CN114452994B - 一种W18O49/CoO/NF自支撑电催化材料及其制备方法 - Google Patents

一种W18O49/CoO/NF自支撑电催化材料及其制备方法 Download PDF

Info

Publication number
CN114452994B
CN114452994B CN202011139020.9A CN202011139020A CN114452994B CN 114452994 B CN114452994 B CN 114452994B CN 202011139020 A CN202011139020 A CN 202011139020A CN 114452994 B CN114452994 B CN 114452994B
Authority
CN
China
Prior art keywords
coo
self
electrocatalytic material
solution
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011139020.9A
Other languages
English (en)
Other versions
CN114452994A (zh
Inventor
黄剑锋
海国娟
曹丽云
冯亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Zhicheng Fengji Functional Materials Co.,Ltd.
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202011139020.9A priority Critical patent/CN114452994B/zh
Priority to US17/451,133 priority patent/US11859294B2/en
Publication of CN114452994A publication Critical patent/CN114452994A/zh
Application granted granted Critical
Publication of CN114452994B publication Critical patent/CN114452994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种W18O49/CoO/NF自支撑电催化材料及其制备方法,所述W18O49/CoO/NF自支撑电催化材料包括:泡沫镍基材,以及原位生成在泡沫镍基底上的W18O49/CoO复合纳米材料;优选地,其中所述W18O49/CoO复合纳米材料包括直接附着在泡沫镍基底上的CoO纳米片,以及在所述纳米片上附着的W18O49纳米线。

Description

一种W18O49/CoO/NF自支撑电催化材料及其制备方法
技术领域
本发明涉及一种W18O49/CoO/NF自支撑电催化材料及其制备方法,属于复合材料技术领域。
背景技术
随着工业生产中化石燃料消耗速度的不断增加,二氧化碳以及其他温室气体加速释放,最终使得全球气温上升,引起一系列自然灾害。化石燃料作为人类社会发展所必须消耗的能源,其消耗量的增加将无可避免,同时,化石能源属于短期内不可再生的能源,储量有限,继续快速消耗将使得其储量逐渐减少。因此,研究新型可持续清洁能源来取代不可再生的化石能源是当今社会发展所必须解决的问题。氢气作为一种新型的易于存储转化的化学能源载体,具有清洁、零碳排放、以及环境友好等众多优点。水的电化学电解已被公认为用于可持续和清洁能源的最有前途的可再生能量转换技术之一。水的电解过程包括两个半反应:产氧反应(OER)和产氢反应(HER)。这两个过程对于水分解的总体效率至关重要。目前,贵金属Pt基材料被认为是最有效的HER电催化剂,Ir/Ru及其氧化物被认为在酸性和碱性电解液中均表现出优异的OER电催化剂。然而,由于这些贵金属材料在地壳中含量较少,而且成本较高,其商业化大规模应用受到了限制。为了克服这些缺点,近年来科研工作者致力于开发新型,具有低成本和高效益的可持续非贵金属电催化材料。
具有大量表面氧空位的单斜晶系W18O49在电化学等应用中受到广泛关注。金属氧化物中的氧缺陷作为活性位点可以改善电导率并有利于水分子或中间反应物质的吸附和解吸(例如,HER中的·H;OER中的·OH和·OOH)。然而,结构稳定的W18O49的理论过电位(相对于可逆氢电极(RHE))相对较大(大于0.50eV),这意味着析氢反应较难。因此,通过掺杂、复合等工艺手段调整W18O49的电子结构,在W18O49晶体结构中提高不饱和低价W离子含量,增加氧空位,有利于电催化活性的提高。此外,非化学计量W18O49作为双功能电催化材料的研究还比较少,其产氧和产氢性能有待进一步研究。另外,为了避免在制备工作电极期间粘合剂对催化剂的导电性和活性面积的影响,在导电基底上直接合成W18O49纳米结构催化剂可以有效地提高电催化性能。具有高丰度和较低价格的泡沫镍引起了广泛关注,其因较大的比表面积,较高的电子传导性和理想的3D开孔结构而被广泛用作材料的支撑体系。
钴基氧化物具有材料来源丰富、价格低廉、环境友好等优点。钴(Co)属于元素周期表的第4周期、第Ⅷ族,常见的化合价态有+2和+3价,它的化学性质比较稳定。目前研究表明,钴的氧化物在ORR及OER方面表现出较好的催化性能,被广泛应用为双功能催化剂,在催化领域具有良好的应用前景。
发明内容
针对上述问题,本发明的目的在于提供一种高效双功能的W18O49/CoO/NF自支撑电催化材料及其制备方法,所制备合成的W18O49/CoO/NF自支撑电催化材料的结构可控,通过W18O49和CoO的复合,在碱性溶液中产物W18O49/CoO/NF表现出比单相CoO/NF和W18O49/NF更好的电催化性能。
一方面,本发明提供了一种W18O49/CoO/NF自支撑电催化材料,所述W18O49/CoO/NF自支撑电催化材料包括:泡沫镍基材,以及原位生成在泡沫镍基底上的W18O49/CoO复合纳米材料;优选地,其中所述W18O49/CoO复合纳米材料包括直接附着在泡沫镍基底上的CoO纳米片,以及在所述纳米片上附着的W18O49纳米线。
在本发明中,首次将氧缺陷丰富的W18O49和CoO复合,通过一步法直接生长在泡沫镍基材上,既避免了在制备工作电极期间粘合剂对催化剂的导电性和活性的影响,又可以有效地提高电催化性能。当W18O49纳米线紧紧附着在CoO纳米片上时,能够缩短W18O49和CoO之间的电子传输距离,从而有利于电催化过程中的电子转移,促进氧气和氢气的快速生成。
较佳的,所述CoO和W18O49纳米材料在泡沫镍基材上的总担载量为0.5~3.5mg/cm2。担载量过低产物在泡沫镍上负载量少,催化能力降低;担载量过高时,电催化过程中产物在泡沫镍上容易脱落,影响电催化稳定性。因此,担载量过高或者过低均不利于电催化过程中催化性能的提升。
较佳的,所述W18O49和CoO的摩尔比为(0.005~0.27):1,优选为(0.06~0.25):1。
本发明中,通过溶剂热法得到生长有W18O49/CoO的前驱物的泡沫镍,再将所述前驱物在氮气气氛中在200~400℃下固相烧结合成由CoO和W18O49组成的W18O49/CoO复合材料。所述材料包括直接附着在泡沫镍基底上CoO纳米片,以及在所述纳米片上附着的W18O49纳米线。在一优选方案中,所述CoO纳米片的厚度≤100nm,所述W18O49纳米线的直径为5~10nm,长度为100~200nm。此外,在另一优选方案中,所述在泡沫镍上生长的W18O49/CoO复合纳米材料的形貌为三维自组装花状结构。
另一方面,本发明还提供了一种如上述的W18O49/CoO/NF自支撑电催化材料的制备方法,包括:
(1)将含有钴源的溶液B在搅拌过程中引流到含有钨源的溶液A中,得到溶液C。
(2)将泡沫镍放入含有溶液C的高压反应釜中,在120~220℃下反应1~36h,再经洗涤和干燥,得到生长有W18O49/CoO的前驱物的泡沫镍;
(3)将生长有W18O49/CoO的前驱物的泡沫镍在氮气气氛中、200~400℃下煅烧,得到富氧缺陷结构的W18O49/CoO/NF自支撑电催化材料。
较佳的,所述钨源选自仲钨酸铵、六水合仲钨酸铵(NH4)6W7O24O·6H2O、四水合仲钨酸铵(NH4)10[H2W12O42]4H2O、偏钨酸铵(NH4)6H2W12O40·XH2O、异丙醇钨W(OCH(CH3)2)6和六氯化钨WCl6中的至少一种;所述钴源选自六水合氯化钴CoCl2·6H2O、氯化钴CoCl2、六氨基氯化钴[Co(NH3)6]Cl3、醋酸钴(CH3CO2)2Co和四水合乙酸钴C4H6CoO4·4H2O中的至少一种。
较佳的,所述含有钴源的溶液B和钨源的溶液A的溶剂分别选自异丙醇、无水乙醇、异丙醇和无水乙醇混合溶液、无水乙醇和乙二醇混合溶剂、无水乙醇和丙三醇混合溶剂、异丙醇和乙二醇混合溶剂、异丙醇和丙三醇混合溶剂中的一种。当钨源溶于上述醇溶剂中时,在室温下会发生醇解,形成钨醇盐溶液,这个过程中部分高价钨会转化成低价钨。进而,在后续溶剂热反应过程进一步促进了低价钨的转化,生成了非化学计量氧化钨W18O49
较佳的,所述钨源和钴源的摩尔比为(0.05~5):1,优选为(1~3.5):1。其中,当钨源或者钴源过少时均不益于产物合成,导致产物物相改变,容易合成单相,不益于在泡沫镍上复合相的生成。同时产物在泡沫镍上难以生长或生长稀疏,最终影响电催化性能。
较佳的,所述含有溶液C的高压反应釜的体积填充比为20~70%。
较佳的,所述煅烧的时间为1~3h;所述煅烧的升温速率为2~5℃/min。
有益效果:
(1)本发明通过溶剂热法-固相烧结法合成由CoO和W18O49组成的W18O49/CoO复合材料,且此复合材料直接生长在泡沫镍基体上;
(2)本发明的反应条件温和,易于实现,并且制备过程简单,成本较低,过程易控,对环境友好;
(3)并且通过控制各前驱物的含量、添加剂的含量、反应温度、反应时间等,可以很好的调控产物的形貌(如得到纳米线、片状、自组装三维结构的W18O49/CoO复合材料);
(4)本发明制得的W18O49/CoO/NF电催化材料,在碱性电解液中表现出较好的电催化产氢和产氧性能。
附图说明
图1为实施例1制备的W18O49/CoO/NF自支撑电催化材料的XRD图谱;
图2为实施例1制备的W18O49/CoO/NF自支撑电催化材料的SEM图;
图3为对比例1中不加入分析纯六氯化钨(WCl6)所制备CoO/NF的XRD图谱;
图4为对比例1中不加入分析纯六氯化钨(WCl6)所制备CoO/NF的SEM照片;
图5为对比例2中不加入六水合氯化钴(CoCl2·6H2O)所制备W18O49/NF的XRD图谱;
图6为对比例2中不加入六水合氯化钴(CoCl2·6H2O)所制备W18O49/NF的SEM照片;
图7为本发明所制备的W18O49/CoO/NF的SEM照片,其中(a)为实施例1,(b)为实施例2,(c)为实施例3,(d)为实施例4;
图8为本发明所制备产物的电催化产氢性能测试;
图9为本发明所制备产物的电催化产氧性能测试;
图10为本发明所制备的W18O49/CoO/NF的SEM照片,其中(a)为实施例5,(b)为实施例6;
图11为实施例1所制备产物的EPR(氧空位缺陷)测试图谱。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本发明中,采用溶剂热法-固相烧结法,在泡沫镍基材上原位合成W18O49/CoO复合材料,制备得到高效双功能的W18O49/CoO/NF自支撑电催化材料。以下示例性地说明本发明提供的W18O49/CoO/NF自支撑电催化材料的制备方法。
泡沫镍基材的清洗。例如,取烧杯,将长宽比为(1~7):1的泡沫镍依次完全浸入丙酮、3~6mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理15~30min。
将钨源溶于溶剂中,得到含有钨源的溶液A(简称溶液A)。其中,钨源可为仲钨酸铵(NH4)10[H2W12O42]·xH2O(如:六水合仲钨酸铵(NH4)6W7O24O·6H2O、四水合仲钨酸铵(NH4)10[H2W12O42]·4H2O)、偏钨酸铵(NH4)6H2W12O40·yH2O、异丙醇钨W(OCH(CH3)2)6和六氯化钨WCl6等。溶剂可为异丙醇,无水乙醇,异丙醇和无水乙醇混合溶剂,无水乙醇和乙二醇混合溶剂,无水乙醇和丙三醇混合溶剂,异丙醇和乙二醇混合溶剂,异丙醇和丙三醇混合溶剂等中的至少一种。当溶剂选用混合溶剂时,混合溶剂体积比为(0.5~3):1。溶液A中钨源的浓度可为0.01~5mol/L。例如,将六氯化钨(WCl6)加入到异丙醇和无水乙醇混合溶剂中,搅拌20~60min,形成均匀混合的溶液A。选用醇类替代水作为溶剂溶解可以使得钨源常温下搅拌过程中发生醇化反应,有助于高价钨向低价钨的转化,从而有利于促进溶剂热过程中非化学计量氧化钨的快速形成。此外,在此浓度范围内,选择合适的钨源和溶剂种类,可以制备出不同微观形貌、不同电催化性能的复合产物,且产物能够很好的生长在泡沫镍上,不会脱落。
将钴源溶于溶剂中,得到含有钴源的溶液B(简称溶液B)。其中,钴源可为六水合氯化钴CoCl2·6H2O、氯化钴CoCl2、六氨基氯化钴[Co(NH3)6]Cl3、醋酸钴(CH3CO2)2Co和四水合乙酸钴C4H6CoO4·4H2O中的至少一种。溶剂可为异丙醇,无水乙醇,异丙醇和无水乙醇混合溶剂,无水乙醇和乙二醇混合溶剂,无水乙醇和丙三醇混合溶剂,异丙醇和乙二醇混合溶剂,异丙醇和丙三醇混合溶剂等中的至少一种。当溶剂选用混合溶剂时,混合溶剂体积比为(0.5~3):1。溶液B中钴源的浓度可为0.01~5mol/L。例如,将六水合氯化钴(CoCl2·6H2O)加入到异丙醇和无水乙醇混合溶剂中,搅拌20~60min,形成均匀混合的溶液B。钴源浓度过高或过低,均不利于氧化钴的合成。此外,在次浓度范围内,选择合适的钴源和溶剂种类,可以制备出不同微观形貌、不同电催化性能的复合产物,且产物能够很好的生长在泡沫镍上,不会脱落。
将溶液B在搅拌作用下引流到溶液A中,混合均匀后,得到溶液C。其中,钨源和钴源的摩尔比可为(0.05~5):1。搅拌作用可为磁力搅拌等。作为一个示例,将含有六水合氯化钴的溶液B在磁力搅拌作用下引流到含有六氯化钨的溶液A中,继续磁力搅拌20~60min,得到混合均匀的溶液C。六氯化钨(WCl6)和六水合氯化钴(CoCl2·6H2O)的摩尔比为(0.05~5):1。当钨源或者钴源过多时均不益于产物合成,导致产物在泡沫镍上难以生长或生长稀疏,最终使电催化性能变差,催化过程中产物直接脱落。
将混合均匀的溶液C倒入聚四氟乙烯内衬的高压反应釜中,保持体积填充比控制在20~70%。
将泡沫镍基材或清洗后的泡沫镍基材放入含有溶液C的聚四氟乙烯内衬的高压反应釜中,并进行密封。
将密封好的反应釜放入均相水热反应仪中,进行反应,得到生长有W18O49/CoO的前驱物的泡沫镍。其中,反应所设置的温度可为120~220℃,反应的时间可为1~36h。反应温度或时间过低,产物结晶性差;温度过高或时间过长,非化学计量氧化钨容易氧化。
反应结束后冷却至室温,将生长有W18O49/CoO的前驱物的泡沫镍再经洗涤和干燥。其中洗涤可分别用无水乙醇和去离子水洗涤3~5次。其中干燥可为:放入30~70℃的真空烘箱中干燥3~10h,或者在冷冻干燥箱(-40~-60℃)中干燥3~10h。
将生长有W18O49/CoO的前驱物的泡沫镍放入瓷舟中,在氮气气氛下煅烧,可防止非化学氧化钨氧化。同时,前驱物在煅烧的过程中更容易产生氧缺陷,这些缺陷位可以作为电催化材料的活性位点提高材料的催化活性。其中,煅烧的温度可为200~400℃,煅烧的时间可为1-3h。优选,煅烧的升温速率可为2~5℃/min。煅烧温度或者反应时间过低会使反应动能不足,同时残留在复合材料上的有机物不易去除,从而不利于电催化性能的提高。煅烧温度或时间过高,会使泡沫镍脆化而起不到电极自支撑作用。
在本发明中,所得W18O49/CoO/NF自支撑电催化材料具有多种微观形貌,如纳米线、纳米片、自组装纳米花状结构等。
在可选的实施方式中,通过ICP测试计算得到CoO/W18O49在泡沫镍上的担载量可为0.5~3.5mg cm-2
在可选的实施方式中,W18O49和CoO的摩尔比可为(0.005~0.27):1。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:
①配制溶度为0.45mol/L分析纯六氯化钨(WCl6)的溶液A和浓度为0.45mol/L六水合氯化钴(CoCl2·6H2O)的溶B。将六氯化钨(WCl6)加入到20mL无水乙醇溶剂中,搅拌30min,形成均匀混合的溶液A;
②将六水合氯化钴(CoCl2·6H2O)加入到20mL无水乙醇溶剂中,搅拌30min,形成均匀混合的溶液B。将溶液B在磁力搅拌作用下引流到溶液A中,继续磁力搅拌30min,得到混合均匀的溶液C。其中,六氯化钨和六水合氯化钴的摩尔比为1:1;
③将混合均匀的溶液C倒入聚四氟乙烯内衬高压反应釜中,保持体积填充比控制在40%;
④取50mL的烧杯,将长为6cm,宽为1cm的泡沫镍依次完全浸入丙酮、3mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理30min。将处理好的泡沫镍放入含有溶液C的聚四氟乙烯反应釜中;
⑤将密封好的反应釜放入均相水热反应仪中,设置温度参数为150℃,反应时间为20h;
⑥反应结束后冷却至室温,将生长有W18O49/CoO的前驱物的泡沫镍上分别用无水乙醇和去离子水洗涤5次。放入60℃真空烘箱或者冷冻干燥箱中干燥4h;
⑦将生长有W18O49/CoO的前驱物的泡沫镍放入瓷舟中,在氮气气氛下煅烧,煅烧温度为250℃,煅烧时间为2小时,升温速率为2℃/min,得到W18O49/CoO/NF自支撑电催化材料。所得W18O49/CoO/NF自支撑电催化材料中W18O49/CoO的担载量为1.5mg/cm2。所述W18O49/CoO/NF自支撑电催化材料中W18O49和CoO的摩尔比为0.06:1。
实施例2
①配制浓度为0.08mol/L分析纯六氯化钨(WCl6)的溶液A和浓度为0.04mol/L醋酸钴((CH3CO2)2Co)溶液B。将六氯化钨(WCl6)加入到10mL异丙醇和20mL无水乙醇混合溶剂中,搅拌30min,形成均匀混合的溶液A;
②将醋酸钴((CH3CO2)2Co)加入到10mL异丙醇和20mL无水乙醇混合溶剂中,搅拌30min,形成均匀混合的溶液B。将溶液B在磁力搅拌作用下引流到溶液A中,继续磁力搅拌40min,得到混合均匀的溶液C。其中,六氯化钨和醋酸钴的摩尔比为2:1;
③将混合均匀的溶液C倒入聚四氟乙烯内衬高压反应釜中,保持体积填充比控制在60%;
④取50mL的烧杯,将长为4cm,宽为1cm的泡沫镍依次完全浸入丙酮、4mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理15min。将处理好的泡沫镍放入含有溶液C的聚四氟乙烯反应釜中;
⑤将密封好的反应釜放入均相水热反应仪中,设置温度参数为180℃,反应时间为12h;
⑥反应结束后冷却至室温,将生长有W18O49/CoO的前驱物的泡沫镍上分别用无水乙醇和去离子水离心、洗涤3次。将离心后的物质放入40℃真空烘箱或者冷冻干燥箱中干燥8h;
⑦将生长有W18O49/CoO的前驱物的泡沫镍放入瓷舟中,在氮气气氛下煅烧,煅烧温度为300℃,煅烧时间为2小时,升温速率为3℃/min,得到W18O49/CoO/NF自支撑电催化材料。所得W18O49/CoO/NF自支撑电催化材料中W18O49/CoO的担载量为0.5mg/cm2。所述W18O49/CoO/NF自支撑电催化材料中W18O49和CoO的摩尔比为0.1:1。
实施例3:
①配制浓度为3mol/L分析纯异丙醇钨(W(OCH(CH3)2)6)的溶液A和浓度为1mol/L六水合氯化钴(CoCl2·6H2O)的溶液B。将异丙醇钨加入到30mL异丙醇和10mL无水乙醇混合溶剂中,其中异丙醇和无水乙醇体积比为3:1,搅拌35min,形成均匀混合的溶液A;
②将六水合氯化钴(CoCl2·6H2O)加入到30mL异丙醇和10mL无水乙醇混合溶剂中,其中异丙醇和无水乙醇体积比为3:1,搅拌35min,形成均匀混合的溶液B。将溶液B在磁力搅拌作用下引流到溶液A中,继续磁力搅拌35min,得到混合均匀的溶液C。其中,异丙醇钨和六水合氯化钴的摩尔比为3:1;
③将混合均匀的溶液C倒入聚四氟乙烯内衬高压反应釜中,保持体积填充比控制在40%;
④取50mL的烧杯,将长为6cm,宽为2cm的泡沫镍依次完全浸入丙酮、5mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理15min。将处理好的泡沫镍放入含有溶液C的聚四氟乙烯反应釜中;
⑤将密封好的反应釜放入均相水热反应仪中,设置温度参数为120℃,反应时间为36h;
⑥反应结束后冷却至室温,将生长有W18O49/CoO的前驱物的泡沫镍上分别用无水乙醇和去离子水离心、洗涤4次。将离心后的物质放入70℃真空烘箱或者冷冻干燥箱中干燥3h;
⑦将生长有W18O49/CoO的前驱物的泡沫镍放入瓷舟中,在氮气气氛下煅烧,煅烧温度为400℃,煅烧时间为1小时,升温速率为2℃/min,得到W18O49/CoO/NF自支撑电催化材料。所得W18O49/CoO/NF自支撑电催化材料中W18O49/CoO的担载量为2.6mg/cm2。所述W18O49/CoO/NF自支撑电催化材料中W18O49和CoO的摩尔比为0.15:1。
实施例4:
①配制浓度为4mol/L分析纯六水合仲钨酸铵((NH4)6W7O24O·6H2O)的溶液A和1mol/L六水合氯化钴(CoCl2·6H2O)的溶液B。将(NH4)6W7O24O·6H2O加入到30mL异丙醇和15mL无水乙醇混合溶剂中,其中异丙醇和无水乙醇体积比为2:1,搅拌60min,形成均匀混合的溶液A;
②将六水合氯化钴(CoCl2·6H2O)加入到30mL异丙醇和15mL无水乙醇混合溶剂中,其中异丙醇和无水乙醇体积比为2:1,搅拌60min,形成均匀混合的溶液B。将溶液B在磁力搅拌作用下引流到溶液A中,继续磁力搅拌60min,得到混合均匀的溶液C。其中,六水合仲钨酸铵和六水合氯化钴的摩尔比为4:1;
③将混合均匀的溶液C倒入聚四氟乙烯内衬高压反应釜中,保持体积填充比控制在60%;
④取50mL的烧杯,将长为6cm,宽为1cm的泡沫镍依次完全浸入丙酮、3mol/L的HCl溶液、去离子水、无水乙醇中,并分别超声处理20min。将处理好的泡沫镍放入含有溶液C的聚四氟乙烯反应釜中;
⑤将密封好的反应釜放入均相水热反应仪中,设置温度参数为200℃,反应时间为16h;
⑥反应结束后冷却至室温,将生长有W18O49/CoO的前驱物的泡沫镍上分别用无水乙醇和去离子水离心、洗涤5次。将离心后的物质放入70℃真空烘箱或者冷冻干燥箱中干燥3h;
⑦将生长有W18O49/CoO的前驱物的泡沫镍放入瓷舟中,在氮气气氛下煅烧,煅烧温度为350℃,煅烧时间为2h,升温速率为4℃/min,得到W18O49/CoO/NF自支撑电催化材料。所得W18O49/CoO/NF自支撑电催化材料中W18O49/CoO的担载量为3mg/cm2。所述W18O49/CoO/NF自支撑电催化材料中W18O49和CoO的摩尔比为0.2:1。
实施例5
本对比例1中自支撑电催化材料的制备过程参见实施例1,区别在于:六氯化钨和六水合氯化钴的摩尔比为0.1:1。所得W18O49/CoO/NF自支撑电催化材料中W18O49/CoO的担载量为0.53mg cm-2。所述W18O49/CoO/NF自支撑电催化材料中W18O49和CoO的摩尔比为0.005:1。
实施例6
本对比例1中自支撑电催化材料的制备过程参见实施例1,区别在于:六氯化钨和六水合氯化钴的摩尔比为5:1。所得W18O49/CoO/NF自支撑电催化材料中W18O49/CoO的担载量为3.2mg/cm2。所述W18O49/CoO/NF自支撑电催化材料中W18O49和CoO的摩尔比为0.27:1。
对比例1
本对比例1中自支撑电催化材料的制备过程参见实施例1,区别在于:不加入分析纯六氯化钨(WCl6)。所得自支撑电催化材料记为CoO/NF-1,CoO的担载量为0.3mg cm-2
对比例2
本对比例2中自支撑电催化材料的制备过程参见实施例1,区别在于:不加入六水合氯化钴(CoCl2·6H2O)。所得自支撑电催化材料标记为W18O49/NF-1,W18O49的担载量为0.35mg cm-2
将NF(纯泡沫镍)、实施例1-6和对比例1-2所得自支撑电催化材料分别置于1M KOH碱性电解液中进行产氢电催化测试。电催化产氢和产氧性能采用上海辰华仪器有限公司CHI660B电化学工作站采集数据,采用三电极***,饱和甘汞电极(饱和的KCl填充)作为参比电极,碳棒作为对电极,所制备自支撑电催化剂用来作为工作电极。1M KOH作为电解液。线性伏安扫描曲线(LSV)扫速为2mV/s。W18O49/NF-1为对比例2中不加入六水合氯化钴(CoCl2·6H2O)所制备W18O49/NF自支撑电催化材料;CoO/NF-1为对比例1中不加入六氯化钨(WCl6)所制备CoO/NF自支撑电催化材料;W18O49/CoO/NF-1为实施例1制备的纳米线附着的纳米片状结构W18O49/CoO/NF自支撑电催化材料;W18O49/CoO/NF-2为实施例2制备的纳米针状W18O49/CoO/NF自支撑电催化材料;W18O49/CoO/NF-3为实施例3制备的由直接附着在泡沫镍基底上的CoO纳米片,以及在所述纳米片上附着的W18O49纳米线组装花状W18O49/CoO/NF自支撑电催化材料;W18O49/CoO/NF-4为实施例4制备的纳米片状W18O49/CoO/NF自支撑电催化材料,其纳米片为W18O49/CoO复合材料。
参见图8,与W18O49/NF-1和CoO/NF-1相比,W18O49/CoO/NF表现出比单相更高的HER活性。在电流密度为100mA/cm2时,NF(纯泡沫镍)、CoO/NF-1、W18O49/NF-1、W18O49/CoO/NF-1、W18O49/CoO/NF-2、W18O49/CoO/NF-3、W18O49/CoO/NF-4、W18O49/CoO/NF-5和W18O49/CoO/NF-6所需的过电势分别是565mV、541mV、494mV、397mV、413mV、343mV,374mV、475mV、442mV。同时可以看出所制备的纳米针、纳米片、纳米线附着的纳米片、纳米线附着的花状结构中,三维花状W18O49/CoO/NF-3自支撑电催化材料性能较好。
将NF(纯泡沫镍)、实施例1-6和对比例1-2所得电催化材料分别置于1M KOH碱性电解液中进行产氧电催化测试。参见图9,与W18O49/NF-1和CoO/NF-1相比,W18O49/CoO/NF表现出比单相更高的OER活性。在电流密度为100mA/cm2时,NF(纯泡沫镍)、CoO/NF-1、W18O49/NF-1、W18O49/CoO/NF-1、W18O49/CoO/NF-2、W18O49/CoO/NF-3、W18O49/CoO/NF-4、W18O49/CoO/NF-5和W18O49/CoO/NF-6所需的过电势分别是630、520mV、470mV、380mV、360mV、350mV、410mV、、430mV、410mV。同时可以看出所制备的纳米针、纳米片、纳米线附着的纳米片、纳米线附着的花状结构中,三维花状W18O49/CoO/NF-3自支撑电催化材料性能较好。
图1为实施例1制备的W18O49/CoO/NF自支撑电催化材料的XRD图谱,从图中可知在2θ值分别在44.5°和51.9°处的衍射峰对应于泡沫镍(JCPDS***70-0989)的(111)和(200)晶面。2θ值在23.47°和48.02°处的衍射峰对应于单斜相W18O49(JCPDS Card No.71-2450)的(010)晶面,2θ值在34.10°、57.21°和68.32°处的衍射峰对应于立方相CoO(JCPDS CardNo.75-0419)的(111)、(220)、和(311)晶面。说明了成功合成W18O49/CoO/NF材料;
图2为实施例1制备的W18O49/CoO/NF自支撑电催化材料的SEM图,从图中可知W18O49/CoO复合材料在泡沫镍基底上密集生长,同时产物形貌为W18O49纳米线附着CoO纳米片状结构,纳米片的厚度≤100nm,纳米线直径约为5~10nm,长度为100~200nm;
图3为对比例1中不加入分析纯六氯化钨(WCl6)所制备CoO/NF的XRD图谱,从图中可知在2θ值在34.10°、39.58°、57.21°和68.32°处的衍射峰对应于立方相CoO(JCPDS CardNo.75-0419)的(111)、(220)、和(311)晶面,说明了不加入分析纯六氯化钨(WCl6)产物为CoO/NF;
图4为对比例1中不加入分析纯六氯化钨(WCl6)所制备CoO/NF的SEM图谱。从图a可见,CoO密集的生长在泡沫镍上,图b可见产物具有不规则形貌;
图5为对比例2中不加入六水合氯化钴(CoCl2·6H2O)所制备W18O49/NF的XRD图谱,从图中可知在2θ值在23.47°处的衍射峰对应于泡沫镍(JCPDS***71-2450)的(010)晶面,说明不加入六水合氯化钴(CoCl2·6H2O)产物为W18O49/NF;
图6为对比例2中不加入六水合氯化钴(CoCl2·6H2O)所制备W18O49/NF的SEM图谱。从图a可见,W18O49密集的生长在泡沫镍上,图b可见产物为凸起颗粒状;
图10为实施例5和实施例6所制备W18O49/CoO/NF的微观形貌,与实施例1相比,实施例5制备的W18O49/CoO/NF未能完全在泡沫镍上密生长,且有脱落趋势。与实施例2相比,实施例6制备的W18O49/CoO/NF在泡沫镍上生长过于浓密,从而造成不均匀堆积。由此说明钨源和钴源摩尔比较小或者较大,担载量过小或者过大均不利于W18O49/CoO/NF均匀紧密生长在泡沫镍上,甚至导致产物从泡沫镍脱落;
图11为实施例5所制备产物的EPR测试,发现W18O49/CoO/NF在g≈2.003的位置的信号峰,且峰强较强,由此说明氧空位(氧缺陷)的存在。

Claims (10)

1.一种W18O49/CoO/NF自支撑电催化材料,其特征在于,所述W18O49/CoO/NF自支撑电催化材料包括:泡沫镍基材,以及原位生成在泡沫镍基底上的W18O49/CoO复合纳米材料;其中所述W18O49/CoO复合纳米材料包括直接附着在泡沫镍基底上的CoO纳米片,以及在所述纳米片上附着的W18O49纳米线;所述W18O49/CoO/NF自支撑电催化材料的制备方法包括:
(1)将含有钴源的溶液B在搅拌过程中引流到含有钨源的溶液A中,得到溶液C;
(2)将泡沫镍放入含有溶液C的高压反应釜中,在120~220 ℃下反应1~36 小时,再经洗涤和干燥,得到生长有W18O49/CoO的前驱物的泡沫镍;
(3)将生长有W18O49/CoO的前驱物的泡沫镍在氮气气氛中、200~400 ℃下煅烧,得到W18O49/CoO/NF自支撑电催化材料。
2. 根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述W18O49/CoO复合纳米材料在泡沫镍基材上的总担载量为0.5~3.5 mg/cm2
3.根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述W18O49/CoO复合纳米材料中W18O49和CoO的摩尔比为(0.005~0.27):1。
4. 根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述CoO纳米片的厚度≤100 nm;所述W18O49纳米线的直径为5~10 nm,长度为100~200 nm。
5. 根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述钨源选自仲钨酸铵、六水合仲钨酸铵 (NH4)6W7O24O·6H2O、四水合仲钨酸铵(NH4)10[H2W12O42]·4H2O、偏钨酸铵 (NH4)6H2W12O40、异丙醇钨 W(OCH(CH3)2)6和六氯化钨WCl6中的至少一种;所述钴源选自二水合氯化钴CoCl2∙6H2O、氯化钴CoCl2、六氨基氯化钴[Co(NH3)6]Cl3、醋酸钴(CH3CO2)2Co和四水合乙酸钴C4H6CoO4·4H2O中的至少一种。
6.根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述含有钴源的溶液B和钨源的溶液A的溶剂分别选自异丙醇、无水乙醇、异丙醇和无水乙醇混合溶液、无水乙醇和乙二醇混合溶剂、无水乙醇和丙三醇混合溶剂、异丙醇和乙二醇混合溶剂、异丙醇和丙三醇混合溶剂中的一种。
7.根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述钨源和钴源的摩尔比为(0.05~5):1。
8.根据权利要求7所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述钨源和钴源的摩尔比为(1~3.5):1。
9.根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述含有溶液C的高压反应釜的体积填充比为20~70%。
10. 根据权利要求1所述的W18O49/CoO/NF自支撑电催化材料,其特征在于,所述煅烧的时间为1~3 小时;所述煅烧的升温速率为2~5 ℃/分钟。
CN202011139020.9A 2020-10-22 2020-10-22 一种W18O49/CoO/NF自支撑电催化材料及其制备方法 Active CN114452994B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011139020.9A CN114452994B (zh) 2020-10-22 2020-10-22 一种W18O49/CoO/NF自支撑电催化材料及其制备方法
US17/451,133 US11859294B2 (en) 2020-10-22 2021-10-15 W18O49/CoO/NF self-supporting electrocatalytic material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011139020.9A CN114452994B (zh) 2020-10-22 2020-10-22 一种W18O49/CoO/NF自支撑电催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114452994A CN114452994A (zh) 2022-05-10
CN114452994B true CN114452994B (zh) 2023-06-30

Family

ID=81258056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011139020.9A Active CN114452994B (zh) 2020-10-22 2020-10-22 一种W18O49/CoO/NF自支撑电催化材料及其制备方法

Country Status (2)

Country Link
US (1) US11859294B2 (zh)
CN (1) CN114452994B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855215B (zh) * 2022-05-30 2023-11-21 清华大学 用于高效电催化合成氨的催化剂及其制备方法
CN115646503A (zh) * 2022-10-08 2023-01-31 河北师范大学 一种泡沫镍负载Ni-WC复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621854A (zh) * 2018-10-31 2019-04-16 青岛大学 一种提高三乙胺检测性能的复合空心微球制备方法
CN109731580A (zh) * 2019-02-28 2019-05-10 陕西科技大学 一种w18o49/nf自支撑电催化材料的制备方法
CN109806902A (zh) * 2019-02-28 2019-05-28 陕西科技大学 一种W18O49/NiWO4/NF自支撑电催化材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723902B2 (ja) * 2003-04-08 2005-12-07 松下電器産業株式会社 酸素還元用電極およびそれを用いた電気化学素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621854A (zh) * 2018-10-31 2019-04-16 青岛大学 一种提高三乙胺检测性能的复合空心微球制备方法
CN109731580A (zh) * 2019-02-28 2019-05-10 陕西科技大学 一种w18o49/nf自支撑电催化材料的制备方法
CN109806902A (zh) * 2019-02-28 2019-05-28 陕西科技大学 一种W18O49/NiWO4/NF自支撑电催化材料的制备方法

Also Published As

Publication number Publication date
CN114452994A (zh) 2022-05-10
US11859294B2 (en) 2024-01-02
US20220127734A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
Kim et al. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction
Zheng et al. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential
Wu et al. Facile synthesis of Co and Ce dual-doped Ni 3 S 2 nanosheets on Ni foam for enhanced oxygen evolution reaction
Wu et al. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly
CN111468167A (zh) 一种钴单原子负载氮掺杂碳氧还原催化剂及其制备方法
Zhou et al. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott-Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis at a large current density
Shi et al. Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries
CN111495395A (zh) 一种高效双金属镍钼硒化物电催化材料及其制备方法
Zhang et al. Recent progress in self-supported two-dimensional transition metal oxides and (oxy) hydroxides as oxygen evolution reaction catalysts
CN110331416B (zh) 一种CoOOH纳米片修饰Fe2O3复合光阳极的制备方法及应用
CN114452994B (zh) 一种W18O49/CoO/NF自支撑电催化材料及其制备方法
Yang et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution
Lin et al. In situ formation of nickel sulfide quantum dots embedded into a two-dimensional metal–organic framework for water splitting
Tang et al. Enhanced oxygen evolution activity on mesoporous cobalt–iron oxides
CN112553643B (zh) 一种氮掺杂碳包覆非贵双金属钴钼氧化物析氧反应催化剂、制备方法及应用
Kong et al. The “mediated molecular”-assisted construction of Mo2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction
Xu et al. Research progress of metal oxide as cathode materials for hydrogen evolution
CN110560094B (zh) 一种3d多孔钴锡钼三金属催化剂的制备方法
CN111450842A (zh) 一种微花结构黑铅铜矿相金属氧化物电催化剂的制备方法、电催化剂及其应用
CN114941161B (zh) 一种α/β混合相镍铁层状双氢氧化物材料的制备及其应用
CN114452982B (zh) 一种W18O49/CoO/CoWO4/NF自支撑电催化材料及其制备方法
Christy et al. Tuning the surface chemistry of La0. 6Sr0. 4CoO3-δ perovskite via in-situ anchored chemical bonds for enhanced overall water splitting
CN114774983A (zh) 一种超小Ru纳米团簇负载于MoO3-x纳米带的双功能复合材料及其制备方法与应用
Fu et al. Surface morphology and interface electronic structure tailoring of cobalt carbonate hydroxide via Ce doping for enhanced oxygen evolution reaction
Liu et al. Fabrication of Ce‐doped Hollow NiCo2O4 Nanoprisms with Heterointerface from MOF‐Engaged Strategy for Oxygen Evolution Reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231212

Address after: 710000, Room 409, North Building, Building 5, Western Life Science Park, Fengdong New City, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Shaanxi Zhicheng Fengji Functional Materials Co.,Ltd.

Address before: 710021 Weiyang University Park, Weiyang District, Xi'an City, Shaanxi Province

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right