CN114466757A - 用于操作动力***的***和方法 - Google Patents

用于操作动力***的***和方法 Download PDF

Info

Publication number
CN114466757A
CN114466757A CN202080070881.8A CN202080070881A CN114466757A CN 114466757 A CN114466757 A CN 114466757A CN 202080070881 A CN202080070881 A CN 202080070881A CN 114466757 A CN114466757 A CN 114466757A
Authority
CN
China
Prior art keywords
catalyst
combustion engine
internal combustion
electrically heatable
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080070881.8A
Other languages
English (en)
Inventor
J·霍夫斯泰特
M·佩鲁吉尼
S·罗勒
S·格鲁布温克勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of CN114466757A publication Critical patent/CN114466757A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0013Optimal controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/12Catalyst or filter state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/474Catalyst warm up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

公开了一种用于操作包括内燃机、电动机和可电加热催化剂的车辆的方法和装置。根据所公开的实施例,有利的是基于操作模型来同时评估由于增加或减少催化剂加热动作以及由于增加或减少电动机扭矩而导致的能量消耗和排放,并且使用操作模型来确定用于内燃机、电动机和可电加热催化剂中的每个的操作模式。

Description

用于操作动力***的***和方法
本发明涉及一种操作包括内燃机的动力***的方式,并且尤其涉及一种实现用于发动机和排放管理的策略的方式,其对于具有可电加热催化剂的车辆是有利的。本发明改进了具有驱动源(电动机EM、内燃机ICE)和排放控制设备(特别是可电加热催化剂(EHC))的组合的***。这种***的不同自由度的优化可以降低燃料消耗或提高燃料效率,而同时满足排放限制。
传动***的电气化对于降低燃料消耗和满足越来越严格的污染物排放限制非常重要。这些目标也必须在真实的驾驶条件下实现。
用于混合动力电动车辆(HEV)的改进控制策略必须考虑与内燃机(ICE)、电动机(EM)、和可电加热催化剂(EHC)所需的能量相关的参数。这种策略应控制内燃机和电动机之间的扭矩分配、分配给电加热催化剂的功率等。通过这样做,与常规传动***相比,混合动力车辆的能量消耗可以显著降低。
混合动力电动车辆(HEV)通常包括牵引(或高压)电池,该电池用作电能存储器,并为电驱动或牵引电动机或机器提供动力以进行推进。这种高压电池可以处于800v、400v或48v。诸如电池之类的电能存储器与电动机一起实现了动能回收、内燃机的负载点适配、扭矩辅助和增压。
混合动力配置还可以实现将排放限制在法规限制内的稳健的排放管理,其独立于驾驶条件。例如,在低负载和短距离行程期间,其中由内燃机供应很少热,废气温度可以由于来自可电加热催化剂的热而增加或增强。在替代方案中,内燃机上的负载可以使用电动机的断开扭矩来增加。这继而减少了达到催化转化器的起燃温度的时间,因而提高了催化转化器的污染物转化效率。因此,在预计车辆的催化剂的温度预期降低到阈值以下时,电功率被供应到电加热催化剂。可替代地,或者同时地,在预计车辆的催化剂的温度预期降低到阈值以下的情况下或在预计车辆的催化剂的温度预期降低到阈值以下时,可以增加电动机的制动扭矩。
在高负载阶段中,或当废气温度很高时,催化剂可能会超过其最优温度范围。这导致低转化效率。在这种情况下,内燃机的负载可能由于来自电动机的扭矩支持而降低,这减少了原始排放质量流,并起到降低催化转化器的温度的作用。负载可以是当前负载,或基于预测信息的预计负载。因此,在车辆的催化剂的温度预期升高到阈值以上的情况下或在车辆的催化剂的温度预期升高到阈值以上时,可以增加电动机的增压扭矩。
