CN114538921B - 一种玻璃相结合的大尺寸氧化锆致密烧结制品 - Google Patents

一种玻璃相结合的大尺寸氧化锆致密烧结制品 Download PDF

Info

Publication number
CN114538921B
CN114538921B CN202210267005.5A CN202210267005A CN114538921B CN 114538921 B CN114538921 B CN 114538921B CN 202210267005 A CN202210267005 A CN 202210267005A CN 114538921 B CN114538921 B CN 114538921B
Authority
CN
China
Prior art keywords
zirconia
glass
size
equal
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210267005.5A
Other languages
English (en)
Other versions
CN114538921A (zh
Inventor
尚心莲
孙红刚
杜一昊
夏淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority to CN202210267005.5A priority Critical patent/CN114538921B/zh
Publication of CN114538921A publication Critical patent/CN114538921A/zh
Application granted granted Critical
Publication of CN114538921B publication Critical patent/CN114538921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于耐火材料技术领域,涉及一种玻璃相结合的大尺寸氧化锆致密烧结制品。涉及的一种玻璃相结合的大尺寸氧化锆致密烧结制品的配料由玻璃相包覆氧化锆球形粉、氧化锆小颗粒和单斜氧化锆微粉组成;所述的玻璃相包覆氧化锆球形粉是一种内核为电熔稳定氧化锆细粉、外壳为玻璃相的氧化锆原料;玻璃相包覆的氧化锆球形占整个制品总质量的60~80%;玻璃相结合的大尺寸氧化锆致密烧结制品是一种通过液压或冷等静压成型的、常温下具有一定形状的耐火材料。本发明气孔率低密度高、力学强度高、热震稳定性和抗玻璃液侵蚀性较好,是一种适用于玻璃窑环境的大尺寸氧化锆耐火材料。

Description

一种玻璃相结合的大尺寸氧化锆致密烧结制品
技术领域
本发明属于耐火材料技术领域,特别涉及一种玻璃相结合的大尺寸氧化锆致密烧结制品。
背景技术
氧化锆陶瓷是一种重要的无机非金属制品,具有高熔点、高使用温度、强度大、耐磨性好等优点,在陶瓷、耐火材料,电子材料等领域得到了广泛的应用。
氧化锆具有单斜、四方、立方3种晶体结构,随着温度变化氧化锆会发生可逆的晶型转变,并伴随着较大的体积变化。纯氧化锆在自然环境下为单斜相,当被加热到1100~1200℃则转换为四方相,产生体积收缩,而当温度在降低过程950~100℃四方相又会转变成单斜相,产生极大的体积膨胀(体积膨胀量约4.7%)。这种相变过程造成纯氧化锆制品的碎裂乃至粉化。因而,纯氧化锆耐火材料几乎无法生产和使用。在氧化锆中添加稳定剂,高温下稳定剂中的金属离子进入氧化锆晶格,使其低温下仍能保持立方相或四方相(稳定相),通常的稳定剂为氧化钙、氧化镁、氧化钇、氧化铈等。另外,工业氧化锆原料由矿物制备过程中常伴生有二氧化铪。因而,氧化锆耐火材料主要化学成分为ZrO2、HfO2、以及稳定剂CaO、MgO、Y2O3、CeO2等。
玻璃熔窑尤其是特种玻璃熔融窑炉内衬所需大尺寸、致密氧化锆耐火制品长期无法被替代,目前广泛使用的是锆刚玉熔铸砖(w(ZrO2)=33~45%,体积密度为3.7~4.0 g/cm3,显气孔率≤3%)、氧化锆熔铸砖(w(ZrO2)≈94%、w(SiO2)≈5%,体积密度约为5.33 g/cm3,显气孔率趋近于0);微观结构分析可知,锆刚玉熔铸制品内部以互相交错的铝锆共晶体、刚玉和斜锆石相为骨架,玻璃相(即SiO2和碱性物质)填充于骨架间;玻璃相起到降低原料熔点及缓冲制品在浇铸冷却时由于相变产生的应力集中的作用,避免了制品的开裂损毁。熔铸制品具有密度大、气孔率低、强度大、抗玻璃液侵蚀能力强、可以制备大尺寸制品等优点,且氧化锆熔铸砖性能更为优异;但熔铸制品尤其是氧化锆熔铸砖熔融温度高、能耗高、生产工艺复杂、效率低,不符合绿色、环保的高温工业发展要求。
现有的烧结氧化锆耐火砖多以电熔稳定氧化锆为原料,通过调整颗粒级配的方式改变制品的气孔率和体积密度;电熔稳定氧化锆原料高温烧成时的体积稳定性好,但烧结活性差,制品气孔率较高(20%左右),无法满足在玻璃熔窑中使用;以高纯氧化锆造粒粉为原料生产的氧化锆块体陶瓷经高温烧成后显气孔率仅为1~5%,理论上可以作为理想的玻璃窑内衬砖使用;高纯氧化锆造粒粉通常是通过化学法或共沉淀法合成后喷雾造粒制得的,具有纯度高、烧结活性高、流动性好的特点,是制备小尺寸氧化锆致密陶瓷的优质原料。然而,实践中发现,对于单块质量超过10kg的较大尺寸氧化锆陶瓷,采用高纯氧化锆造粒粉成型的坯体在1500℃以上烧成开裂严重。其主要原因是:(1)所用高纯氧化锆造粒粉烧结活性过高,烧成收缩大(体积收缩约45%),导致坯体烧成时开裂;(2)高纯氧化锆陶瓷为氧化锆晶粒自结合,无玻璃相进行应力缓冲,抗热震性差,导致坯体在升降温时开裂;(3)氧化锆陶瓷中四方相与单斜相在烧成和冷却温度区间相变的体积效应较大,导致制品的开裂。因此,采用高纯氧化锆造粒粉为原料难以制备大尺寸的氧化锆陶瓷制品。
锆英石是一种自然界存在的天然矿物,也是生产二氧化锆的主要矿物。锆英石砖(w(ZrO2)≈65%、w(SiO2)≈32%)膨胀系数小、耐熔钢、玻璃侵蚀性好等优点被广泛应用于各种高温熔窑中,是烧结耐火材料的一个大类。但随着使用温度的升高,锆英石分解,致使锆英石质耐火制品的抗侵蚀性能大幅降低,其使用温度通常不超过1370℃,因此锆英石质原料无法满足制备特种玻璃熔铸关键部位的耐火砖。
结合氧化锆熔铸砖的性能分析得知,在高纯氧化锆耐火制品中加入适量玻璃相,在高温烧成及使用中玻璃相缓冲热应力,将有效提高大尺寸氧化锆陶瓷材料的韧性,制备出适用于特种玻璃熔窑的大尺寸致密的氧化锆耐火制品。然而,玻璃相的引入方式、分布状态及玻璃相含量对大尺寸氧化锆致密烧结体极为关键:直接引入的方式显然是无效的;氧化锆质原料的选择,氧化锆与玻璃相的化学组成及微观结构是大尺寸氧化锆致密烧结体制备的关键技术。
发明内容
本发明的目的提出一种玻璃相结合的大尺寸氧化锆致密烧结制品,使其通过调控氧化锆中玻璃相的含量与分布,实现大尺寸(单块制品质量为20~2000kg)、高致密度、高氧化锆含量耐火制品的成型、烧成,获得具有低气孔、高密度和优良的抗玻璃液侵蚀性能且生产成本较低的玻璃相结合的大尺寸氧化锆致密烧结制品。
本发明为完成上述目的采用如下技术方案:
一种玻璃相结合的大尺寸氧化锆致密烧结制品,大尺寸氧化锆致密烧结制品的化学组成为w(ZrO2+HfO2+CaO+Y2O3+MgO+SiO2+Al2O3+Na2O)≥99.0%,其中w(ZrO2+HfO2)≥85.0%,w(ZrO2+HfO2+CaO+Y2O3+MgO)≥90.0%,w(SiO2+Al2O3+Na2O)=5%~10%;所述大尺寸氧化锆致密烧结制品的显气孔率≤5%,体积密度为5.4~5.8g/cm3,常温耐压强度100~500MPa,单块制品质量20~2000kg;所述大尺寸氧化锆致密烧结制品的配料由玻璃相包覆氧化锆球形粉、氧化锆小颗粒和单斜氧化锆微粉组成;所述的玻璃相包覆氧化锆球形粉是一种内核为电熔稳定氧化锆细粉、外壳为玻璃相的氧化锆原料;所述玻璃相包覆的氧化锆球形粉粒径为大于等于55μm小于等于120μm;所述玻璃相包覆的氧化锆球形占整个制品总质量的60~80%;所述的氧化锆小颗粒为电熔稳定氧化锆或烧结稳定氧化锆中的一种,要求原料中立方相C- ZrO2的质量为大于等于80%;所述小颗粒的粒径为大于等于0.1mm小于等于1mm;所述氧化锆小颗粒占整个制品总质量的10~30%;所述单斜氧化锆微粉占整个制品总质量的5~10%;所述单斜氧化锆微粉中粒径D50≤10μm;所述的玻璃相结合的大尺寸氧化锆致密烧结制品是一种通过液压或冷等静压成型的、常温下具有一定形状的耐火材料,其经过最高烧成温度为1650~1900℃的高温氧化气氛下的热处理。
氧化锆小颗粒与氧化锆球形粉原料的稳定剂体系相同。
所述的玻璃相包覆的氧化锆球形粉,化学组成为w(ZrO2+HfO2+CaO+MgO+Y2O3+SiO2+Al2O3+Na2O)≥98%,其中w (SiO2+Al2O3+Na2O) =8%~25%,w (Na2O) =0.5%~2%,是一种以电熔稳定氧化锆细粉为核心、玻璃相均匀包覆于表面的球形粉。
所述的电熔稳定氧化锆小颗粒或烧结稳定氧化锆小颗粒的纯度为w(ZrO2+HfO2+CaO+MgO+Y2O3) ≥98.0%。
所述的单斜氧化锆微粉化学成分为w(ZrO2+HfO2)≥99.5%。
本发明提出的一种玻璃相结合的大尺寸氧化锆致密烧结制品以玻璃相包覆的氧化锆球形粉为主要原料,适量电熔氧化锆小颗粒为骨料,少量单斜氧化锆微粉为添加剂,制备出一种适用于玻璃窑环境的大尺寸氧化锆致密烧结制品;采用的玻璃相包覆氧化锆球形粉粒度较小且球形度较高,具有较好的流动性,在液压或冷等静压过程过更容易达到均匀分布;氧化锆球形粉表面包覆的玻璃相一方面可以降低烧成温度、提高氧化锆耐火制品致密度的作用,另一方面高温下玻璃相软化可以起到缓冲氧化锆相变产生的应力作用,有利于防止制品的烧成开裂和提高制品的抗热震性;单斜相氧化锆微粉烧结性活性高但相变产生的体积作用较大,在玻璃相存在的氧化锆制品中,单斜锆微粉的相变开裂得到缓冲,促烧作用得到更好的体现;本发明提出的玻璃相结合的大尺寸氧化锆致密烧结制品以稳定立方相C- ZrO2为主,玻璃相为结合相,在高温烧结中玻璃相软化具有较好的流动性,均匀分布在氧化锆骨料表面与基质之间;该制品气孔率低密度高、力学强度高、热震稳定性和抗玻璃液侵蚀性较好,是一种适用于玻璃窑环境的大尺寸氧化锆耐火材料。
具体实施方式
结合具体实施例对本发明加以详细说明:
实施例1:
分别称取粒度大于等于55μm小于等于75μm的化学组成为w(ZrO2+HfO2+CaO+SiO2+Al2O3)=98%、w (SiO2+Al2O3+Na2O) =15.8%、w (Na2O) =2%的玻璃相包覆电熔氧化钙稳定氧化锆球形粉16kg,粒度大于等于0.1mm小于等于0.5mm的化学组成为w(ZrO2+HfO2+CaO)=99.5%的电熔氧化钙稳定氧化锆小颗粒2kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉2kg,加入适量结合剂后经振动磨充分混匀;摩擦压砖机成型为单块质量约20kg的氧化锆致密砖坯体,110℃干燥后在普通电阻炉中1650℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例2:
分别称取粒度大于等于60μm小于等于100μm的化学组成为w(ZrO2+HfO2+MgO+SiO2+Al2O3)=98.5%、w (SiO2+Al2O3+Na2O) =25%、w (Na2O) =0.5%玻璃相包覆电熔氧化镁稳定氧化锆球形粉75kg,粒度大于等于0.3mm小于等于0.8mm的化学组成为w(ZrO2+HfO2+MgO)=99.2%的烧结氧化镁稳定氧化锆小颗粒15kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉10kg,加入适量结合剂后经振动磨充分混匀;采用冷等静压成型为单块质量约100kg的氧化锆致密砖坯体,110℃干燥后在燃气窑中1700℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例3:
分别称取粒度大于等于60μm小于等于100μm的化学组成为w(ZrO2+HfO2+Y2O3+SiO2+Al2O3)=98.5%、w (SiO2+Al2O3+Na2O) =10.5%、w (Na2O) =0.5%玻璃相包覆电熔氧化钇稳定氧化锆球形粉150kg,粒度大于等于0.3mm小于等于0.8mm的化学组成为w(ZrO2+HfO2+Y2O3)=99.0%的电熔氧化钇稳定氧化锆小颗粒40kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉10kg,加入适量结合剂后经振动磨充分混匀;冷等静压成型为单块质量约200kg的氧化锆致密砖坯体,110℃干燥后在燃气窑中1780℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例4:
分别称取粒度大于等于55μm小于等于100μm的化学组成为w(ZrO2+HfO2+CaO+MgO +SiO2+Al2O3)=98.5%、w (SiO2+Al2O3+Na2O) =23%、w (Na2O) =0.6%玻璃相包覆电熔氧化镁、氧化钙稳定氧化锆球形粉350kg,粒度大于等于0.5mm小于等于1mm的化学组成为w(ZrO2+HfO2+CaO+MgO)=99.3%的烧结氧化镁、氧化钙稳定氧化锆小颗粒110kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉40kg,加入适量结合剂后经振动磨充分混匀;冷等静压成型为单块质量约为500kg的氧化锆砖坯体,110℃干燥后在燃气窑中1800℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例5:
分别称取粒度大于等于75μm小于等于120μm的化学组成为w(ZrO2+HfO2+CaO+MgO +SiO2+Al2O3)=99.2% 、w (SiO2+Al2O3+Na2O) =20%、w (Na2O) =0.8%玻璃相包覆电熔氧化镁、氧化钙稳定氧化锆球形粉480kg,粒度大于等于0.5mm小于等于1mm的化学组成为w(ZrO2+HfO2+CaO+MgO)=99.0%的电熔氧化镁、氧化钙稳定氧化锆小颗粒240kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉80kg,加入适量结合剂后经振动磨充分混匀;冷等静压成型为单块质量约为800kg的氧化锆砖坯体,130℃干燥后在燃气窑中1750℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例6:
分别称取粒度大于等于75μm小于等于120μm的化学组成为w(ZrO2+HfO2+CaO+Y2O3+SiO2+Al2O3)=98.5%、w (SiO2+Al2O3+Na2O) =20.6%、w (Na2O) =1.6%玻璃相包覆电熔氧化钇、氧化钙稳定氧化锆球形粉650kg,粒度大于等于0.5mm小于等于0.8mm的化学组成为w(ZrO2+HfO2+CaO+Y2O3)=99.0%的电熔氧化钇、氧化钙稳定氧化锆小颗粒250kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉100kg,加入适量结合剂后经振动磨充分混匀;冷等静压成型为单块质量约为1000kg的氧化锆砖坯体,120℃干燥后在燃气窑中1850℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例7:
分别称取粒度大于等于55μm小于等于90μm的化学组成为w(ZrO2+HfO2+CaO+Y2O3+SiO2+Al2O3)=98.5%、w (SiO2+Al2O3+Na2O) =9.5%、w (Na2O) =0.5%玻璃相包覆电熔氧化钇、氧化钙稳定氧化锆球形粉1095kg,粒度大于等于0.2mm小于等于0.5mm的化学组成为w(ZrO2+HfO2+CaO+Y2O3)=99.0%的烧结氧化钇、氧化钙稳定氧化锆小颗粒270kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉135kg,加入适量结合剂后经振动磨充分混匀;冷等静压成型为单块质量约为1500kg的氧化锆砖坯体,110℃干燥后在燃气窑中1800℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例8:
分别称取粒度大于等于60μm小于等于100μm的化学组成为w(ZrO2+HfO2+Y2O3+MgO+SiO2+Al2O3)=98.5%、w (SiO2+Al2O3+Na2O) =14%、w (Na2O) =0.5%玻璃相包覆电熔氧化钇、氧化钙稳定氧化锆球形粉1260kg,粒度大于等于0.5mm小于等于1mm的化学组成为w(ZrO2+HfO2+MgO+Y2O3)=99.0%的电熔氧化钇、氧化镁稳定氧化锆小颗粒600kg,粒度D50≤10μm的化学组成为w(ZrO2+HfO2)≥99.5%的单斜氧化锆微粉140kg,加入适量结合剂后经振动磨充分混匀;冷等静压成型为单块质量约为2000kg的氧化锆砖坯体,110℃干燥后在燃气窑中1900℃烧成,即得玻璃相结合的氧化锆致密耐火制品。该制品的性能参数如下表所示,该制品通过烧结法得到,密度大、强度高,可作为玻璃窑内衬砖使用。
实施例1~8所得制品的性能如下表所示。
Figure DEST_PATH_IMAGE001

Claims (5)

1.一种玻璃相结合的大尺寸氧化锆致密烧结制品,其特征在于:
大尺寸氧化锆致密烧结制品的化学组成为w(ZrO2+HfO2+CaO+Y2O3+MgO+SiO2+Al2O3+Na2O)≥99.0%,其中w(ZrO2+HfO2)≥85.0%,w(ZrO2+HfO2+CaO+Y2O3+MgO)≥90.0%,w(SiO2+Al2O3+Na2O)=5%~10%;所述大尺寸氧化锆致密烧结制品的显气孔率≤5%,体积密度为5.4~5.8g/cm3,常温耐压强度100~500MPa,单块制品质量20~2000kg;所述大尺寸氧化锆致密烧结制品的配料由玻璃相包覆氧化锆球形粉、氧化锆小颗粒和单斜氧化锆微粉组成;所述的玻璃相包覆氧化锆球形粉是一种内核为电熔稳定氧化锆细粉、外壳为玻璃相的氧化锆原料;所述玻璃相包覆氧化锆球形粉的粒径大于等于55μm小于等于120μm;所述玻璃相包覆氧化锆球形粉的质量占整个制品总质量的60~80%;所述的氧化锆小颗粒为电熔稳定氧化锆或烧结稳定氧化锆中的一种,要求原料中立方相C- ZrO2的质量为大于等于80%;所述氧化锆小颗粒的粒径为大于等于0.1mm小于等于1mm;所述氧化锆小颗粒占整个制品总质量的10~30%;所述单斜氧化锆微粉占整个制品总质量的5~10%;所述单斜氧化锆微粉中粒径D50≤10μm;所述的玻璃相结合的大尺寸氧化锆致密烧结制品是一种通过液压或冷等静压成型的、常温下具有一定形状的耐火材料,其经过最高烧成温度为1650~1900℃的高温氧化气氛下的热处理。
2.如权利要求1所述的一种玻璃相结合的大尺寸氧化锆致密烧结制品,其特征在于:氧化锆小颗粒与玻璃相包覆氧化锆球形粉原料的稳定剂体系相同。
3.如权利要求1所述的一种玻璃相结合的大尺寸氧化锆致密烧结制品,其特征在于:所述玻璃相包覆氧化锆球形粉的化学组成为w(ZrO2+HfO2+CaO+MgO+Y2O3+SiO2+Al2O3+Na2O)≥98%,其中w (SiO2+Al2O3+Na2O) =8%~25%,w (Na2O) =0.5%~2%,是一种以电熔稳定氧化锆细粉为核心、玻璃相均匀包覆于表面的球形粉。
4.如权利要求1所述的一种玻璃相结合的大尺寸氧化锆致密烧结制品,其特征在于:所述的电熔稳定氧化锆小颗粒或烧结稳定氧化锆小颗粒的纯度为w(ZrO2+HfO2+CaO+MgO+Y2O3) ≥98.0%。
5.如权利要求1所述的一种玻璃相结合的大尺寸氧化锆致密烧结制品,其特征在于:所述的单斜氧化锆微粉化学成分为w(ZrO2+HfO2)≥99.5%。
CN202210267005.5A 2022-03-18 2022-03-18 一种玻璃相结合的大尺寸氧化锆致密烧结制品 Active CN114538921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210267005.5A CN114538921B (zh) 2022-03-18 2022-03-18 一种玻璃相结合的大尺寸氧化锆致密烧结制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210267005.5A CN114538921B (zh) 2022-03-18 2022-03-18 一种玻璃相结合的大尺寸氧化锆致密烧结制品

Publications (2)

Publication Number Publication Date
CN114538921A CN114538921A (zh) 2022-05-27
CN114538921B true CN114538921B (zh) 2022-11-29

Family

ID=81663116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210267005.5A Active CN114538921B (zh) 2022-03-18 2022-03-18 一种玻璃相结合的大尺寸氧化锆致密烧结制品

Country Status (1)

Country Link
CN (1) CN114538921B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116161862A (zh) * 2023-01-05 2023-05-26 郑州方铭高温陶瓷新材料有限公司 特种玻璃制备用旋转管及其制备方法
CN116675545A (zh) * 2023-06-02 2023-09-01 中钢集团洛阳耐火材料研究院有限公司 一种抗侵蚀渗透的高纯氧化锆耐火制品的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253126A (zh) * 1999-11-19 2000-05-17 中国科学院上海硅酸盐研究所 低温液相烧结氧化锆增韧陶瓷材料
JP2013043811A (ja) * 2011-08-25 2013-03-04 Asahi Glass Co Ltd 安定化ジルコニア焼結耐火物及びその製造方法
CN108285343A (zh) * 2018-01-15 2018-07-17 华南理工大学 一种生物活性玻璃包覆改性氧化锆牙科陶瓷材料的制备方法
CN109369181A (zh) * 2018-12-10 2019-02-22 中钢集团洛阳耐火材料研究院有限公司 一种体积稳定的高纯氧化锆耐火制品
CN110845245A (zh) * 2019-12-13 2020-02-28 中钢集团洛阳耐火材料研究院有限公司 一种致密的高纯氧化锆耐火制品
CN113307610A (zh) * 2021-06-11 2021-08-27 内蒙古工业大学 高致密度石英-氧化锆复相陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253126A (zh) * 1999-11-19 2000-05-17 中国科学院上海硅酸盐研究所 低温液相烧结氧化锆增韧陶瓷材料
JP2013043811A (ja) * 2011-08-25 2013-03-04 Asahi Glass Co Ltd 安定化ジルコニア焼結耐火物及びその製造方法
CN108285343A (zh) * 2018-01-15 2018-07-17 华南理工大学 一种生物活性玻璃包覆改性氧化锆牙科陶瓷材料的制备方法
CN109369181A (zh) * 2018-12-10 2019-02-22 中钢集团洛阳耐火材料研究院有限公司 一种体积稳定的高纯氧化锆耐火制品
CN110845245A (zh) * 2019-12-13 2020-02-28 中钢集团洛阳耐火材料研究院有限公司 一种致密的高纯氧化锆耐火制品
CN113307610A (zh) * 2021-06-11 2021-08-27 内蒙古工业大学 高致密度石英-氧化锆复相陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
国外玻璃熔窑用耐火材料的新进展;苑金生;《玻璃》;19970625(第03期);第29-30、43页 *

Also Published As

Publication number Publication date
CN114538921A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN114538921B (zh) 一种玻璃相结合的大尺寸氧化锆致密烧结制品
CN101215176B (zh) 高强低导热节能耐火材料
CN110845245B (zh) 一种致密的高纯氧化锆耐火制品
Gu et al. Enhancement of the thermal shock resistance of MgO–C slide plate materials with the addition of nano-ZrO2 modified magnesia aggregates
Yan et al. Effect of microporous magnesia aggregates on microstructure and properties of periclase-magnesium aluminate spinel castables
CN112521168B (zh) 煤烧多复合尖晶石材料及其制备方法和应用
CN105693259A (zh) 一种刚玉质尖晶石固溶体耐火材料制备工艺
CN109400191A (zh) 一种高纯氧化锆隔热耐火制品
Sarkar et al. Formation and densification of mullite through solid-oxide reaction technique using commercial-grade raw materials
CN1303834A (zh) 一种刚玉莫来石制品
CN111704474A (zh) 一种超高温冶炼用莫来石质耐火浇注料
Fan et al. Thermal-shock stable Al2O3 crucible for superalloy smelting through slip casting with particle gradation
Kumar et al. Thermo-mechanical properties of mullite—zirconia composites derived from reaction sintering of zircon and sillimanite beach sand: Effect of CaO
Sakihama et al. Microstructure development in porous calcium hexaluminate and application as a high-temperature thermal insulator: a critical review
CN114315379B (zh) 一种玻璃相包覆的氧化锆球形粉及制备方法
Sarkar Nanotechnology in refractory castables—an overview
CN112898036A (zh) 一种高性能莫来石浇注料及其制备方法
Salomão et al. Combined effects of SiO2 ratio and purity on physical properties and microstructure of in situ alumina‐mullite ceramic
DePoorter et al. Structural ceramics
CN112573932A (zh) 均质体再烧结电熔锆莫来石砖及其制备方法
CN106927840B (zh) 抗热震复相陶瓷材料及基于该材料的陶瓷漏嘴的制备
CN110981474B (zh) 一种氧化锆轻质保温耐火制品
Aydin et al. Characterization and production of slip casts mullite–zirconia composites
EP1044177A1 (en) Dense refractories with improved thermal shock resistance
TWI443076B (zh) 鎂鉻磚之組合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant