CN114488760B - 一种基于双多路门控环形振荡器的再量化时间数字转换器 - Google Patents

一种基于双多路门控环形振荡器的再量化时间数字转换器 Download PDF

Info

Publication number
CN114488760B
CN114488760B CN202210076624.6A CN202210076624A CN114488760B CN 114488760 B CN114488760 B CN 114488760B CN 202210076624 A CN202210076624 A CN 202210076624A CN 114488760 B CN114488760 B CN 114488760B
Authority
CN
China
Prior art keywords
ring oscillator
multiplexer
gated ring
signal
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210076624.6A
Other languages
English (en)
Other versions
CN114488760A (zh
Inventor
王政
容允祚
谢倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210076624.6A priority Critical patent/CN114488760B/zh
Publication of CN114488760A publication Critical patent/CN114488760A/zh
Application granted granted Critical
Publication of CN114488760B publication Critical patent/CN114488760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一种基于双多路门控环形振荡器的再量化时间数字转换器,属于数模混合电路领域。所述时间数字转换器包括脉冲产生电路、第一门控环形振荡器、第二门控环形振荡器、再量化电路和数据修正电路,其中,再量化电路由译码器、第一多路复用器、第二多路复用器、第三多路复用器、比较器、共模检测电路组成,数据修正电路由一阶差分电路、延时电路、加法器组成。本发明通过将两个存在失配的基于多路门控环形振荡器的时间数字转换器输出进行相加,然后对两者量化误差之和再次量化后进行消除,从而使其等价于一个最小可分辨时间为原来一半的时间数字转换器。

Description

一种基于双多路门控环形振荡器的再量化时间数字转换器
技术领域
本发明属于数模混合电路领域,具体涉及一种基于双多路门控环形振荡器的再量化时间数字转换器。
背景技术
数字锁相环(DPLL)在无线频率合成器和有线应用时钟恢复设计中是传统模拟锁相环的一个有吸引力的替代方案,可以缩小所需的芯片尺寸并且可用于数字密集型校准和调制。通常数字锁相环采用部分数字或全数字,使用时间数字转换器(Time-to-digitalconverter,TDC)代替鉴相器,而数字锁相环的带内噪声主要为时间数字转换器引入的量化噪声。因此,时间数字转换器如何降低量化噪声成为了低噪声数字锁相环的关键之一,通常方法有提高时间分辨率以及提高线性度两种。
学术界在2007年提出了基于门控环形振荡器(Gated-ring-oscillator,GRO)的时间数字转换器,这种结构只允许振荡器在给定的测量期间发生振荡,并努力冻结测量之间的环形振荡器状态,测量一个测量间隔内延迟单元转换的次数。出于提高时间分辨率的需要,在2008年提出了基于多路门控环形振荡器(Multi-path GRO)的时间数字转换器,由于使用了多路输入的反相器,降低了每级的延时,从而可以实现皮秒量级的时间分辨率。然而对于低噪声数字锁相环而言,皮秒级的量化误差仍有待降低。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种基于双多路门控环形振荡器的再量化时间数字转换器。本发明通过对两个多路门控环形振荡器的量化误差进行再次量化,实现时间分辨率的提高。
为实现上述目的,本发明采用的技术方案如下:
一种基于双多路门控环形振荡器的再量化时间数字转换器,包括脉冲产生电路(PG)、第一门控环形振荡器(GRO1)、第二门控环形振荡器(GRO2)、再量化电路和数据修正电路,其中,所述再量化电路由译码器(Decoder)、第一多路复用器(MUX1)、第二多路复用器(MUX2)、第三多路复用器(MUX3)、比较器(CMP)、共模检测电路(CMD)组成,所述数据修正电路由一阶差分电路(Diff)、延时电路(delay)、加法器组成;
开始信号Start和停止信号Stop输入脉冲产生电路,脉冲产生电路将开始信号Start和停止信号Stop上升沿的输入时间差Tin转化为脉宽等于Tin的高电平脉冲EN和脉宽等于Tin的低电平脉冲EN_n;高电平脉冲EN输入第二NMOS管M2和第四NMOS管M4,低电平脉冲输入第一PMOS管M1和第三PMOS管M3,第一门控环形振荡器通过第一PMOS管M1连接电源信号VDD、通过第二NMOS管M2接地,第二门控环形振荡器通过第三PMOS管M3连接电源信号VDD、通过第四NMOS管M4接地;第一门控环形振荡器在使能信号EN为高电平、EN_n为低电平时开始振荡,输出N个在高低电平之间不断翻转的第一振荡波形V1[N:1];第二门控环形振荡器在使能信号EN为高电平、EN_n为低电平时开始振荡,输出N个在高低电平之间不断翻转的第二振荡波形V2[N:1];第一振荡波形V1[N:1]分别输入译码器(Decoder)和第一多路复用器(MUX1),第二振荡波形V2[N:1]分别输入译码器(Decoder)和第二多路复用器(MUX2);译码器的复位端连接开始信号Start,在开始信号Start上升沿时译码器将所有输出复位为0,并对第一振荡波形V1[N:1]中所有波形的翻转次数进行计数得到输出D1,对第二振荡波形V2[N:1]中所有波形的翻转次数进行计数得到输出D2;当第一门控环形振荡器和第二门控环形振荡器处于暂停状态时,根据第一门控环形振荡器和第二门控环形振荡器未翻转的相邻反相器的状态,输出第一选择信号SEL1[N:1]控制第一多路复用器,输出第二选择信号SEL2[N:1]控制第二多路复用器,输出第三选择信号SEL3[1:0]控制第三多路复用器;第一多路复用器根据第一选择信号SEL1[N:1]选择第一振荡波形V1[N:1]中对应地址的信号并输出,记为V1;第二多路复用器根据第二选择信号SEL2[N:1]选择第二振荡波形V2[N:1]中对应地址的信号并输出,记为V2;共模检测电路(CMD)检测输入信号V1和V2的共模电压,若共模电压高于预设阈值电压Vth则输出信号XCMD为高电平,反之XCMD为低电平;比较器比较输入信号V1和V2的电压,若V1高于V2则输出信号XCMP为高电平,反之XCMP为低电平;第三多路复用器根据第三选择信号SEL3[1:0],选择输出XCMD或XCMP或对XCMP取反,记为输出信号X;延时电路(delay)对停止信号Stop进行延时后作为时钟信号输入到一阶差分电路(Diff);一阶差分电路对输出信号X进行一阶差分得到输出SX;加法器将译码器输出的D1和D2相加后、再减去输出SX,即可得到最终的输出信号ReQ。
进一步的,第一门控环形振荡器和第二门控环形振荡器处于暂停状态时,第一门控环形振荡器和第二门控环形振荡器中都存在输出同相电平的相邻两个反相器,该相邻两个反相器的输出电平同为低电平或者同为高电平,对应门控环形振荡器分别记作0状态(同为低电平)或者1状态(同为高电平);第一门控环形振荡器中输出同相电平的相邻两个反相器的电压分别记为V1i和V1i+1,第二门控环形振荡器中输出同相电平的相邻两个反相器的电压分别记为V2i和V2i+1;当第一门控环形振荡器处于0状态、第二门控环形振荡器处于0状态时,第一多路复用器的输出信号V1为V1i、第二多路复用器的输出信号V2为V2i+1、第三多路复用器的输出信号X为XCMP取反;当第一门控环形振荡器处于0状态、第二门控环形振荡器处于1状态时,第一多路复用器的输出信号V1为V1i+1、第二多路复用器的输出信号V2为V2i、第三多路复用器的输出信号X为XCMD;当第一门控环形振荡器处于1状态、第二门控环形振荡器处于0状态时,第一多路复用器的输出信号V1为V1i、第二多路复用器的输出信号V2为V2i+1、第三多路复用器的输出信号X为XCMD;当第一门控环形振荡器处于1状态、第二门控环形振荡器处于1状态时,第一多路复用器的输出信号V1为V1i、第二多路复用器的输出信号V2为V2i+1、第三多路复用器的输出信号X为XCMP。具体如下表所示:
GRO1、GRO2状态 MUX1、MUX2输出V1、V2 MUX3输出X
GRO1 0状态,GRO2 0状态 V1<sub>i</sub>,V2<sub>i+1</sub> XCMP取反
GRO1 0状态,GRO2 1状态 V1<sub>i+1</sub>,V2<sub>i</sub> XCMD
GRO1 1状态,GRO2 0状态 V1<sub>i</sub>,V2<sub>i+1</sub> XCMD
GRO1 1状态,GRO2 1状态 V1<sub>i</sub>,V2<sub>i+1</sub> XCMP
进一步的,所述第一门控环形振荡器和第二门控环形振荡器为电路结构完全相同的多路门控环形振荡器,通过控制内部反相器晶体管的宽长比,使第一门控环形振荡器和第二门控环形振荡器的反相器的延时不同。
进一步的,所述第一多路复用器和第二多路复用器为模拟多路复用器,第三多路复用器为数字多路复用器。
本发明提供的一种基于双多路门控环形振荡器的再量化时间数字转换器,工作原理为:输入时间差Tin经过第一门控环形振荡器和第二门控环形振荡器后分别产生两个蕴含在振荡器输出波形中的量化误差Q1、Q2,以及通过译码器产生的两个整数D1、D2;每个门控环形振荡器的量化误差信息包含在输出同相电平的相邻两个反相器的输出电压波形Vi、Vi+1中,该两个反相器的输出电平同为低电平或者同为高电平,对应门控环形振荡器分别记作0状态或者1状态,如图2及图3所示,其量化误差可以表示为:
Figure GDA0003850056750000041
(0状态)或
Figure GDA0003850056750000042
Figure GDA0003850056750000043
(1状态);
当输入时间误差为Tin[n],第一门控环形振荡器的每级反相器延时为
Figure GDA0003850056750000044
第二门控环形振荡器的每级反相器延时为
Figure GDA0003850056750000045
则第一门控环形振荡器在测量时间内发生的电平翻转次数D1[n]等于Tin[n]除以其每级反相器延时,再减去量化误差Q1[n]的一阶整形;第二门控环形振荡器在测量时间内发生的电平翻转次数D2[n]等于Tin[n]除以其每级反相器延时,再减去量化误差Q2[n]的一阶整形:
D1[n]=(K-Δk)*Tin[n]-Q1[n]+Q1[n-1]。
D2[n]=(K+Δk)*Tin[n]-Q2[n]+Q2[n-1]。
两者相加得到的初步数据D[n]为:
D[n]=2K*Tin[n]-(Q1[n]+Q2[n])+(Q1[n-1]+Q2[n-1])。
由于D[n]约为D1[n]和D2[n]的两倍,可以将其近似看作时间分辨率提高一倍;但此时的量化误差也随之提高一倍,有效分辨率并没有改善一倍,需要用再量化电路和数据修正电路消除一半量化误差;
在第n次测量时,第一门控环形振荡器和第二门控环形振荡器的量化误差为:
Figure GDA0003850056750000046
Figure GDA0003850056750000047
再量化电路再次量化得到的整数X[n]为:
Figure GDA0003850056750000048
最后将X[n]经一阶差分后从初步数据D[n]中减去,整体量化误差下降为
Figure GDA0003850056750000049
与Q1[n]、Q2[n]的方差同为1/12;从而使其最小可分辨时间变为传统基于单个多路门控环形振荡器的时间数字转换器的一半,有效位数增加一位。
本发明的有益效果为:
本发明通过将两个存在失配的基于多路门控环形振荡器的时间数字转换器输出进行相加,然后对两者量化误差之和再次量化后进行消除,从而使其等价于一个最小可分辨时间为原来一半的时间数字转换器。相比目前基于单个多路门控环形振荡器的时间数字转换器,其环形振荡器每级延迟时间已接近设计极限;本发明则通过再次量化的方式,可以在不降低环形振荡器每级反相器延迟时间的前提下提升时间分辨率至原来两倍。
附图说明
图1为本发明提出的基于双多路门控环形振荡器的再量化时间数字转换器原理图;
图2为门控环形振荡器暂停时处在0状态的量化误差示意图;
图3为门控环形振荡器暂停时处在1状态的量化误差示意图;
图4为本发明实施例1的基于双多路门控环形振荡器的再量化时间数字转换器及相应的测试电路原理图;
图5为本发明实施例1的部分内部信号时序图。
具体实施方式
为使本发明的目的、技术方案和优点更加清晰,结合以下具体实施例,并参照附图,对本发明做进一步的说明。
下述非限制性实施例可以使本领域的普通技术人员更全面的理解本方明,但不以任何方式限制本发明。
实施例1
本实施例提供了一种基于双多路门控环形振荡器的再量化时间数字转换器。如图1所示,包括脉冲产生电路(PG)、第一门控环形振荡器(GRO1)、第二门控环形振荡器(GRO2)、译码器(Decoder)、第一多路复用器(MUX1)、第二多路复用器(MUX2)、第三多路复用器(MUX3)、比较器(CMP)、共模检测电路(CMD)、一阶差分电路(Diff)、延时电路(delay)、加法器;
第一门控环形振荡器每级反相器延时为1/0.955ps,第二门控环形振荡器每级反相器延时为1/1.045ps,两者可以看作是在设计时由每级反相器延时为1ps的门控振荡器通过正反方向的微调而产生;
译码器(Decoder)、第一多路复用器(MUX1)、第二多路复用器(MUX2)、第三多路复用器(MUX3)、比较器(CMP)、共模检测电路(CMD)组成的再量化电路根据第一门控环形振荡器和第二门控环形振荡器暂停时的四种不同状态进行相应处理,得到输出X;
最后,一阶差分电路对输出X做一阶差分得到SX;对D1和D2相加后再减去SX,消除整体量化误差为原来的一半,从而使其时间分辨率提高一倍;
如图4所示,为本发明实施例1的基于双多路门控环形振荡器的再量化时间数字转换器及相应的测试电路原理图;输入时间误差为233.3ps,GRO1增益为0.955T LSB/ps,GRO2增益为1.045T LSB/ps,测试电路中的GRO3增益为2TLSB/ps。如图5所示,GRO1、GRO2、GRO3产生的测量数据和量化误差分别为D1、D2、DK和Q1、Q2、QK,再次量化得到的整数为X,经过一阶差分后变为SX,最后从D1+D2中减去SX得到的最终数据ReQ与DK完全相等。
因此所述基于双多路门控环形振荡器的再量化时间数字转换器等价于一个最小可分辨时间为0.5ps/LSB的时间数字转换器,相比最小可分辨时间约为1ps/LSB的基于单个多路门控环形振荡器的时间数字转换器,可见通过再次量化的方式,本发明可以在不降低环形振荡器每级反相器延迟时间的前提下提升时间分辨率至原来两倍。

Claims (4)

1.一种基于双多路门控环形振荡器的再量化时间数字转换器,其特征在于,包括脉冲产生电路(PG)、第一门控环形振荡器(GRO1)、第二门控环形振荡器(GRO2)、再量化电路和数据修正电路,其中,所述再量化电路由译码器(Decoder)、第一多路复用器(MUX1)、第二多路复用器(MUX2)、第三多路复用器(MUX3)、比较器(CMP)、共模检测电路(CMD)组成,所述数据修正电路由一阶差分电路(Diff)、延时电路(delay)、加法器组成;
开始信号Start和停止信号Stop输入脉冲产生电路,脉冲产生电路将开始信号Start和停止信号Stop上升沿的输入时间差Tin转化为脉宽等于Tin的高电平脉冲EN和脉宽等于Tin的低电平脉冲EN_n;高电平脉冲EN输入第二NMOS管(M2)和第四NMOS管(M4),低电平脉冲输入第一PMOS管(M1)和第三PMOS管(M3),第一门控环形振荡器通过第一PMOS管(M1)连接电源信号、通过第二NMOS管(M2)接地,第二门控环形振荡器通过第三PMOS管(M3)连接电源信号、通过第四NMOS管(M4)接地;第一门控环形振荡器振荡后输出N个在高低电平之间不断翻转的第一振荡波形;第二门控环形振荡器振荡后输出N个在高低电平之间不断翻转的第二振荡波形;第一振荡波形分别输入译码器(Decoder)和第一多路复用器(MUX1),第二振荡波形分别输入译码器(Decoder)和第二多路复用器(MUX2);译码器的复位端连接开始信号Start,在开始信号Start上升沿时译码器将所有输出复位为0,并对第一振荡波形中所有波形的翻转次数进行计数得到输出D1,对第二振荡波形中所有波形的翻转次数进行计数得到输出D2;当第一门控环形振荡器和第二门控环形振荡器处于暂停状态时,根据第一门控环形振荡器和第二门控环形振荡器未翻转的相邻反相器的状态,输出第一选择信号控制第一多路复用器,输出第二选择信号控制第二多路复用器,输出第三选择信号控制第三多路复用器;第一多路复用器根据第一选择信号选择第一振荡波形中对应地址的信号并输出,记为V1;第二多路复用器根据第二选择信号选择第二振荡波形中对应地址的信号并输出,记为V2;共模检测电路检测输入信号V1和V2的共模电压,若共模电压高于预设阈值电压Vth则输出信号XCMD为高电平,反之XCMD为低电平;比较器比较输入信号V1和V2的电压,若V1高于V2则输出信号XCMP为高电平,反之XCMP为低电平;第三多路复用器根据第三选择信号,选择输出XCMD、XCMP、取反的XCMP三种信号中的一种,记为输出信号X;延时电路(delay)对停止信号Stop进行延时后作为时钟信号输入到一阶差分电路(Diff);一阶差分电路对输出信号X进行一阶差分得到输出SX;加法器将译码器输出的D1和D2相加后、再减去输出SX,即可得到最终的输出信号ReQ。
2.根据权利要求1所述的基于双多路门控环形振荡器的再量化时间数字转换器,其特征在于,第一门控环形振荡器和第二门控环形振荡器处于暂停状态时,第一门控环形振荡器和第二门控环形振荡器中都存在输出同相电平的相邻两个反相器,当相邻两个反相器的输出电平同为低电平时、对应门控环形振荡器记作0状态,当相邻两个反相器的输出电平同为高电平时、对应门控环形振荡器记作1状态;第一门控环形振荡器中输出同相电平的相邻两个反相器的电压分别记为V1i和V1i+1,第二门控环形振荡器中输出同相电平的相邻两个反相器的电压分别记为V2i和V2i+1;当第一门控环形振荡器处于0状态、第二门控环形振荡器处于0状态时,第一多路复用器的输出信号V1为V1i、第二多路复用器的输出信号V2为V2i+1、第三多路复用器的输出信号X为XCMP取反;当第一门控环形振荡器处于0状态、第二门控环形振荡器处于1状态时,第一多路复用器的输出信号V1为V1i+1、第二多路复用器的输出信号V2为V2i、第三多路复用器的输出信号X为XCMD;当第一门控环形振荡器处于1状态、第二门控环形振荡器处于0状态时,第一多路复用器的输出信号V1为V1i、第二多路复用器的输出信号V2为V2i+1、第三多路复用器的输出信号X为XCMD;当第一门控环形振荡器处于1状态、第二门控环形振荡器处于1状态时,第一多路复用器的输出信号V1为V1i、第二多路复用器的输出信号V2为V2i+1、第三多路复用器的输出信号X为XCMP。
3.根据权利要求1所述的基于双多路门控环形振荡器的再量化时间数字转换器,其特征在于,所述第一门控环形振荡器和第二门控环形振荡器为电路结构完全相同的多路门控环形振荡器,通过控制内部反相器晶体管的宽长比,使第一门控环形振荡器和第二门控环形振荡器的反相器的延时不同。
4.根据权利要求1所述的基于双多路门控环形振荡器的再量化时间数字转换器,其特征在于,所述第一多路复用器和第二多路复用器为模拟多路复用器,第三多路复用器为数字多路复用器。
CN202210076624.6A 2022-01-21 2022-01-21 一种基于双多路门控环形振荡器的再量化时间数字转换器 Active CN114488760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210076624.6A CN114488760B (zh) 2022-01-21 2022-01-21 一种基于双多路门控环形振荡器的再量化时间数字转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210076624.6A CN114488760B (zh) 2022-01-21 2022-01-21 一种基于双多路门控环形振荡器的再量化时间数字转换器

Publications (2)

Publication Number Publication Date
CN114488760A CN114488760A (zh) 2022-05-13
CN114488760B true CN114488760B (zh) 2022-11-01

Family

ID=81472114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210076624.6A Active CN114488760B (zh) 2022-01-21 2022-01-21 一种基于双多路门控环形振荡器的再量化时间数字转换器

Country Status (1)

Country Link
CN (1) CN114488760B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB819658A (en) * 1956-05-09 1959-09-09 Gen Electric Co Ltd Improvements in or relating to electric pulse signalling systems
KR20150121291A (ko) * 2014-04-17 2015-10-29 연세대학교 산학협력단 시간 디지털 변환기
CN110832779A (zh) * 2017-07-07 2020-02-21 高通股份有限公司 脉冲数字转换器
CN112578661A (zh) * 2020-12-11 2021-03-30 天津大学 一种用于fpga型时间数字转换器的延迟线校准电路
CN112653333A (zh) * 2020-12-18 2021-04-13 电子科技大学 一种dc-dc变换器的数模混合控制电路和控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244199A (ja) * 2011-05-14 2012-12-10 Handotai Rikougaku Kenkyu Center:Kk オペアンプレス・キャパシタレスad変換器およびtd変換器
US8390349B1 (en) * 2012-06-26 2013-03-05 Intel Corporation Sub-picosecond resolution segmented re-circulating stochastic time-to-digital converter
JP6351058B2 (ja) * 2013-11-28 2018-07-04 株式会社メガチップス タイムデジタルコンバータ及びこれを用いたpll回路
US10108148B1 (en) * 2017-04-14 2018-10-23 Innophase Inc. Time to digital converter with increased range and sensitivity
CN107515526B (zh) * 2017-08-28 2019-05-21 电子科技大学 一种具有宽动态范围的高精度像素级时间幅度转换器
KR102029551B1 (ko) * 2017-12-19 2019-10-07 인하대학교 산학협력단 낸드-게이트 링 발진기 시간 증폭기를 활용한 2단 시간-디지털 변환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB819658A (en) * 1956-05-09 1959-09-09 Gen Electric Co Ltd Improvements in or relating to electric pulse signalling systems
KR20150121291A (ko) * 2014-04-17 2015-10-29 연세대학교 산학협력단 시간 디지털 변환기
CN110832779A (zh) * 2017-07-07 2020-02-21 高通股份有限公司 脉冲数字转换器
CN112578661A (zh) * 2020-12-11 2021-03-30 天津大学 一种用于fpga型时间数字转换器的延迟线校准电路
CN112653333A (zh) * 2020-12-18 2021-04-13 电子科技大学 一种dc-dc变换器的数模混合控制电路和控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Peyman Nazari ; Byung-Kwan Chun ; Zheng Wang.A 130nm CMOS polar quantizer for cellular applications.《2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)》.2013,155-158. *

Also Published As

Publication number Publication date
CN114488760A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US8138843B2 (en) Gated ring oscillator for a time-to-digital converter with shaped quantization noise
US6903615B2 (en) Digitally-controlled oscillator with switched-capacitor frequency selection
Tierno et al. A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI
US7205924B2 (en) Circuit for high-resolution phase detection in a digital RF processor
JP3561792B2 (ja) クロック発生回路
CN108199699B (zh) 一种占空比稳定和低抖动时钟电路
JP4723652B2 (ja) 位相差検出器、及び位相差検出方法
Min et al. A 0.31–1 GHz fast-corrected duty-cycle corrector with successive approximation register for DDR DRAM applications
US5321401A (en) Method and apparatus for digital to analog conversion with minimized distortion
CN114488760B (zh) 一种基于双多路门控环形振荡器的再量化时间数字转换器
El-Hadbi et al. Time-to-digital converters: A literature review and new perspectives
Mishra et al. A 9b-linear 14GHz integrating-mode phase interpolator in 5nm FinFET process
CN114826273A (zh) 一种基于双比较器控制的电流频率转换电路和方法
Moazedi et al. A highly-linear modified pseudo-differential current starved delay element with wide tuning range
Ziabakhsh et al. An all-digital high-resolution programmable time-difference amplifier based on time latch
US6215432B1 (en) Reducing digital switching noise in mixed signal IC&#39;s
CN111865321B (zh) 一种适用于电流舵dac的开关驱动电路及控制方法
CN114978155A (zh) 一种具有优化相位噪声的锁相环***
CN104639042A (zh) 低功耗可调倍频器
CN110212912B (zh) 一种具有高精度时间数字转换器的倍数延迟锁相环
CN109283832B (zh) 一种低功耗的时间数字转换器及其phv补偿方法
CN113162613A (zh) 一种应用于图像传感器锁相环的线性相位误差比较器
Xie et al. An improved phase digitization mechanism for fast-locking low-power all-digital PLLs
Wang et al. A Digital to Time Converter Assisted TA-TDC with High Resolution for Low Power ADPLL in 22nm CMOS
Yuan et al. Time-mode all-digital delta-Sigma time-to-digital converter with process uncertainty calibration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant