了诸如电弧丝堆焊(英文WAAM=“Wire Arc Additive Manufacturing”)的方法以外,尤其适合于激光粉末床熔化。所述增材制造法在下文中也称作为L-PBF法(L-PBF=“Laser Powder BedFusion”)。对于所述方法可用的合金的数量是受限制的。根据WO 2018/144323,在L-PBF法中借助于合金
Figure BDA0003387147480000022
AlSi10Mg、TiAl6V4、CoCr和Inconel 718可以进行可靠的增材制造,而现今使用的大数量的多于5500种的合金对于L-PBF法或3D打印是不可用的。
发明内容
本发明的目的是,提供一种改进的铝合金,其适合于例如在L-PBF法中以足够快的冷却速度进行的增材制造。
所述目的通过根据本发明的铝合金实现。有利的设计方案在下文中描述。
根据第一方面,本发明实现包含如下合金成分的铝合金:
-份额为0.1重量%至15.0重量%的Ti,
-份额为0.1重量%至3.0重量%的Sc,
-份额为0.1重量%至3.0重量%的Zr,
-其余为铝Al和不可避免的杂质。
在合金中添加Ti结合有多个优点。由于不存在蒸气压高或蒸发焓低的金属,如Mg或Zn,LPB-F工艺是稳定的。Ti通过晶粒细化来提高强度,其方式为,聚合的初级Al3X相(X=Ti、Zr、Sc)析出并且与通过给合金添加Ti而出现的大程度的结构上的过冷共同作用为成核部位。由于在随后的后热处理期间的次级相的析出硬化,强度提高。附加地包含Ti的AlSc合金显示出更好的耐腐蚀性。
Ti在铝合金中不引起如Sc或Zr在室温下的强度如此大程度地增加。在快速凝固期间,大部分的Ti溶解在混晶中。析出物的粗化比预期的要慢。抗蠕变强度(“creepresistance”)增加。
析出物的化学驱动力ΔFch对于Al3Zr而言明显大于针对Al3Ti的情况。在析出物ΔFel中Al3Ti的弹性应变能(“elastic strain energy for precipitation”)防止成核并且比Al3Zr的弹性应变能大7倍。在快速冷却的情况下,最多2重量%的Ti能够强制溶解在铝基质中。
在通过铝合金的L-PBF法(或SLM法(选择性激光熔化法))增材制造轻质构件时Ti的优点是,其蒸气压低或其蒸发焓高。Ti的蒸气压低于基本金属铝的蒸气压。Ti的蒸发焓高于基本金属铝的蒸发焓。因此,与含镁的铝合金相比,在重熔时产生明显更安静的熔池,由此提高工艺稳定性。
Ti确保在凝固期间强烈的结构上的过冷,这导致熔体中有效力的初级成核部位的激活,从而产生晶粒细化。根据霍尔-佩奇,精细的微观结构提高铝合金的强度(根据
Figure BDA0003387147480000031
强度提高与晶粒尺寸成反比)。
在高温中Zr也已经在熔体中提供有效的成核部位,因为Al3Zr在大约900℃中就已经析出,进而能够通过结构上的过冷被激活。与此相反,Al3Sc仅在固相线温度前一刻才析出。