在任何时候,目标或约束都是提供驾驶员所需求的扭矩、将电池充电状态(SoC)保持在规定限制内、并将规定排放和预计规定排放(诸如NOx)保持在规定限制内。车辆的操作模型可用于根据优化目标来优化组件的操作模式。
必要的控制策略可呈现为用于多个自由度的控制策略,这些自由度相互作用以影响燃料消耗和排放:
a)内燃机和电动机之间的扭矩分配;
b)针对可电加热催化剂的电功率;
c)内燃机的燃烧模式;
d)档位的选择、变档;以及
e)舒适功能,诸如加热和空调。
控制策略可以使用不同的人工智能技术来实现。一种这样的技术是强化学习(RL)。控制策略可以通过学习或训练阶段、其后跟着可选的测试阶段来开发。测试阶段可能是必要的,以确保经训练和实现的控制策略满足强制性排放要求。在正常操作期间学习或调整参数可以是可能的,或者可以是不可能的。
通过对不同自由度的适当调节,控制策略可以最小化燃料消耗和排放两者,其优势如下所示。
附图说明
图1示出了包括废气后处理***的HEV架构的布局;
图2示出了强化学习配置;
图3示出了训练、测试、操作的步骤;
图4示出了控制自由度的步骤;以及
图5示出了与SoC相关的决策曲线。
在图1中示出了作为100的混合动力车辆的一个实施例的主要元件。连接被示出为机械101、电气102、燃料流103和废气104。在废气流中,可电加热催化剂(EHC)110在柴油氧化催化剂(DOC)111之前。废气然后传到选择性催化还原112。内燃机120从燃料供应121接收燃料。在该实施例中,内燃机和电动机130经由带135机械连接。去往和来自电动机130的电力可以传到电池135、可电加热催化剂110和示为136的其他辅助负载。来自内燃机和/或电动机的机械能经由离合器140和变速箱145传到车轮150。
图2示出了强化学习***200的原理元件。强化学习(RL)代理230向环境240提供动作向量at 210。环境可以是真实的物理环境(诸如混合动力车辆),或者它可以是模拟环境,其中混合动力车辆的主要元件在软件中建模。环境将动作向量作为输入,并生成结果所得的状态向量st 220和回报向量rt 225。动作向量包含与自由度相对应的值或元件,以及操作车辆所需的任何附加动作或控制元件。例如,动作向量at可以包含值,其确定多少燃料要被供应到内燃机,或者多少电流要被供应到可电加热催化剂,或者多少电流要被电动机供应到例如电池。可以在动作向量中设置或由动作向量操作的操作模式的其他设置或控制包括车辆速度或目标速度、用于电池的目标充电状态(SoC)、混合动力模式(例如,回收、滑行)的选择、尿素或AdBlue注射时间和量、以及用于过滤器再生(例如,柴油DPF再生)的时间点、或换档和/或档位选择。
回报向量rt 225包含与要优化的环境方面相对应的信息。例如,回报向量可以包含用于CO2、NOx、燃料消耗的环境值,以及与环境或排放考虑相关的其他值。状态向量st和回报向量rt作为输入返回到RL代理。
动作向量中的值将确定如何使用自由度,并且RL代理将使用回报向量和状态向量来优化动作向量。RL代理所指定的下一个动作向量将确定ICE和EM之间的扭矩分配、针对EHC的电功率(输入或输出)、以及ICE的燃烧模式。通过这种方式,操作模型也将预计未来的燃料消耗和排放。因此,车辆的操作模型被用于根据所选择的优化目标来优化组件的操作模式,诸如在始终遵守排放限制的同时使燃料消耗最小化。
在动作向量和/或状态向量中也可以考虑其他因素。例如,附加自由度可能包括换档和档位选择、AddBlue注射、加热和冷却等。
控制策略可以使用混合动力电动车辆的不同模式的基于成本的比较来实现。基于成本比较,策略可以决定多种模式中的哪一种最适合当前操作点和SoC。在一个实施例中,这些模式可以被定义为电池充电、电池放电和零电池电流。对于每种模式和操作点,计算满足驾驶员所要求的机械动力和后处理***所要求的热约束的成本。成本术语被定义为由负载点移动引起的燃料功率增加或减少与电池功率的增量的比率。放电成本可以表示为与耗尽的电池功率相比的节省的燃料功率。另一方面,充电成本可能是用于恢复电池功率的附加燃料功率。因此,最高成本在放电模式下最优,并且最低成本在充电模式下最优。通过分别找到最低或最高成本,可以找到用于EHC的扭矩设定点和功率。在在线应用期间,可以基于每种模式与成本标准的成本比较来选择混合动力模式。该标准将SoC映射到用于充电模式的最大限制和用于放电模式的最小限制,如图5所示。对于高于最低成本的放电成本,选择放电。对于最高成本以下的充电成本,选择充电。
转到图3,示出了训练、测试和操作的步骤。在第一步骤310中,执行训练以找到最优操作模型。在该实施例中,使用图2所示的回路和模拟环境来确定操作模型。向RL代理提供不同的操作状态和由回报向量给出的结果所得的回报。生成各种动作向量,其继而改变模拟环境的状态。RL代理继而使用状态向量作为参考来评估结果所得的回报向量。
步骤310包括已经通过模拟驾驶条件的步骤而准备的操作模型,以及
在模拟期间优化内燃机120、可电加热催化剂110和电动机130的使用,以最小化燃料消耗和排放两者。
当已经找到最优操作模型时,这可以被传到可选的测试步骤320。在具有测试步骤的实施例中,使用不同的模拟环境来将操作模型验证为始终符合关于排放条件的规定。例如,用于确定操作模型的模拟环境可以由大量的模拟训练轨迹组成,诸如500个轨迹(汽车行程),并且测试模拟环境可以由相似或更少数量的不同验证轨迹组成,诸如400个轨迹(汽车行程)。通过这种方式,学习行为可以在被用于产品中之前被验证。同样,如果训练数据中存在弱点,则可以标识不正确的学习行为,并在必要时校正。
RL代理可以学习按照根据信号的方式来调整排放简档,以保持在规定限制内。特别地,EHC可以基于信号来激活。如果在真实环境中信号缺失,则使用操作模型的车辆可能不再满足规定要求,因为EHC没有正确操作。
一旦已经找到操作模型,并且在某些实施例中已经测试和验证,则在步骤330,在车辆中提供并使用操作模型,以在真实操作环境中使用。在步骤330中,操作模型被用于提供动作向量at 210,其优化自由度,并且提供操作例如内燃机ICE120、可电加热催化剂110和电动机EM 130所需的控制信号或操作模式。在优选实施例中,从动作向量at导出的操作模式可操作,以操作可电加热催化剂和/或电动机和/或内燃机。将设置操作模式以实现优化目标。
在某些实施例中,进一步的步骤340是可能的。在步骤340中,操作模型适配成进一步优化操作,例如在燃料效率或排放方面。然后可以在步骤330中使用操作模型。在其他实施例中,设定点可以取自成本比较方法。
示例车辆中使用的废气后处理***(ATS)可以由可电加热催化剂(EHC)110、柴油氧化催化剂(DOC)111和选择性催化还原催化剂(SCR)112组成。表1中给出了此类示例HEV的主要参数。
Figure DEST_PATH_IMAGE002
表1. 示例车辆参数。
相同的发明构思可以用于具有不同功率水平的各种车辆中。
强化学习(RL)的一个实施例是通过如图2所示的代理-环境接口,其使用图4的步骤。在步骤410中,代理在时间t观察到环境的状态st和回报rt,然后通过生成动作向量at来执行动作。在步骤420,环境接收动作向量at并对其做出反应。在稍后的时间t+1,环境在步骤430已经做出反应,并且随着环境过渡到新的状态而生成状态向量st和回报向量rt。然后,在410,RL代理从模拟环境中读取新生成的状态向量st和回报向量rt,并将动作向量反馈回模型,以计算结果所得的新状态。RL代理的目标是在学习过程结束之前搜索最大化累积回报的策略。
代理基于当前回报相比于未来回报来对决策进行加权:对于折扣因子
Figure DEST_PATH_IMAGE004
=0,代理选择贪婪决策以得到即时回报;随着
Figure DEST_PATH_IMAGE004A
接近1,代理更倾向于未来回报。
对于RL代理而言,存在不同的方式来开发试操作模型。一个实施例是基于近端策略优化(PPO),它跨各种类型的任务示出良好的性能。PPO是一种策略梯度方法,其中策略是随机的,并基于当前状态而建模为参数化概率分布,从其对动作进行采样。
代理和所谓的“批评家”的输入特征是从车辆状态的观察结果而计算的。在与基于操作距离的限制相关的一个实施例中,从车辆速度v导出特征,其取决于行进距离x(t)是大于还是小于诸如5 km的距离。在轨迹开始时,排放限制较高,并且在一定距离(例如,5 km)后,排放必须低于所定义的排放限制。
另一个特征被计算为累积的NOx排放,其与行进距离进行比较并乘以NOx限制(例如60mg/km)。附加的输入是电池SoC的充电状态、废气温度Texh和Tscr。回报被定义为与(负)燃料质量成比例,其与排出的CO2成比例。如果NOx排放超过限制,则增加惩罚。
在一个实施例中,代理由用于P(ehc)和tq(em)控制的单个线性层神经网络组成,其中仅将Tscr和SoC作为输入。对于燃烧模式i(ice),线性层输出被添加到完全连接网络,其中在隐藏层中具有泄漏-relu激活和30个神经元。tanh激活被用于计算tq(em)。正输出可以从0缩放至作为tq(em,max)的EM的当前最大扭矩,并且负输出可以从0缩放至tq(em,min)。tq(em,max)和tq(em,min)两者均取决于SoC,并且经受EM的降额。
在一个实施例中,电加热的代理的输出被缩放到从零至最大可能加热功率P(ehc,max)的范围,其受限于SoC和4kW的物理限制。
模型的线性部分利用合理的值进行初始化,其使SoC和Tscr保持在可控范围内,因为已知的是,SCR效率朝向低温和高温会显著下降。
在训练期间,在训练数据上重复评估模型。在所有训练迹线上满足NOx限制且在这些中具有最低燃料消耗的模型被选择为用于测试的最终模型。
在图5中示出了用于基于充电状态SoC(500)优化成本的决策曲线。最低放电成本示出为510,并且最高充电成本示出为520。

Claims (11)

1. 一种操作包括内燃机(120)、电动机(130)和可电加热催化剂(110)的车辆的方法,包括:
基于操作模型来同时评估由于增加或减少催化剂加热动作以及由于增加或减少电动机扭矩而导致的能量消耗和排放;以及
使用所述操作模型来确定用于所述内燃机、电动机和可电加热催化剂中的每个的操作模式,使得根据优化目标来优化操作。
2.根据权利要求1所述的方法,还包括:如果期望减速,则基于操作模型来同时评估由于增加或减少催化剂加热动作以及由于增加或减少电动机扭矩而导致的预计能量消耗和排放;以及使用所述操作模型来确定用于所述内燃机、电动机和可电加热催化剂中的每个的操作模式。
3.根据权利要求1或2所述的方法,还包括:基于操作模型来同时评估由于增加或减少内燃机扭矩而导致的预计能量消耗和排放,以使用所述操作模型来确定用于所述内燃机、电动机和可电加热催化剂中的每个的操作模式。
4.根据任一前述权利要求所述的评估的方法,其中所述评估使用先前学习或训练的值作为操作模型。
5.根据任一前述权利要求所述的方法,其中所述操作模式可操作以操作可电加热催化剂和/或电动机和/或内燃机。
6.根据任一前述权利要求所述的方法,其中,在预计车辆的催化剂的温度预期降低到阈值以下时,增加电动机(130)的制动扭矩。
7.根据任一前述权利要求所述的方法,其中,在预计车辆的催化剂的温度预期降低到阈值以下时,增加到可电加热催化剂(110)的电流。
8.根据任一前述权利要求所述的方法,其中在车辆操作期间适配(440)所述操作模型。
9.根据任一前述权利要求所述的方法,其中所述操作模式包括车辆速度或目标速度、用于电池的目标充电状态(SoC)、混合动力模式(例如,回收、滑行)的选择、尿素或AdBlue注射时间和量、以及用于过滤器再生的时间点、或换档和/或档位的选择。
10. 一种适于执行权利要求1至9的操作方法的控制***,包括通过以下步骤准备的操作模型:
模拟驾驶条件;以及
在所述模拟期间优化内燃机(120)、可电加热催化剂(110)和电动机(130)的使用,以最小化燃料消耗和排放两者。
11.一种混合动力车辆,包括内燃机(120)、可电加热催化剂(110)、电驱动或牵引电动机(130)和电池(135),其中所述车辆适于并适配成执行权利要求1至9的方法。
CN202080070881.8A 2019-10-10 2020-07-07 用于操作动力***的***和方法 Pending CN114466757A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019215530.8A DE102019215530A1 (de) 2019-10-10 2019-10-10 System und Verfahren zum Betrieb eines Antriebsstrangs
DE102019215530.8 2019-10-10
PCT/EP2020/069136 WO2021069118A1 (en) 2019-10-10 2020-07-07 System and method for operating a powertrain

Publications (1)

Publication Number Publication Date
CN114466757A true CN114466757A (zh) 2022-05-10

Family

ID=71614863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080070881.8A Pending CN114466757A (zh) 2019-10-10 2020-07-07 用于操作动力***的***和方法

Country Status (6)

Country Link
US (1) US20240092340A1 (zh)
EP (1) EP4041584A1 (zh)
KR (1) KR102637822B1 (zh)
CN (1) CN114466757A (zh)
DE (1) DE102019215530A1 (zh)
WO (1) WO2021069118A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113879278B (zh) * 2021-10-30 2023-09-05 重庆长安汽车股份有限公司 一种混合动力车辆排放控制方法、***及计算机可读存储介质
DE102021134155B3 (de) * 2021-12-21 2023-02-09 Cariad Se Verfahren und Prozessorschaltung zur Verbrauchsoptimierung von vollautomatisierten oder teilautomatisierten Fahrmanövern eines Kraftfahrzeugs sowie entsprechend ausgestattetes Kraftfahrzeug und System
DE102022104313A1 (de) 2022-02-23 2023-08-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren, System und Computerprogrammprodukt zum autonomen Kalibrieren eines elektrischen Antriebsstrangs
AT525983B1 (de) * 2022-05-31 2023-10-15 Avl List Gmbh Vorrichtung und Verfahren zur Steuerung eines Antriebsstrangs eines Hybridfahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347887A1 (en) * 2000-11-23 2003-10-01 Ricardo Consulting Engineers Limited Hybrid power sources distribution management
CN101306685A (zh) * 2007-05-15 2008-11-19 通用汽车环球科技运作公司 采用电热催化剂的混合冷起动策略
GB2500923A (en) * 2012-04-05 2013-10-09 Gm Global Tech Operations Inc Method of increasing the efficiency of a lean NOx trap device of in a hybrid powertrain
CN103707882A (zh) * 2012-10-09 2014-04-09 通用汽车环球科技运作有限责任公司 控制混合动力车辆的催化剂起燃的方法
CN103912345A (zh) * 2013-01-07 2014-07-09 通用汽车环球科技运作有限责任公司 混合动力电动车辆颗粒再生方法和***
CN104471201A (zh) * 2012-10-22 2015-03-25 丰田自动车株式会社 车辆和车辆的控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9714132D0 (en) * 1997-07-05 1997-09-10 Rover Group Catalyst temperature control in hybrid vehicles
US6892527B2 (en) * 2002-07-16 2005-05-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Catalyst deterioration suppressing apparatus and method
DE102004036581A1 (de) 2004-07-28 2006-03-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs und Vorrichtung zur Durchführung des Verfahrens
JP4973374B2 (ja) * 2007-08-07 2012-07-11 日産自動車株式会社 ハイブリッド原動機の制御装置
JP5309624B2 (ja) 2008-03-11 2013-10-09 日産自動車株式会社 ハイブリッド車両の制御装置
JP2009227039A (ja) 2008-03-21 2009-10-08 Toyota Motor Corp ハイブリッド自動車の触媒暖機制御装置
US20100122523A1 (en) * 2008-11-14 2010-05-20 Gm Global Technology Operations, Inc. Cold-start engine loading for accelerated warming of exhaust aftertreatment system
JP6019732B2 (ja) * 2012-05-15 2016-11-02 三菱自動車工業株式会社 ハイブリッド自動車の制御装置
DE102015200560A1 (de) * 2015-01-15 2016-07-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Hybridantriebssystems
US9932876B2 (en) * 2015-11-11 2018-04-03 Ford Global Technologies, Llc Systems and method for exhaust warm-up strategy
DE102016208238A1 (de) * 2016-05-12 2017-11-16 Volkswagen Aktiengesellschaft Steuerungsverfahren für einen Hybridantrieb, Steuergerät und Hybridantrieb
DE102017203849A1 (de) * 2017-03-08 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit zur Anpassung der Emission eines Fahrzeugs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347887A1 (en) * 2000-11-23 2003-10-01 Ricardo Consulting Engineers Limited Hybrid power sources distribution management
CN101306685A (zh) * 2007-05-15 2008-11-19 通用汽车环球科技运作公司 采用电热催化剂的混合冷起动策略
GB2500923A (en) * 2012-04-05 2013-10-09 Gm Global Tech Operations Inc Method of increasing the efficiency of a lean NOx trap device of in a hybrid powertrain
CN103707882A (zh) * 2012-10-09 2014-04-09 通用汽车环球科技运作有限责任公司 控制混合动力车辆的催化剂起燃的方法
CN104471201A (zh) * 2012-10-22 2015-03-25 丰田自动车株式会社 车辆和车辆的控制方法
CN103912345A (zh) * 2013-01-07 2014-07-09 通用汽车环球科技运作有限责任公司 混合动力电动车辆颗粒再生方法和***

Also Published As

Publication number Publication date
KR20220079924A (ko) 2022-06-14
EP4041584A1 (en) 2022-08-17
DE102019215530A1 (de) 2021-04-15
WO2021069118A1 (en) 2021-04-15
KR102637822B1 (ko) 2024-02-19
US20240092340A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
KR102637822B1 (ko) 파워트레인을 작동시키기 위한 시스템 및 방법
Gu et al. An adaptive algorithm for hybrid electric vehicle energy management based on driving pattern recognition
Zhao et al. Real-time energy management for diesel heavy duty hybrid electric vehicles
CN103661361B (zh) 控制具有压燃式发动机的混合动力车辆的方法
US9545843B2 (en) Hybrid electric vehicle control for minimizing high voltage battery power limits violations
CN103154452B (zh) 混合动力车辆中的后处理再生的控制
KR101713923B1 (ko) 배기가스 후처리 시스템의 온도 조절
Kessels et al. Integrated energy & emission management for hybrid electric truck with SCR aftertreatment
Han et al. A real-time energy management strategy based on energy prediction for parallel hybrid electric vehicles
He et al. Energy management strategies for a hybrid electric vehicle
Khodabakhshian et al. Improving fuel economy and robustness of an improved ECMS method
GB2576890A (en) Heating of an exhaust after-treatment component
KR20200094675A (ko) 하이브리드 머신에서 배기가스 후처리 방법
Liu et al. Distributed energy and thermal management of a 48-V diesel mild hybrid electric vehicle with electrically heated catalyst
Hofstetter et al. Energy and emission management of hybrid electric vehicles using reinforcement learning
Willems et al. Integrated powertrain control to meet low CO2 emissions for a hybrid distribution truck with SCR-deNOx system
Schmid et al. Efficient optimal control of plug-in-hybrid electric vehicles including explicit engine on/off decisions
Biswas et al. A Predictive supervisory controller for an HEV operating in a zero emission zone
Thibault et al. Reduction of pollutant emissions of diesel mild hybrid vehicles with an innovative energy management strategy
Simon et al. Gasoline-HEV equivalent consumption and pollutant minimization strategy
De Cesare et al. Conceptual design and analytic assessment of 48V electric hybrid powertrain architectures for passenger cars
WO2014055018A1 (en) Regulation of a temperature in an exhaust aftertreatment system
Giardiello et al. Comparative Analysis on Fuel Consumption Between Two Online Strategies for P2 Hybrid Electric Vehicles: Adaptive-RuleBased (A-RB) vs Adaptive-Equivalent Consumption Minimization Strategy (A-ECMS)
Cervone et al. A comprehensive hybrid vehicle model for energetic analyses on different powertrain architectures
Bostanian et al. A genetic-fuzzy control strategy for parallel hybrid electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination