CN114438596A - 一种易于剥离的晶圆级氮化镓外延生长方法 - Google Patents

一种易于剥离的晶圆级氮化镓外延生长方法 Download PDF

Info

Publication number
CN114438596A
CN114438596A CN202210102518.0A CN202210102518A CN114438596A CN 114438596 A CN114438596 A CN 114438596A CN 202210102518 A CN202210102518 A CN 202210102518A CN 114438596 A CN114438596 A CN 114438596A
Authority
CN
China
Prior art keywords
gallium nitride
easy
strip
epitaxial growth
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210102518.0A
Other languages
English (en)
Inventor
孔玮
马亚庆
杨军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westlake University
Original Assignee
Westlake University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westlake University filed Critical Westlake University
Priority to CN202210102518.0A priority Critical patent/CN114438596A/zh
Publication of CN114438596A publication Critical patent/CN114438596A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种易于剥离的晶圆级氮化镓外延生长方法,包括以下步骤:步骤1:取c面蓝宝石单晶衬底;步骤2:在蓝宝石衬底上生长出氮化硼二维材料;步骤3:生长了氮化硼二维材料的蓝宝石衬底表面上,使用卤化物气相外延生长出氮化镓厚膜;步骤4:降低至室温,获得高质量的氮化镓厚膜。本发明可提高氮化镓外延的晶体质量,减少因晶格失配产生的位错,有助于机械剥离氮化镓外延。

Description

一种易于剥离的晶圆级氮化镓外延生长方法
技术领域
本发明涉及半导体技术领域,具体涉及一种易于剥离的晶圆级氮化镓外延生长方法。
背景技术
作为一种典型的第三代半导体材料,氮化镓具有许多优异的特性,包括高电子迁移率、直接带隙、高热稳定性,物理化学性质稳定等。当前,氮化镓已被应用在众多不同功能的器件中,如高电子迁移率晶体管、发光二极管和紫外探测器。氮化镓是信息化时代下最重要的信息功能材料之一,吸引了学界与工业界研究者们的广泛关注。尽管氮化镓性质优异,但受限于氮元素的解离压很高,作为电子器件重要部分的氮化镓衬底材料极难通过传统的熔体生长法进行制备。目前工业上氮化镓主要还是通过异质外延的方法进行大规模制备,如卤化物气相沉积、金属有机化学气相沉积等,异质外延氮化镓存在着以下缺陷:一方面异质外延抬高了衬底制备的成本;另一方面,衬底与外延层的晶格失配会导致在界面处产生大量缺陷,如位错、层错等,这无疑降低了异质外延器件的综合性能。因此,低成本的制造出大尺寸氮化镓衬底,对于整个氮化镓半导体产业都有着非同小可的影响。
六方氮化镓因其具有与石墨烯相近的蜂窝状结构、以及高达6eV的宽带隙引起了研究者们的广泛关注,六方氮化硼层内由交替的sp2杂化硼原子和氮原子与层间的范德瓦尔斯相互作用组成。六方氮化硼具有低介电常数、高温度稳定性、高抗氧化能力和高热导率等优异特性,有望在深紫外光发射器等方面提供保护涂层和介电层等应用。此外,由于六方氮化硼与氮化镓之间仅存在1.6%的晶格失配,它也可以作为一种理想的易于剥离且能与氮化镓产生良好外延关系的中间材料。研究结果显示,多晶氮化硼可被用作缓冲层外延氮化镓,但生长出的氮化镓材料是多晶的。
发明内容
本发明所要解决的技术问题是:目前行业采用的蓝宝石衬底异质外延氮化镓会产生较大的晶格失配,并且在剥离氮化镓外延与衬底过程中造成大量缺陷,这严重制约了氮化镓产业的发展,本发明提供了解决上述问题的一种易于剥离的晶圆级氮化镓外延生长方法。
本发明通过下述技术方案实现:
一种易于剥离的晶圆级氮化镓外延生长方法,包括以下步骤:
步骤1:取c面蓝宝石单晶衬底;
步骤2:在蓝宝石衬底上生长出氮化硼二维材料;
步骤3:生长了氮化硼二维材料的蓝宝石衬底表面上,使用卤化物气相外延生长出氮化镓厚膜;
步骤4:降低至室温,获得高质量的氮化镓厚膜。
目前行业采用的蓝宝石衬底异质外延氮化镓会产生较大的晶格失配,并且在剥离氮化镓外延与衬底过程中造成大量缺陷,这严重制约了氮化镓产业的发展。本发明采用氮化硼作为外延氮化镓缓冲层材料,与氮化镓之间仅有0.13%的晶格失配,并且可以用于机械剥离的插层材料。在蓝宝石上外延单层的高质量氮化硼材料,而后通过HVPE远程外延氮化镓,一方面可提高氮化镓外延的晶体质量,减少因晶格失配产生的位错;另一方面,氮化硼的存在有助于机械剥离氮化镓外延。
进一步优选,所述步骤1中,c面蓝宝石单晶衬底的厚度为400μm-500μm,斜切角为0.25°~0.6°。
进一步优选,所述步骤2中,生长氮化硼二维材料的方法CVD生长工艺。
进一步优选,所述步骤2中,采用CVD生长工艺生长氮化硼二维材料,生长温度设定为 1300℃~1500℃,压力设定为0.05Torr~0.2Torr,生长时间为20min~60min。
进一步优选,所述步骤3中,外延生长出氮化镓的方法包括:采用HVPE工艺,生长温度设定在1020℃~1080℃,压力设定在550Torr~800Torr,生长时间为60min~180min。
进一步优选,所述步骤4中,降温时间为30min~120min。
进一步优选,所述步骤4中,外延出氮化镓的厚度为1μm~500μm。
进一步优选,其特征在于,还包括步骤5:机械剥离获得高质量的氮化镓。
进一步优选,所述步骤5中,具体方法包括:将氮化镓表面通过粘结剂与外来衬底粘连,然后通过机械力将生长有氮化硼二维材料的蓝宝石衬底与氮化镓外延层分离;再清洗掉氮化镓上的粘结剂。
进一步优选,具体方法包括:将氮化镓表面通过粘结剂In与外来衬底粘连,然后通过机械力将生长有氮化硼二维材料的蓝宝石衬底与氮化镓外延层分离;再使用三氯化铁溶液清洗掉氮化镓上的In粘结剂,三氯化铁溶液的浓度设置在0.5mol/L~3mol/L,清洗时间设置在20min ~60min。
本发明具有如下的优点和有益效果:
本发明提供的一种易于剥离的晶圆级氮化镓外延生长方法,使用氮化硼作为蓝宝石与氮化镓外延之间的外延缓冲层,并优化设计了相关制备工艺,具有诸多优点:
1、氮化硼作为蓝宝石异质外延氮化镓的缓冲层,与氮化镓晶格匹配更小;
2、氮化硼作为中间机械剥离插层材料,氮化硼的存在有助于机械剥离氮化镓外延。不仅降低了剥离难度与成本,更减小了剥离过程中对于氮化镓外延层的破坏。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明实施例的氮化镓外延生长方法的流程图。
图2为本发明实施例制备的易于剥离的晶圆级氮化镓的结构示意图,不含机械剥离相关结构;附图中标记及对应的零部件名称:100-蓝宝石衬底,101-氮化硼缓冲层,102-GaN外延层,
图3为本发明实施例制备的易于剥离的晶圆级氮化镓的结构示意图,含机械剥离相关结构;附图中标记及对应的零部件名称:103-蓝宝石衬底,104-氮化硼缓冲层,105-GaN外延层,106-In粘结剂,107-支撑衬底层。
图4为本发明实施例1制备的氮化镓外延薄膜的X射线衍射图谱。
图5为本发明实施例2制备的氮化镓外延薄膜的原子力显微镜微观形貌图,具体为高度图。
图6为本发明实施例2制备的氮化镓外延薄膜的原子力显微镜微观形貌图,具体为振幅图。
图7为本发明实施例2制备的氮化镓外延薄膜的原子力显微镜微观形貌图,具体为相位图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实施例中,为了避免混淆本发明,未具体描述公知的材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“一个实施例”、“实施例”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的示图都是为了说明的目的,并且示图不一定是按比例绘制的。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
实施例1
本实施例提供了一种易于剥离的晶圆级氮化镓外延生长方法,具体步骤如下所示:
步骤1:准备c面蓝宝石单晶衬底,衬底厚度为500μm,斜切角在0.25°。
步骤2:通过CVD技术在蓝宝石单晶衬底上生长氮化硼二维材料,具体步骤如下所示:
采用CVD生长工艺,生长温度设定在1300℃,压力设定在0.05Torr,生长时间为20min。
步骤3:在生长了氮化硼二维材料的蓝宝石衬底表面上,使用卤化物气相外延生长出氮化镓厚膜,具体步骤如下所示:
采用HVPE工艺,使用卤化物氯化镓,生长温度设定在1020℃,通入的背景气氛为高纯氮气,腔体内压力保持在770Torr之间,同时V/III比设定为10,压力控制低压是由于低压有助于氮化镓的二维生长,而V/III比较低时Ga原子有着更长的迁移距离,生长时间为60min。
步骤4:降温,获得高质量的氮化镓厚膜;降温时间为30min,最终获得外延氮化镓的厚度为40μm。
步骤5:使用机械剥离方法将氮化镓外延与蓝宝石衬底分离,从而获得沿(002)取向的单晶氮化镓外延;
将氮化镓表面通过粘结剂In与外来衬底粘连,然后通过机械力将生长有氮化硼的蓝宝石衬底与氮化镓外延层分离,之后使用三氯化铁溶液清洗掉氮化镓上的In粘结剂,三氯化铁溶液的浓度设置在0.5mol/L,清洗时间设置在60min。机械转移过程结束后,得到晶圆尺寸的高质量氮化镓衬底。
实施例2
本实施例提供了一种易于剥离的晶圆级氮化镓外延生长方法,具体步骤如下所示:
步骤1:准备c面蓝宝石单晶衬底,衬底厚度为400μm,斜切角在0.6°;
步骤2:通过CVD技术在蓝宝石衬底上生长出氮化硼二维材料,具体步骤如下所示:
采用CVD生长工艺,生长温度设定在1400℃,压力设定在0.1Torr,生长时间为60min。
步骤3:在生长了氮化硼二维材料的蓝宝石衬底表面上,使用卤化物气相外延生长出氮化镓厚膜,具体步骤如下所示:
采用HVPE工艺,使用卤化物氯化镓,生长温度设定在1030℃,通入的背景气氛为高纯氮气,腔体内压力保持在760Torr之间,同时V/III比设定为20,压力控制低压是由于低压有助于氮化镓的二维生长,而V/III比较低时Ga原子有着更长的迁移距离,生长时间为120min。
步骤4:降低至室温,获得高质量的氮化镓厚膜;降温时间为60min,最终获得外延氮化镓的厚度为80μm。
步骤5:使用机械剥离方法将氮化镓外延与蓝宝石衬底分离,从而获得沿(002)取向的单晶氮化镓外延。
将氮化镓表面通过粘结剂In与外来衬底粘连,然后通过机械力将生长有氮化硼的蓝宝石衬底与氮化镓外延层分离,之后使用三氯化铁溶液清洗掉氮化镓上的In粘结剂,三氯化铁溶液的浓度设置在1mol/L,清洗时间设置在30min。机械转移过程结束后,得到晶圆尺寸的高质量氮化镓衬底。
性能表征分析
1、实施例1制备的氮化镓外延薄膜经X射线衍射表征,结果如图4所示,图谱中观测到了氮化镓(002)以及(004)的衍射峰,说明实施例1合成出的氮化镓外延薄膜是沿c面取向的单晶外延薄膜,没有其他的晶体取向。无其他的峰被观测到,说明实施例1合成出的氮化镓外延薄膜是纯相的,没有多余的杂相。
2、实施例2制备的氮化镓外延薄膜的原子力显微镜表征,结果如图5所示,氮化镓外延薄膜的表面平整,表面粗糙度(RMS)约2nm,说明实施例2合成出的氮化镓外延薄膜表面平整,结合图4,说明合成出的氮化镓外延薄膜具有高结晶度和晶体质量。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,包括以下步骤:
步骤1:取c面蓝宝石单晶衬底;
步骤2:在蓝宝石衬底上生长出氮化硼二维材料;
步骤3:生长了氮化硼二维材料的蓝宝石衬底表面上,使用卤化物气相外延生长出氮化镓厚膜;
步骤4:降低至室温,获得高质量的氮化镓厚膜。
2.根据权利要求1所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,所述步骤1中,c面蓝宝石单晶衬底的厚度为400μm-500μm,斜切角为0.25°~0.6°。
3.根据权利要求1所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,所述步骤2中,生长氮化硼二维材料的方法CVD生长工艺。
4.根据权利要求3所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,所述步骤2中,采用CVD生长工艺生长氮化硼二维材料,生长温度设定为1300℃~1500℃,压力设定为0.05Torr~0.2Torr,生长时间为20min~60min。
5.根据权利要求1所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,所述步骤3中,外延生长出氮化镓的方法包括:采用HVPE工艺,生长温度设定在1020℃~1080℃,压力设定在550Torr~800Torr,生长时间为60min~180min。
6.根据权利要求1所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,所述步骤4中,降温时间为30min~120min。
7.根据权利要求1所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,所述步骤4中,外延出氮化镓的厚度为1μm~500μm。
8.根据权利要求1至7任一项所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,还包括步骤5:机械剥离获得高质量的氮化镓。
9.根据权利要求8所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,所述步骤5中,具体方法包括:
将氮化镓表面通过粘结剂与外来衬底粘连,然后通过机械力将生长有氮化硼二维材料的蓝宝石衬底与氮化镓外延层分离;再清洗掉氮化镓上的粘结剂。
10.根据权利要求9所述的一种易于剥离的晶圆级氮化镓外延生长方法,其特征在于,具体方法包括:
将氮化镓表面通过粘结剂In与外来衬底粘连,然后通过机械力将生长有氮化硼二维材料的蓝宝石衬底与氮化镓外延层分离;再使用三氯化铁溶液清洗掉氮化镓上的In粘结剂,三氯化铁溶液的浓度设置在0.5mol/L~3mol/L,清洗时间设置在20min~60min。
CN202210102518.0A 2022-01-27 2022-01-27 一种易于剥离的晶圆级氮化镓外延生长方法 Pending CN114438596A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210102518.0A CN114438596A (zh) 2022-01-27 2022-01-27 一种易于剥离的晶圆级氮化镓外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210102518.0A CN114438596A (zh) 2022-01-27 2022-01-27 一种易于剥离的晶圆级氮化镓外延生长方法

Publications (1)

Publication Number Publication Date
CN114438596A true CN114438596A (zh) 2022-05-06

Family

ID=81370263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210102518.0A Pending CN114438596A (zh) 2022-01-27 2022-01-27 一种易于剥离的晶圆级氮化镓外延生长方法

Country Status (1)

Country Link
CN (1) CN114438596A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
JP2003192497A (ja) * 2001-12-25 2003-07-09 Communication Research Laboratory 窒化インジウム系化合物半導体の積層方法
US20140145147A1 (en) * 2011-09-05 2014-05-29 Yasuyuki Kobayashi Nitride semiconductor structure and method of fabricating same
CN103928583A (zh) * 2014-04-29 2014-07-16 中国科学院上海微***与信息技术研究所 一种GaN单晶自支撑衬底的制备方法
US20190035624A1 (en) * 2017-07-25 2019-01-31 Government Of The United States, As Represented By The Secretary Of The Air Force Growth of iii-nitride semiconductors on thin van der waals buffers for mechanical lift off and transfer
US20190218684A1 (en) * 2016-09-12 2019-07-18 Dexerials Corporation Method for producing gallium nitride stacked body
CN111681946A (zh) * 2020-05-21 2020-09-18 东莞市中镓半导体科技有限公司 氮化镓单晶衬底的制备方法
WO2021233305A1 (zh) * 2020-05-18 2021-11-25 华为技术有限公司 氮化物外延片及其制备方法和半导体器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
JP2003192497A (ja) * 2001-12-25 2003-07-09 Communication Research Laboratory 窒化インジウム系化合物半導体の積層方法
US20140145147A1 (en) * 2011-09-05 2014-05-29 Yasuyuki Kobayashi Nitride semiconductor structure and method of fabricating same
CN103928583A (zh) * 2014-04-29 2014-07-16 中国科学院上海微***与信息技术研究所 一种GaN单晶自支撑衬底的制备方法
US20190218684A1 (en) * 2016-09-12 2019-07-18 Dexerials Corporation Method for producing gallium nitride stacked body
US20190035624A1 (en) * 2017-07-25 2019-01-31 Government Of The United States, As Represented By The Secretary Of The Air Force Growth of iii-nitride semiconductors on thin van der waals buffers for mechanical lift off and transfer
WO2021233305A1 (zh) * 2020-05-18 2021-11-25 华为技术有限公司 氮化物外延片及其制备方法和半导体器件
CN111681946A (zh) * 2020-05-21 2020-09-18 东莞市中镓半导体科技有限公司 氮化镓单晶衬底的制备方法

Similar Documents

Publication Publication Date Title
EP1751329B1 (en) Method of sic single crystal growth and sic single crystal
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
CN113235047B (zh) 一种AlN薄膜的制备方法
CN104409319B (zh) 一种石墨烯基底上生长高质量GaN 缓冲层的制备方法
CN109585269A (zh) 一种利用二维晶体过渡层制备半导体单晶衬底的方法
CN112309832B (zh) 可转移氧化镓单晶薄膜的制备方法
CN109841497B (zh) 一种同质外延生长氮化镓的方法、氮化镓材料及应用
CN112420491A (zh) 氧化镓外延薄膜及生长氧化镓外延薄膜的方法
CN113130296B (zh) 一种六方氮化硼上生长氮化镓的方法
CN110670135B (zh) 一种氮化镓单晶材料及其制备方法
CN110828291A (zh) 基于单晶金刚石衬底的GaN/AlGaN异质结材料及其制备方法
JP3628079B2 (ja) 炭化珪素薄膜製造方法並びに炭化珪素薄膜および積層基板
Fu et al. Residual stress in GaN epilayers grown on silicon substrates
JP3785566B2 (ja) GaN系化合物半導体結晶の製造方法
CN1327486C (zh) 利用氢化物汽相外延方法在硅衬底上生长GaN薄膜
CN114438596A (zh) 一种易于剥离的晶圆级氮化镓外延生长方法
CN1309020C (zh) 一种在铝酸镁衬底上制备ZnO单晶薄膜的方法
CN202996885U (zh) 一种生长在Si衬底上的LED外延片
JP2003212694A (ja) 電子素子基板上へのSiC又はGaN単結晶の成長方法
KR101041659B1 (ko) 산화아연 버퍼층을 이용한 질화갈륨 에피층 제조방법
CN112831834A (zh) 一种在Ru(0001)薄膜上异质外延生长金刚石(111)薄膜的制备方法
CN110670138A (zh) 用于氮化铝单晶生长的复合籽晶及其制备方法
CN110517949A (zh) 一种利用SiO2作为衬底制备非极性a面GaN外延层的方法
Lew et al. Etching of 4° and 8° 4H-SiC Using Various Hydrogen-Propane Mixtures in a Commercial Hot-Wall CVD Reactor
CN114438595B (zh) 一种利于提高散热性的氮化镓外延生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220506