优选的是,铝合金包含份额为0.5重量%至5.0重量%的Ti、份额为0.2重量%至1.5重量%的Sc和份额为0.2重量%至1.5重量%的Zr。
优选的是,铝合金包含份额为1.0重量%至5.0重量%的,优选份额为1.0重量%至4.0重量%的Ti,份额为0.5重量%至1.0重量%的Sc和份额为0.2重量%至0.8重量%的Zr。
优选的是,铝合金包含一种、两种或更多种金属,所述金属选自铪(Hf)、钒(V)、铌(Nb)、铬(Cr)、钼(Mo)、硅(Si)、铁(Fe)、钴(Co)和镍(Ni),其中这些元素中的每个元素的份额为
-直至100%的Ti份额,优选最多90%,优选最多70%,更优选最多50%的Ti份额,条件是这些金属的总份额为根据本发明的铝合金的最多15重量%,并且优选最多10重量%,或者
-0.1重量%至2重量%,条件是这些金属的总份额为根据本发明的铝合金的最多15重量%,并且优选最多10重量%。
优选的是,铝合金除了铝和不可避免的杂质之外仅包含蒸发焓比铝更高或蒸气压比铝更低的金属。
优选的是,铝合金包含份额在0.1重量%至5重量%的范围内,优选在0.5重量%至5重量%的范围内,特别优选在0.7重量%至3重量%的范围内的钙(Ca)。钙在激光熔化时形成氧化钙涂层,所述氧化钙涂层防止合金元素发生所不期望的蒸发。
优选的是,铝合金不包含镁和/或锰。
优选的是,铝合金构成合金成分的在上文中所描述的组合。
优选的是,铝合金除了不可避免的杂质之外由Al、Ti、Sc和Zr或Al、Ti、Sc、Zr和在上文提到的金属中的一种、两种或更多种构成。
优选的是,铝合金除了不可避免的杂质之外由Al、Ti、Sc、Zr和Cr构成,其中Cr份额处于0.2重量%至3.5重量%,优选0.5重量%至3.0重量%的范围内。
优选的是,铝合金除了不可避免的杂质之外由Al、Ti、Sc、Zr和Ni构成,其中Ni份额处于0.2重量%至2.5重量%,优选0.5重量%至2.0重量%的范围内。
优选的是,铝合金除了不可避免的杂质之外由Al、Ti、Sc、Zr和Mo构成,其中Mo份额处于0.1重量%至1.3重量%,优选0.5重量%至1.0重量%的范围内。
优选的是,铝合金除了不可避免的杂质之外由Al、Ti、Sc、Zr和Fe构成,其中Fe份额处于0.1重量%至2.5重量%,优选0.5重量%至2.0重量%的范围内。
优选的是,铝合金除了不可避免的杂质之外由Al、Ti、Sc、Zr和Ca构成,其中Ca份额处于0.1重量%至5重量%,优选在大于0.5重量%至5重量%的范围内,特别优选0.7重量%至3重量%的范围内。
根据第二方面,本发明实现一种用于增材制造轻质构件前体的方法,所述方法包括:
a)将金属熔合成铝合金熔体,
b)冷却铝合金熔体或让铝合金熔体冷却,
b1)在冷却速度为1000K/s至10000000K/s,尤其100000K/s至1000000K/s的快速凝固方法中,例如:熔体纺丝、借助于气体或在水中的粉末雾化、窄带浇铸或喷射成型,以获得凝固的、可能是粉末状的铝合金与以固熔体形式包含在其中的钪;或者
b2)在冷却方法中,以获得凝固的铝合金;
