CN114551573A - 一种氮化镓p沟道器件 - Google Patents

一种氮化镓p沟道器件 Download PDF

Info

Publication number
CN114551573A
CN114551573A CN202210174673.3A CN202210174673A CN114551573A CN 114551573 A CN114551573 A CN 114551573A CN 202210174673 A CN202210174673 A CN 202210174673A CN 114551573 A CN114551573 A CN 114551573A
Authority
CN
China
Prior art keywords
layer
gan
channel
gallium nitride
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210174673.3A
Other languages
English (en)
Inventor
周琦
蔡永莲
陈匡黎
王守一
衡姿余
李竞研
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Original Assignee
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Guangdong Electronic Information Engineering Research Institute of UESTC filed Critical University of Electronic Science and Technology of China
Priority to CN202210174673.3A priority Critical patent/CN114551573A/zh
Publication of CN114551573A publication Critical patent/CN114551573A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于半导体技术领域,涉及一种氮化镓P沟道器件(P‑MOSFET)。本发明中氮化镓P‑MOSFET的AlGaN势垒层具有渐变Al组分,利用渐变Al组分AlGaN势垒层和P‑GaN沟道层之间的极化效应,在P‑GaN/AlGaN异质结界面产生二维空穴气(2DHG),形成导电空穴沟道,从而形成氮化镓P‑MOSFET。本发明的有益效果:利用渐变Al组分AlGaN势垒层,可以通过调节渐变Al组分AlGaN势垒层中各层的Al组分调节AlGaN与P‑GaN沟道层之间的极化强度,从而调节极化产生的2DHG浓度、氮化镓P‑MOSFET的阈值电压和电流能力;同时,也可以通过调节AlGaN势垒层中各层的Al组分,调节AlGaN/GaN异质结界面二维电子气(2DEG)浓度,从而实现氮化镓P‑MOSFET和氮化镓N‑MOSFET的单片集成。

Description

一种氮化镓P沟道器件
技术领域
本发明涉及半导体器件技术领域,涉及一种氮化镓P沟道器件。
背景技术
氮化镓材料作为第三代宽禁带代半导体材料,具有宽禁带、高功率密度、化学性质稳定、耐高温、耐腐蚀、抗辐射,适合高频、大功率应用。AlGaN/GaN异质结界面处由于材料极化效应而引起的2DEG具有高浓度、高迁移率的特点,因此器件可以实现高开关频率和低导通损耗。近10年GaN HEMT技术高速发展并逐步成熟,目前的GaN HEMT已经应用到快充、数据中心、地电动汽车等重要领域。GaN HEMT相较于Si基功率器件具有更小的导通电阻、更小的寄生电容,更低的快关损耗。工作速度快、转换效率高、功率密度大是GaN HEMT功率器件的核心性能优势。为了进一步提高GaN HEMT在高频低功耗方面的发展,全GaN的集成技术称为GaN器件的发展趋势。
但是目前只有成熟的GaN N型器件,全GaN单片集成只能利用全N-HEMT,电路复杂且功耗高。利用CMOS能够实现低的静态功耗,简化电路设计,提高IC性能。因此,目前GaN全集成需要解决的问题是:实现氮化镓P-MOSFET。
发明内容
针对上述问题,本发明提出了一种氮化镓P沟道器件(P-MOSFET),如图1、图2所示。利用渐变Al组分AlGaN做势垒层,AlGaN势垒层的Al组分可以是渐变也可以是陡变。利用P-GaN/AlGaN之间的极化效应,可以在其界面产生高密度的2DHG,实现氮化镓P-MOSFET。同时,通过调节AlGaN各层的Al组分,可以调节氮化镓P-MOSFET的器件电流能力、阈值电压。
本发明解决上述技术问题所采用的技术方案是:一种氮化镓P沟道器件,如图1、图2所示,从下至上依次包括层叠设置的衬底01、位于衬底01上方的缓冲层02、位于缓冲层02上方的AlGaN势垒层03、位于AlGaN势垒层03上方的P-GaN沟道层04;所述P-GaN沟道层04与AlGaN势垒层03构成异质结;在P-GaN沟道层04上表面覆盖有钝化层05;还包括凹槽栅结构,凹槽栅结构的凹槽位于P-GaN沟道层04中,在凹槽底部和侧壁覆盖有栅介质层06,且栅介质层06还沿钝化层05上表面向两侧延伸至覆盖钝化层05上表面,栅介质层06中淀积有栅极金属08,P-GaN沟道层04、栅介质层06和栅极金属08构成MIS栅结构;在所述P-GaN沟道层04上表面一端具有源极欧姆金属07,源极欧姆金属07的侧面与钝化层05和栅介质层06接触;在所述P-GaN沟道层04的另一端具有漏极欧姆金属09,漏极欧姆金属09的侧面与钝化层05和栅介质层06接触;其特征在于,所述AlGaN势垒层03中的Al组分为渐变的,其渐变方式为从靠近缓冲层02的一端到靠近P-GaN沟道层04一端逐渐增加。
进一步的,所述P-GaN沟道层04的掺杂浓度1~5(x1017cm-3),厚度为60-120nm。
进一步的,所述渐变Al组分AlGaN势垒层03的Al组分的变化范围在0-1之间。Al组分可以是渐变(如图1所示),也可以是突变(如图2所示)。
进一步的,所述衬底材料01可以为Si、蓝宝石、SiC和GaN中一种。
进一步的,所述源电极07和所述漏电极09的材料可以是Ni/Au,Ti/Au,Pd/Au或者Ni/Au/Ni中任一种多层金属。
进一步的,所述栅电极08材料可以是于Ni/Au,Pt/Au或者Mo/Au中任一种多层金属。
进一步的,所述钝化层05可以是二氧化硅、氮化硅、氧化铝、氧化镁和二氧化铪等中的一种或多种组合,其厚度可以为1-100nm。
进一步的,所述栅介质层06可以是二氧化硅、氮化硅、氧化铝和二氧化铪等中的一种或多种组合,其厚度可以为1-100nm。
本发明利用渐变Al组分AlGaN势垒层与P-GaN形成异质结,由于异质结之间的极化效应,在P-GaN/AlGaN异质结界面形成二维空穴气积累,二维空穴气在栅、源、漏压的共同作用下形成沿源、漏方向的空穴电流,形成氮化镓P-MOSFET。
本发明的有益效果:本发明首先是提供了一种实现氮化镓P-MOSFET的方法;其次,利用渐变Al组分AlGaN势垒层的氮化镓P-MOSFET的优势在于可以通过调节AlGaN势垒层不同位置处的Al组分,调节P-GaN/AlGaN异质结界面的二维空穴气浓度、AlGaN/GaN异质结界面二维电子气的浓度、氮化镓P-MOSFET的电流能力和阈值电压,如表1、图4和图5所示,为GaN CMOS的实现提供一种技术方案。
附图说明
图1所示为本发明实施例提供的一种氮化镓P沟道器件(AlGaN层Al组分渐变)
图2所示为本发明实施例提供的一种氮化镓P沟道器件(AlGaN层Al组分突变)
图3所示为本发明实施例提供的三种不同Al组分情况下的异质结能带图
图4所示为本发明实施例提供的三种不同Al组分情况下的转移特性曲线(线性)
图5所示为本发明实施例提供的三种不同Al组分情况下的转移特性曲线(对数)
图6所示为本发明实施例提供的输出特性曲线
具体实施方式
下面结合附图对本发明进行详细描述
本发明能够实现氮化镓P-MOSFET,且能通过调节势垒层的Al组分调节器件的电流能力和阈值电压。如图4所示。
实施例
本例结构如图2所示,特点是利用渐变Al组分AlGaN势垒层,外延结构从下至上包括:衬底01、位于衬底01上方的缓冲层02、位于缓冲层02上方的渐变Al组分AlGaN势垒层03、位于渐变Al组分AlGaN势垒层03上方的P-GaN沟道层04;所述P-GaN沟道层04与渐变Al组分AlGaN势垒层03构成异质结;在P-GaN沟道层04上表面覆盖有钝化层05;其特征在于,还包括凹槽栅结构,凹槽栅结构位于P-GaN沟道层04内,P-GaN凹槽上方覆盖有栅介质层06,在凹槽的栅介质上方淀积栅极金属08,P-GaN沟道层04、栅介质层06和栅极金属08构成MIS栅结构;在所述P-GaN沟道层04左端具有源极欧姆金属07;在所述P-GaN沟道层04右端具有漏极欧姆金属09。本实施例中Al组分为阶梯变化,所述渐变Al组分AlGaN势垒层03包括Al组分不同的三层,从下至上为Alx2GaN、Alx1GaN和AlxGaN。表1为AlGaN势垒层总厚度一定(Alx2GaN、Alx1GaN和AlxGaN厚度相同),7种不同Al组分情况下P-GaN/AlGaN异质结界面2DHG和AlGaN/GaN异质结界面2DEG浓度的情况。第03号和05号数据说明AlGaN势垒层的总厚度不变,x2和x的变化对空穴浓度和氮化镓P-MOSFET的电流、阈值电压有一定的影响。适当的调节x,x1,x2可以调节2DHG和2DEG的浓度和氮化镓P-MOSFET的电流能力和阈值电压。
本发明利用渐变Al组分AlGaN层作为势垒层的氮化镓P-MOSFET的工作原理:渐变Al组分AlGaN势垒层与P-GaN形成P-GaN/AlGaN异质结,异质结界面积累的2DHG在栅、源、漏电压的作用下沿着源、漏方向移动,形成空穴电流,实现氮化镓P-MOSFET。可以通过调节AlGaN势垒层各层的Al组分调节异质结极化的强度、2DHG浓度、2DEG浓度、器件的电流能力和阈值电压。如表1展示了将AlGaN层分为三层,从上至下每层的Al组分分别为x,x1,x2所对应的2DHG和2DEG的浓度。
表1
Figure BDA0003518615090000041
Figure BDA0003518615090000051
调节Al组分x,x1,x2的含量,可以优化2DHG和2DEG的浓度。可在同一外延片上同时集成GaN p-FET和GaN n-FET器件。

Claims (10)

1.一种氮化镓P沟道器件,从下至上依次包括层叠设置的衬底(01)、位于衬底(01)上方的缓冲层(02)、位于缓冲层(02)上方的AlGaN势垒层(03)、位于AlGaN势垒层(03)上方的P-GaN沟道层(04);所述P-GaN沟道层(04)与AlGaN势垒层(03)构成异质结;在P-GaN沟道层(04)上表面覆盖有钝化层(05);还包括凹槽栅结构,凹槽栅结构的凹槽位于P-GaN沟道层(04)中,在凹槽底部和侧壁覆盖有栅介质层(06),且栅介质层(06)还沿钝化层(05)上表面向两侧延伸至覆盖钝化层(05)上表面,栅介质层(06)中淀积有栅极金属(08),P-GaN沟道层(04)、栅介质层(06)和栅极金属(08)构成MIS栅结构;在所述P-GaN沟道层(04)上表面一端具有源极欧姆金属(07),源极欧姆金属(07)的侧面与钝化层(05)和栅介质层(06)接触;在所述P-GaN沟道层(04)的另一端具有漏极欧姆金属(09),漏极欧姆金属(09)的侧面与钝化层(05)和栅介质层(06)接触;其特征在于,所述AlGaN势垒层(03)中的Al组分为渐变的,其渐变方式为从靠近缓冲层(02)的一端到靠近P-GaN沟道层(04)一端逐渐增加。
2.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,基于P-GaN沟道层和AlGaN势垒层之间的极化效应,在其异质结界面产生二维空穴气形成空穴沟道。
3.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,所述P-GaN沟道层(04)的掺杂浓度1~5(x1017cm-3)。
4.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,所述P-GaN沟道层(04)厚度为60-120nm。
5.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,AlGaN势垒层(03)中Al组分变化范围在0-1之间,Al组分的渐变方式为线性变化或阶梯变化。
6.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,所述衬底(01)采用的材料为Si、蓝宝石、SiC或GaN中的一种。
7.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,所述钝化层(05)采用的材料为是二氧化硅、氮化硅、氧化铝、氧化镁和二氧化铪中的一种或多种组合,其厚度为1-100nm。
8.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,所述栅介质层(06)采用的材料为二氧化硅、氧化铝和二氧化铪中的一种或多种组合,其厚度为1-100nm。
9.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,所述源电极(07)和所述漏电极(09)的材料是Ni/Au,Ti/Au,Pd/Au或者Ni/Au/Ni中任一种多层金属。
10.根据权利要求1所述的一种氮化镓P沟道器件,其特征在于,所述栅电极(08)材料是Ni/Au,Pt/Au或者Mo/Au中任一种多层金属。
CN202210174673.3A 2022-02-24 2022-02-24 一种氮化镓p沟道器件 Pending CN114551573A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210174673.3A CN114551573A (zh) 2022-02-24 2022-02-24 一种氮化镓p沟道器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210174673.3A CN114551573A (zh) 2022-02-24 2022-02-24 一种氮化镓p沟道器件

Publications (1)

Publication Number Publication Date
CN114551573A true CN114551573A (zh) 2022-05-27

Family

ID=81678998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210174673.3A Pending CN114551573A (zh) 2022-02-24 2022-02-24 一种氮化镓p沟道器件

Country Status (1)

Country Link
CN (1) CN114551573A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932041A (zh) * 2016-05-06 2016-09-07 西安电子科技大学 N面GaN基鳍式高电子迁移率晶体管及制作方法
US20210126118A1 (en) * 2017-11-28 2021-04-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electronic component with a heterojunction provided with an improved buried barrier layer
CN113488536A (zh) * 2021-07-05 2021-10-08 西交利物浦大学 具有衬底电极的增强型的p型氮化镓器件及其制备方法
WO2021237901A1 (zh) * 2020-05-28 2021-12-02 中国科学院苏州纳米技术与纳米仿生研究所 Iii族氮化物凹槽栅常关型p沟道hemt器件及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932041A (zh) * 2016-05-06 2016-09-07 西安电子科技大学 N面GaN基鳍式高电子迁移率晶体管及制作方法
US20210126118A1 (en) * 2017-11-28 2021-04-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electronic component with a heterojunction provided with an improved buried barrier layer
WO2021237901A1 (zh) * 2020-05-28 2021-12-02 中国科学院苏州纳米技术与纳米仿生研究所 Iii族氮化物凹槽栅常关型p沟道hemt器件及其制作方法
CN113488536A (zh) * 2021-07-05 2021-10-08 西交利物浦大学 具有衬底电极的增强型的p型氮化镓器件及其制备方法

Similar Documents

Publication Publication Date Title
Im et al. Normally Off Single-Nanoribbon $\hbox {Al} _ {2}\hbox {O} _ {3}\hbox {/GaN} $ MISFET
US9614069B1 (en) III-Nitride semiconductors with recess regions and methods of manufacture
WO2010064362A1 (ja) 電界効果トランジスタ
CN104704637A (zh) 具有分级势垒层的器件
WO2014026018A1 (en) Iii-nitride enhancement mode transistors with tunable and high gate-source voltage rating
CN111490100B (zh) 半导体装置及其制造方法
KR20140070663A (ko) 리세스 전극 구조를 갖는 반도체 장치
US20220223700A1 (en) Radio frequency transistor amplifiers having widened and/or asymmetric source/drain regions for improved on-resistance performance
CN112216736A (zh) 高电子移动率晶体管与其制作方法
JP2020047741A (ja) 半導体装置
CN102194819A (zh) 一种基于MOS控制的增强型GaN异质结场效应晶体管
US20150034958A1 (en) Hemt-compatible lateral rectifier structure
US20220384423A1 (en) Nitride-based semiconductor bidirectional switching device and method for manufacturing the same
Hult et al. High voltage and low leakage GaN-on-Sic MISHEMTs on a “buffer-free” heterostructure
CN210897283U (zh) 一种半导体器件
Lu et al. GaN power electronics
WO2023236523A1 (zh) 一种增强型N沟道和P沟道GaN器件集成结构
CN114725091B (zh) 一种实现氮化镓cmos逻辑电路的结构
CN114551573A (zh) 一种氮化镓p沟道器件
JP6693142B2 (ja) 半導体装置、電子部品、電子機器、および半導体装置の製造方法
CN109817711B (zh) 具有AlGaN/GaN异质结的氮化镓横向晶体管及其制作方法
KR101985897B1 (ko) Hemt 제조방법
CN115997287B (zh) 氮化物基半导体ic芯片及其制造方法
US20230261054A1 (en) Radio frequency transistor amplifiers having self-aligned double implanted source/drain regions for improved on-resistance performance and related methods
CN116153996A (zh) 一种具有垂直复合钝化结构的GaN HEMT器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220527

WD01 Invention patent application deemed withdrawn after publication