c)将出自步骤b1)或b2)的铝合金粉碎成粉末。
优选的是,在步骤b)或步骤b1)中将冷却速度至少保持在1800K至500K的温度范围内。
如果熔化的铝合金在步骤b)中冷却,那么在冷却速度不过高时,如当将熔体倒入坩埚中时,产生铝基质,其中合金元素Ti、Sc和Zr主要以大的初级析出物的形式存在。当上述铝合金非常快地,如以1000K/s至10000000K/s的速度冷却时,凝固的铝合金包含基本上呈固熔体形式的上述合金元素。初级相的析出物通过快速冷却抑制。熔体冷却得越快,初级析出物的份额就越低。在随后的在例如250℃左右至450℃的温度中的析出硬化中,纳米级的、聚合的Al3X相(X=Ti、Zr、Sc)被析出,其确保铝合金的强度的大程度的改进。
在步骤e)中在借助于激光束熔化粉末之后引起非常快速的冷却,其中合金元素基本上以固熔体凝固。总体上,所述方法步骤是重熔为所期望的合金。
根据第三方面,本发明实现一种用于由如在上文中所描述的铝合金增材制造轻质构件前体的方法,所述方法包括:
d)由根据本发明的方法的步骤c)中获得的粉末制造粉末床;
e)在粉末局部熔化并且冷却局部熔化的区域或让局部熔化的区域冷却以获得由铝合金与以固熔体的形式获得的钪构成的轻质构件前体的情况下,在粉末床中用激光在激光熔化法中增材制造三维轻质构件前体。
根据第四方面,本发明实现一种用于制造轻质构件的方法,所述方法包括:在通过析出硬化使轻质构件前体硬化的温度中对在上文所描述的方法中获得的轻质构件前体进行热处理。
根据第五方面,本发明实现一种轻质构件前体,其可根据上文所描述的增材制造法获得。
根据第六方面,本发明实现一种轻质构件,其可根据上文所描述的硬化方法获得。
根据第七方面,本发明实现一种如上文所描述的铝合金或根据上文所描述的方法获得的粉末用于通过选择性激光熔化制造轻质构件前体和通过选择性激光熔化和随后的析出硬化来制造轻质构件的用途。
附图说明
下面,根据附图详细阐述实施例。其中示出:
图1示出表1中的用于航空的轻质构件的常用铝合金的化学组成;
图2示出表2中的最重要的合金元素的物理特性;
图3示出与
Figure BDA0003387147480000064
的组成部分的温度相关的蒸气压;
图4示出与根据本发明的合金的组成部分的温度相关的蒸气压。
具体实施方式
图1在表1中示出用于制造用于航空的轻质构件的铝合金的组成。合金AA2024、AA7349、AA7010和AA6061如硬铝包含镁和铜。硬铝是Alfred Wilms于1906年开发的一种铝合金,对于所述硬铝已知的是,通过析出硬化能够显著提高合金的强度。随着如此实现的强度提高,在航空中可行的是,使用合金形式的铝。
通过给合金添加钪可以进一步显著提高铝的强度,就像
Figure BDA0003387147480000061
一样。然而,由于钪在室温中在铝中的溶解度较低,在此必须首先在快速凝固工艺、如熔体纺丝中将钪强制溶解在铝中,然后能够在温度在250℃至450℃的范围中时执行析出硬化。
表1中的这两种铝合金AlSi10Mg和
Figure BDA0003387147480000062
的一个特点是其适用于L-PBF法中的激光熔化。也就是说,这两种合金能够通过增材制造加工成飞行器的轻质构件。
图2在表2中示出不同的合金元素的物理特性。高于铝的合金元素具有比铝更高的蒸发焓。低于铝的合金元素具有比铝更低的蒸发焓。
图3在图表中示出
Figure BDA0003387147480000063
的合金组成部分的蒸气压的温度相关性。
图4在图表中示出根据本发明的铝合金的蒸气压的温度相关性。
在下文中描述用于制造铝合金、轻质构件前体和轻质构件的方法。
A)用于制造铝合金的方法
实例1粉末状的铝合金的制造
在惰性坩埚中熔化0.75重量%的Sc、0.35重量%的Zr、1.0重量%的Ti和97.9重量%的Al。能够将熔体在进一步加工之前均匀化。
将第一份额的熔体倒入惰性坩埚中,在所述坩埚中所述熔体冷却并硬化。在冷却时析出初级的Al3Sc、Al3Zr和Al3Ti相。所获得的材料被粉碎成粉末,其能够用于在粉末床中进行选择性激光熔化。
在熔体纺丝方法中,将第二份额的熔体倒入旋转的水冷的铜辊上。熔体以1000000K/s的速度冷却以形成带。熔体冷却得快至完全或基本上抑制Al3Sc、Al3Zr和Al3Ti的形成。将带切成短片。
将在这两个冷却方法中获得的合金材料粉碎成粉末,其能够用于粉末床中的选择性激光熔化。
实例2不同钛含量的粉末状的铝合金的制造
重复上述方法,将Ti的份额分别增加到3.0重量%、5.0重量%、10.0重量%和15.0重量%并且相应地减少Al的份额。Sc和Zr的份额保持不变。
实例3含钒的粉末状的铝合金的制造
重复实例1的方法,其中附加地向坩埚中加入2.0重量%的钒,并且Ti、Sc和Zr的份额保持恒定。
实例4含镍的粉末状的铝合金的制造
重复实例1的方法,其中附加地向坩埚中加入1.2重量%的镍,并且Ti、Sc和Zr的份额保持恒定。
实例5含铬钒的粉末状的铝合金的制造
重复实例1的方法,其中附加地向坩埚中加入1.0重量%的钒和2.0重量%的铬,并将钛的份额增加到5重量%。Zr含量保持不变。
B)用于在L-PBF法中制造轻质构件前体的方法
分别将来自上述实例1至5之一的铝合金粉末提供到通过选择性激光熔化进行增材制造的***中以形成粉末床。激光束根据数字信息在三维粉末床上移动,其中粉末床逐渐降低并且涂覆新的粉末层。逐点熔化的铝合金的冷却在此快速地进行,使得钪、锆和钛与铝合金的其他成分无关地并且与粉末是通过正常冷却还是例如以1000000K/s速度快速冷却来制造无关地完全或基本上或主要以固溶体的形式冻结。在扫描过程完成后,将由铝合金构成的构件前体从粉末床中取出。
C)用于制造轻质构件的方法
将在B)中制造的构件前体加热到例如在250℃至450℃,优选300℃至400℃并且更优选325℃至350℃的温度,在所述温度中引起各种Al3X相(X=Ti、Zr、Sc或单个元素的任何非化学计量的混合物)析出。Al3Ti同样被析出,但与Al3Sc和Al3Zr相比,主要部分的或更大份额的钛保留在固溶体中。

Claims (15)

1.一种铝合金,所述铝合金包含合金成分:
-份额为0.1重量%至15.0重量%的钛(Ti),
-份额为0.1重量%至3.0重量%的钪(Sc),
-份额为0.1重量%至3.0重量%的锆(Zr),
-其余铝(Al)和不可避免的杂质。
2.根据权利要求1所述的铝合金,
其特征在于,
所述铝合金包含份额为0.5重量%至5.0重量%的Ti,份额为0.2重量%至1.5重量%的Sc和份额为0.2重量%至1.5重量%的Zr。
3.根据权利要求1或2所述的铝合金,
其特征在于,
所述铝合金包含份额为1.0重量%至5.0重量%,优选1.0重量%至4.0重量%的Ti,份额为0.5重量%至1.0重量%的Sc和份额为0.2重量%至0.8重量%的Zr。
4.根据权利要求1至3中任一项所述的铝合金,
其特征在于,
所述铝合金包含一种、两种或更多种金属,所述金属选自铪(Hf)、钒(V)、铌(Nb)、铬(Cr)、钼(Mo)、硅(Si)、铁(Fe)、钴(Co)和镍(Ni),其中这些元素中的每个元素的份额为-直至100%的Ti份额,优选最多90%,优选最多70%,更优选最多50%的Ti份额,条件是这些金属的总份额为根据权利要求1至3中任一项所述的铝合金的最多15重量%,并且优选最多10重量%,或者
-0.1重量%至2重量%,条件是这些金属的总份额为根据权利要求1至3中任一项所述的铝合金的最多15重量%,并且优选最多10重量%。
5.根据上述权利要求中任一项所述的铝合金,
其特征在于,
所述合金包含份额为在0.1重量%至5重量%的范围内,优选在大于0.5重量%至5重量%的范围内,特别优选在0.7重量%至3重量%的范围内的钙(Ca)。
6.根据上述权利要求中任一项所述的铝合金,
其特征在于,
除了铝和不可避免的杂质之外,所述铝合金仅包含蒸发焓比铝更高或蒸气压比铝更低的金属。
7.根据上述权利要求中任一项所述的铝合金,
其特征在于,
所述铝合金不含镁和/或不含锰。
8.一种铝合金,
其特征在于,
所述铝合金由根据权利要求1所述的合金成分构成。
9.根据上述权利要求中任一项所述的铝合金,
其特征在于,
除了不可避免的杂质外,所述铝合金由以下构成:
-Al、Ti、Sc、Zr和根据权利要求4所述的一种、两种或更多种金属;
-Al、Ti、Sc、Zr和Cr,其中Cr份额在0.2重量%至3.5重量%的范围内,优选在0.5重量%至3.0重量%的范围内;
-Al、Ti、Sc、Zr和Ni,其中Ni份额在0.2重量%至2.5重量%的范围内,优选在0.5重量%至2.0重量%的范围内;
-Al、Ti、Sc、Zr和Mo,其中Mo份额在0.1重量%至1.3重量%的范围内,优选在0.5重量%至1.0重量%的范围内;
-Al、Ti、Sc、Zr和Fe,其中Fe份额在0.1重量%至2.5重量%的范围内,优选在0.5重量%至2.0重量%的范围内;
-Al、Ti、Sc、Zr和Ca,其中Ca份额在0.1重量%至5重量%的范围内,优选在大于0.5重量%至5重量%的范围内,特别优选在0.7重量%至5重量%的范围内。
10.一种由根据权利要求1至9中任一项所述的铝合金增材制造轻质构件前体的方法,所述方法包括:
a)将金属熔合成铝合金熔体;
b)对所述铝合金熔体进行冷却或让所述铝合金熔体冷却;
b1)在冷却速度为1000K/s至10000000K/s,尤其100000K/s至1000000K/s的快速凝固方法中,例如熔体纺丝、借助于气体或在水中的粉末雾化、窄带浇铸或喷射成型,以获得凝固的、可能是粉末状的铝合金与以固熔体形式包含在其中的钪;或者
b2)在冷却方法中,以获得凝固的铝合金;
c)将出自步骤b1)或b2)的铝合金粉碎成粉末。
11.一种由根据权利要求1至9中任一项所述的铝合金增材制造轻质构件前体的方法,所述方法包括:
d)由在权利要求10的步骤c)中获得的粉末制造粉末床;
e)在粉末局部熔化并且冷却局部熔化的区域或让局部熔化的区域冷却以获得由铝合金与以固熔体的形式获得的钪构成的轻质构件前体的情况下,在粉末床中用激光在激光熔化法中增材制造三维轻质构件前体。
12.一种制造轻质构件的方法,所述方法包括在通过析出硬化使轻质构件前体硬化的温度中对在根据权利要求11所述的方法中获得的轻质构件前体进行热处理。
13.一种轻质构件前体,所述轻质构件前体能够通过根据权利要求11所述的方法获得。
14.一种轻质构件,所述轻质构件能够通过根据权利要求12所述的方法获得。
15.一种根据权利要求1至9中任一项所述的铝合金或能够通过根据权利要求10所述的方法获得的粉末用于通过选择性激光熔化制造轻质构件前体和通过选择性激光熔化和随后的析出硬化来制造轻质构件的用途。
CN202111457894.3A 2020-12-01 2021-12-01 用于增材制造轻质构件的铝合金和方法 Pending CN114574731A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020131823.5A DE102020131823A1 (de) 2020-12-01 2020-12-01 Aluminiumlegierung und Verfahren zur additiven Herstellung von Leichtbauteilen
DE102020131823.5 2020-12-01

Publications (1)

Publication Number Publication Date
CN114574731A true CN114574731A (zh) 2022-06-03

Family

ID=78806288

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202180079924.3A Pending CN116529003A (zh) 2020-12-01 2021-11-26 铝合金和用于增材制造轻质部件的方法
CN202111457894.3A Pending CN114574731A (zh) 2020-12-01 2021-12-01 用于增材制造轻质构件的铝合金和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202180079924.3A Pending CN116529003A (zh) 2020-12-01 2021-11-26 铝合金和用于增材制造轻质部件的方法

Country Status (7)

Country Link
US (2) US20220168811A1 (zh)
EP (2) EP4008457A1 (zh)
JP (2) JP2023551028A (zh)
KR (1) KR20220077102A (zh)
CN (2) CN116529003A (zh)
DE (1) DE102020131823A1 (zh)
WO (1) WO2022117441A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117696058A (zh) * 2023-11-13 2024-03-15 上海东化催化剂有限公司 一种催化剂载体、催化剂及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018123B4 (de) 2007-04-16 2009-03-26 Eads Deutschland Gmbh Verfahren zur Herstellung eines Strukturbauteils aus einer Aluminiumbasislegierung
DE102010053274A1 (de) * 2010-12-02 2012-06-21 Eads Deutschland Gmbh Verfahren zum Herstellen einer AlScCa-Legierung sowie AlScCa-Legierung
CN102952956B (zh) * 2012-11-12 2014-04-09 北方工业大学 电解铝液微合金化六元中间合金及其制备和使用方法
EP3181711B1 (de) * 2015-12-14 2020-02-26 Apworks GmbH Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien
CN105781605B (zh) * 2016-03-31 2018-02-09 广州森莱宝实业有限公司 一种抑爆剂及其制备方法
US20190032175A1 (en) 2017-02-01 2019-01-31 Hrl Laboratories, Llc Aluminum alloys with grain refiners, and methods for making and using the same
WO2018236241A1 (ru) * 2017-06-21 2018-12-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Сплав на основе алюминия
CN108130451A (zh) * 2017-11-14 2018-06-08 北京世联信诺科技有限公司 一种闭孔泡沫铝合金及制备方法
CN108372292A (zh) * 2018-01-31 2018-08-07 上海交通大学 一种激光增材制造用铝基复合材料粉末及其制备方法
CN109047783B (zh) * 2018-08-15 2021-10-01 长沙新材料产业研究院有限公司 一种铝合金粉末及其制备方法
CN111218586A (zh) * 2020-01-10 2020-06-02 中国工程物理研究院机械制造工艺研究所 一种含有钪钛锆元素的3d打印用铝合金

Also Published As

Publication number Publication date
EP4255655A1 (en) 2023-10-11
DE102020131823A1 (de) 2022-06-02
JP2022087830A (ja) 2022-06-13
CN116529003A (zh) 2023-08-01
KR20220077102A (ko) 2022-06-08
EP4008457A1 (en) 2022-06-08
WO2022117441A1 (en) 2022-06-09
US20220168811A1 (en) 2022-06-02
US20240011131A1 (en) 2024-01-11
JP2023551028A (ja) 2023-12-06

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
EP2396436B1 (en) Aluminium die casting alloy
JP7049312B2 (ja) 高強度耐食性アルミニウム合金からのリボン及び粉末
US11976343B2 (en) High strength aluminium alloy for rapid solidification manufacturing processes
US20170120386A1 (en) Aluminum alloy products, and methods of making the same
JP5326114B2 (ja) 高強度銅合金
EP4083244A1 (en) Heat-resistant powdered aluminium material
TW201908499A (zh) 高溫零件及其製造方法
US11807927B2 (en) Complex copper alloy including high-entropy alloy and method of manufacturing same
CN114574731A (zh) 用于增材制造轻质构件的铝合金和方法
JPH0625774A (ja) TiB2 分散TiAl基複合材料の製造方法
JPS62109934A (ja) 室温特性を改善するためのアルミニウム化三ニッケル基組成物の処理方法
WO1995006760A1 (en) Light-weight, high strength beryllium-aluminum
WO1991019822A1 (en) Method for forging rapidly solidified magnesium base metal alloy billet
JPS648066B2 (zh)
JP4704722B2 (ja) 耐磨耗性と加工性とに優れた耐熱性Al基合金
Koczak et al. High performance powder metallurgy Aluminum alloys an overview
JP2024067683A (ja) アルミニウム合金及びその製造方法
JPS61231145A (ja) 低密度高力アルミニウム合金の製造法
JPH0741888A (ja) 高延性Ti−Al系合金
JPH0790433A (ja) 高延性Ti−Al系合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination