CN114433046B - 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用 - Google Patents

负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用 Download PDF

Info

Publication number
CN114433046B
CN114433046B CN202111575890.5A CN202111575890A CN114433046B CN 114433046 B CN114433046 B CN 114433046B CN 202111575890 A CN202111575890 A CN 202111575890A CN 114433046 B CN114433046 B CN 114433046B
Authority
CN
China
Prior art keywords
carbon
titanium oxide
based material
butyl titanate
oxide nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111575890.5A
Other languages
English (en)
Other versions
CN114433046A (zh
Inventor
仇健
巴龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202111575890.5A priority Critical patent/CN114433046B/zh
Priority to PCT/CN2021/140653 priority patent/WO2023115426A1/zh
Publication of CN114433046A publication Critical patent/CN114433046A/zh
Application granted granted Critical
Publication of CN114433046B publication Critical patent/CN114433046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J35/39
    • B01J35/393
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers

Abstract

本发明公开了一种负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用,属于纳米材料技术领域。包括碳纳米材料和氧化钛纳米颗粒,氧化钛纳米颗粒负载在碳纳米材料表面;所述氧化钛纳米颗粒的平均粒径小于2纳米,具有增强的光催化效率。本发明利用光热化学反应在基体表面形成具有以化学或物理方式结合的超细纳米材料;同时用导电纤维为基材,还可以实现光电协同催化,激光诱导光热水解反应对导电纤维表面的碳基纳米材料产生局部热效应,促进超细氧化钛纳米颗粒在表面水解析出,该技术支持量化生产,成本低廉,具有广泛市场需求。

Description

负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种负载在碳基材料表面高光催化活性的氧化钛纳米颗粒及其制备方法和应用。
背景技术
目前,有多种方法可以制备得到具有高光催化效率的氧化钛纳米颗粒,并且多数采用水热法。采用水热法制备的是锐钛矿型氧化钛纳米颗粒,具有较高的光催化效率。而采用钛酸丁酯酸性室温水解,可以制得氧化钛超细纳米颗粒或分子团簇,该超细纳米颗粒的尺寸小于2纳米,具有比锐钛矿型纳米颗粒高数倍的光催化效率。但由于这种颗粒尺寸较小,一般分离技术无法实现纯化,因此溶液中是超细纳米颗粒和较大纳米颗粒的混合物,超细纳米颗粒的高光催化效率未能充分发挥。同时,超细颗粒由于尺寸非常小,几乎无法回收。如果将其负载于介孔材料或碳基材料,不仅可以通过异质结间的电荷转移的耦合效应提高其光催化效率,还可以方便地实现对其纯化和回收。
氧化钛纳米颗粒与碳基纳米材料偶联,可以大幅提高氧化钛的光催化效率(H.Zhang,P25-graphene composite as a high performance photocatalyst, ACS Nano,2010, 4, 380-386)。碳基纳米材料具有很强的红外吸收特性,激光辐照可以对材料产生局部瞬态热效应。将碳纳米管、氧化石墨烯以较低的浓度分散在水溶液中,激光瞬间辐照对碳材料产生的热效应远高于溶液的热效应。因此,用红外激光对碳纳米材料辐照,只会影响碳材料或近邻溶液短时产生高温,而不影响远区溶液;并且激光辐照可以在微区局部实施辐照,形成任意可设计的局部光化学反应。
光催化纳米材料的一个主要应用是环境污水处理。为了高效利用纳米材料,需要将催化剂附着在比表面积大的基体材料表面。纤维材料由于具有大比表面积,成为主要负载基料,直接将光催化材料涂敷在纤维表面容易产生脱附。而用聚合物胶层固着催化剂则会产生表面覆盖,降低光催化效率,因此利用光热化学反应在基体表面原位形成具有化学或物理方式结合的超细纳米材料,可以解决上述问题。
发明内容
为了解决超细纳米颗粒水热反应热控制难题,本发明采用红外激光对强红外吸收碳纳米材料辐照以提供局域瞬间热效应,使得钛酸丁酯在碳纳米材料表面形成胶溶,通过激光辐照剂量控制超细纳米颗粒形成,从而提供了一种负载有氧化钛超细纳米颗粒的碳基材料的制备方法。
为了实现上述目的,本发明采用以下技术方案:
一种负载有氧化钛纳米颗粒的碳基材料,包括碳纳米材料和氧化钛纳米颗粒,其中,氧化钛纳米颗粒负载在碳纳米材料表面;
所述氧化钛纳米颗粒的平均粒径小于2纳米,具有增强的光催化效率。
进一步地,所述碳纳米材料为单壁碳纳米管或/和石墨烯。
上述负载有氧化钛纳米颗粒的碳基材料的制备方法,包括以下步骤:
步骤1,在4-8℃条件下,将钛酸丁酯与无水乙醇混合,混合液加至硝酸水溶液中,得到钛酸丁酯溶胶前驱体;
步骤2,在4-8℃条件下,将钛酸丁酯溶胶前驱体与碳基材料混合;
步骤3,在4-8℃条件下,采用红外激光对步骤2得到的混合材料进行处理,纯化后得到负载有氧化钛纳米颗粒的碳基材料。
进一步地,步骤1中,钛酸丁酯、硝酸、无乙醇和水的摩尔比为 0.2~0.5:0.10~0.22:0.40~0.60:15~22。
进一步地,步骤1中所述钛酸丁酯溶胶前驱体中加入有金属离子进行掺杂。
更进一步地,所述金属离子为Fe3+、La3+、Zn2+或Pt4+中的一种,以钛的用量计掺杂浓度为Fe3+ 0.1~0.1mol%、La3+ 0.5~2mol%、Zn2+ 0.5~5mol%、Pt4+ 0.1~3mol%。
进一步地,步骤2中所述碳基材料为单壁碳纳米管、氧化石墨烯或表面涂敷有碳纳米材料的有机纤维束。
在本发明中,对于单壁碳纳米管、氧化石墨烯等碳基材料,步骤2所述混合是指将钛酸丁酯溶胶前驱体与单壁碳纳米管的水溶液或氧化石墨烯的水溶液进行混合;对于表面涂敷有碳纳米材料的有机纤维束,步骤2所述混合是指将表面涂敷有碳纳米材料的有机纤维束反复穿过钛酸丁酯溶胶前驱体的液池形成浸润混合。
更进一步地,所述单壁碳纳米管为浓度为0.01~0.001wt%的单壁碳纳米管水溶液,单壁碳纳米管水溶液与钛酸丁酯溶胶前驱体的体积比为1:3。
更进一步地,所述氧化石墨烯为浓度为0.01~0.001wt%的氧化石墨烯水溶液,氧化石墨烯水溶液与钛酸丁酯溶胶前驱体的体积比为1:3。
进一步地,步骤3中采用红外激光进行处理的条件为:将波长10.6微米的激光聚焦到0.1~0.3毫米光斑,能量密度为2×104~1×105瓦/厘米2,以不低于200毫米/秒速度反复扫描同一样品,扫描次数为5到20次,重复扫描1到10次。
上述负载有氧化钛纳米颗粒的碳基材料在制备光催化材料中的应用。
进一步地,所述光催化材料为光催化剂或光电催化织物。
有益效果:本发明利用光热化学反应在碳基体表面形成具有化学或物理结合的超细纳米材料,可以解决上述问题;同时用导电纤维为基材,还可以实现光电协同催化,激光诱导光热水解反应对导电纤维表面的碳基纳米材料产生局部热效应,促进超细氧化钛纳米颗粒在表面水解析出,该技术支持量化生产,成本低廉,具有广泛市场需求。
附图说明
图1为实施例一中采用的石英微流体流道的结构示意图。
图2为实施例一中分离纯化的负载超细氧化钛碳纳米管的紫外吸收谱。
图3为实施例一中单壁碳纳米管束表面超细纳米氧化钛高分辨电子显微镜图像。
图4为实施例一中分离纯化的负载超细氧化钛碳纳米管光催化测量结果。
图5为实施例三中纤维液池的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。实施例中未注明具体条件的实验方法及未说明配方的试剂均为按照本领域常规条件。
实施例一
步骤一、在4℃下,将130毫升钛酸丁酯与25毫升无水乙醇混合,搅拌均匀后缓慢滴加到340毫升的硝酸水溶液中,其中,硝酸水溶液中含有硝酸锌,以钛的用量计Zn2+浓度为3.5mol%。最终混合溶液钛酸丁酯:硝酸:乙醇:水摩尔比为0.38:0.11:0.43:18.61。体系pH为3,配制成半透明的钛酸丁酯溶胶前驱体;
步骤二、在4℃下,将浓度为0.001wt%的单壁碳纳米管水溶液(成都中科时代纳能科技有限公司生产)以1:3体积比与前驱体混合;
步骤三、在4℃下,将混合液用容积泵导入石英微流体槽(图1所示,A=50毫米,B=55毫米,H=10毫米,L=5毫米,n=10),流速为2毫升/秒;
步骤四、将30W、波长10.6微米的二氧化碳激光打标机的激光,以5%的功率聚焦到0.2毫米光斑,以800毫米/秒速度反复扫描同一流道内液体,行扫描次数为10次,同一流道内以0.5毫米行间距增量扫描,同一流道扫描后光斑移至下一流道重复,扫描全部平行流道后重复第一流道,重复上述扫描10次;
步骤五、将3毫升激光处理后的混合液体静置24小时,去掉上清液,取下沉物,加无水乙醇到5倍原混合液体积,在涡旋分散仪上进行分散,将所得分散液4000转/分钟离心后,取沉积物,重复加乙醇分散、离心分离,得到纯化的负载超细纳米氧化钛碳纳米管产物。
图2为附着有超细氧化钛的碳纳米管与相同浓度原始碳纳米管水溶液紫外光谱比较,其强紫外吸收表明碳纳米管表面有一定量的超细氧化钛附着。
图3为附着有超细氧化钛的碳纳米管的高分辨透射电镜照片,在碳纳米管束表面密集附着超细氧化钛纳米颗粒,平均尺寸小于2nm。
光催化活性测试:
将纯化的碳纳米管超细氧化钛产物与2.5 mg/L的罗丹明B水溶液100 mL进行磁力搅拌混合,置于暗处进行30 min的暗吸附,在装有420 nm滤光片的300 W氙灯光源下进行产物对染料的脱色试验。其中,光源于液面处的光照强度为6 μW/cm2,持续时间为60 min。定时取4毫升反应产物,14500转/分钟离心后,取上清液用可见光分光光度计在665纳米下测量Abs值,得到溶液的吸光度,计算得到光催化效率。
将纯化的碳纳米管超细氧化钛产物水分散液均匀涂在5厘米×5厘米玻璃片表面,70℃干燥后反复涂敷,形成厚度约0.1微米的碳纳米管超细氧化钛产物层。作为对照,将商品P25氧化钛光催化纳米材料均匀涂敷在玻璃片表面,形成厚度约0.2微米的颗粒膜。用一框架粘合镀膜表面封边形成一个4厘米(长)×4厘米(宽)×0.2厘米(高)空间,再将2.5ppm的罗丹明B水溶液覆盖在该镀膜玻璃表面的上述空间内,在装有420 nm滤光片的300 W氙灯光源下进行产物对染料的脱色试验,其中光源距液面7 cm,持续时间为30 min,定期吸取溶液,在665纳米下测量Abs值,计算得到光催化效率。
图4为浓度为0.6ppm的商品光催化氧化钛纳米颗粒P25与同浓度的附着有超细氧化钛的碳纳米管对2.5ppm罗丹明水溶液光催化效率测量结果,以及涂敷在玻璃表面过量P25和过量附着有超细氧化钛的碳纳米管的光催化效率测量结果,P25的褪色率为40.45%,附着有超细氧化钛碳纳米管的褪色率为94.4%,附着有超细氧化钛的碳纳米管的褪色率远高于相同浓度的商业氧化钛纳米粉体,同时碳纳米管材料在固相表面的褪色率明显高于P25纳米材料颗粒膜。
实施例二
步骤一、同实施例一;
步骤二、在4℃下,将浓度为0.001wt%的氧化石墨烯(常州第六元素材料科技股份有限公司生产)水溶液以1:3体积比与前驱体混合;
步骤三、同实施例一;
步骤四、同实施例一;
步骤五、将3毫升激光处理后的混合液体静置24小时,去掉上清液,取下沉物,加无水乙醇到5倍原混合液体积,在涡旋分散仪上进行分散,将所得分散液4000转/分钟离心后,取沉积物,重复加乙醇分散、离心分离,得到纯化的负载超细纳米氧化钛石墨烯产物。参考实施例一的光催化活性测试,液相条件下,产物光催化效果为77.33%。
实施例三
步骤一、同实施例一;
步骤二、将表面涂敷有单壁碳纳米管的低导电纤维16根(比电阻1千欧/厘米)与高导电纤维(比电阻100欧姆/厘米)4根并纱,形成400D20F的导电束丝;
步骤三、将纱线通过滚轮连续穿过液池,液池内为步骤一配制的前驱体溶液,3~5根纱线垂直排列,纱线垂直间距0.5~1毫米(图5所示,L=40厘米,D=60厘米),浸泡在溶液中,纱线穿越速度为10厘米/秒;
步骤四、将30W、波长10.6微米的二氧化碳激光打标机的激光,以10%的功率聚焦到0.2毫米光斑,以1600毫米/秒速度反复扫描滚轮之间纱线,行扫描次数为10次,一行纱线扫描后光斑移至下一行纱线,全部平行纱线扫描后光斑移至第一行初始位置,重复扫描第一行纱线;
步骤五、纱线导出液池,导入纯净水池,洗去纱线上残余液体,热风吹干收卷,得到负载超细纳米氧化钛的导电纤维纱线。

Claims (10)

1.一种负载有氧化钛纳米颗粒的碳基材料,其特征在于:包括碳纳米材料和氧化钛纳米颗粒,其中,氧化钛纳米颗粒负载在碳纳米材料表面;所述氧化钛纳米颗粒的平均粒径小于2纳米;
该碳基材料的制备方法包括以下步骤:
步骤1,在4~8℃条件下,将钛酸丁酯与无水乙醇混合,混合液加至硝酸水溶液中,得到钛酸丁酯溶胶前驱体;
步骤2,在4~8℃条件下,将钛酸丁酯溶胶前驱体与碳基材料混合;
步骤3,在4~8℃条件下,采用红外激光对步骤2得到的混合材料进行处理,纯化后得到负载有氧化钛纳米颗粒的碳基材料;
采用红外激光进行处理的条件为:将波长10.6微米的激光聚焦到0.1~0.3毫米光斑,能量密度为2×104~1×105瓦/厘米2,以不低于200毫米/秒速度反复扫描同一样品,扫描次数为5到20次,重复扫描1到10次。
2.根据权利要求1所述的负载有氧化钛纳米颗粒的碳基材料,其特征在于:所述碳纳米材料为单壁碳纳米管或/和石墨烯。
3.权利要求1所述的负载有氧化钛纳米颗粒的碳基材料的制备方法,其特征在于:包括以下步骤:
步骤1,在4~8℃条件下,将钛酸丁酯与无水乙醇混合,混合液加至硝酸水溶液中,得到钛酸丁酯溶胶前驱体;
步骤2,在4~8℃条件下,将钛酸丁酯溶胶前驱体与碳基材料混合;
步骤3,在4~8℃条件下,采用红外激光对步骤2得到的混合材料进行处理,纯化后得到负载有氧化钛纳米颗粒的碳基材料。
4. 根据权利要求3所述的制备方法,其特征在于:步骤1中,钛酸丁酯、硝酸、无乙醇和水的摩尔比为 0.2~0.5:0.10~0.22:0.40~0.60:15~22。
5.根据权利要求3所述的制备方法,其特征在于:步骤1中所述钛酸丁酯溶胶前驱体中加入有金属离子进行掺杂。
6. 根据权利要求5所述的制备方法,其特征在于:所述金属离子为Fe3+、La3+、Zn2+或Pt4+中的一种,以钛的用量计掺杂浓度为Fe3+ 0.1~0.1mol%、La3+ 0.5~2mol%、Zn2+ 0.5~5mol%、Pt4+ 0.1~3mol%。
7.根据权利要求3所述的制备方法,其特征在于:步骤2中所述碳基材料为单壁碳纳米管、氧化石墨烯或表面涂敷有碳纳米材料的有机纤维束。
8.根据权利要求3所述的制备方法,其特征在于:步骤3中采用红外激光进行处理的条件为:将波长10.6微米的激光聚焦到0.1~0.3毫米光斑,能量密度为2×104~1×105瓦/厘米2,以不低于200毫米/秒速度反复扫描同一样品,扫描次数为5到20次,重复扫描1到10次。
9.权利要求1所述的负载有氧化钛纳米颗粒的碳基材料在制备光催化材料中的应用。
10.根据权利要求9所述的应用,其特征在于:所述光催化材料为光催化剂或光电催化织物。
CN202111575890.5A 2021-12-22 2021-12-22 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用 Active CN114433046B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111575890.5A CN114433046B (zh) 2021-12-22 2021-12-22 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用
PCT/CN2021/140653 WO2023115426A1 (zh) 2021-12-22 2021-12-23 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111575890.5A CN114433046B (zh) 2021-12-22 2021-12-22 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114433046A CN114433046A (zh) 2022-05-06
CN114433046B true CN114433046B (zh) 2023-12-26

Family

ID=81363531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111575890.5A Active CN114433046B (zh) 2021-12-22 2021-12-22 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114433046B (zh)
WO (1) WO2023115426A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873492A (zh) * 2022-11-17 2023-03-31 安徽辅朗光学材料有限公司 防激光涂料、制备方法及制品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006727A (zh) * 2016-05-17 2016-10-12 苏州盛丰源新材料科技有限公司 均相晶化TiO2纳米溶液及其制备方法、晶化设备
CN108295827A (zh) * 2017-12-23 2018-07-20 佛山科学技术学院 一种石墨烯负载可见光响应二氧化钛的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837287B (zh) * 2009-03-21 2012-05-30 清华大学 碳纳米管纳米颗粒复合材料的制备方法
MX360196B (es) * 2013-09-25 2018-10-11 Mexicano Inst Petrol Catalizador de titania nanoestructurada de acidez estabilizada y proceso de obtencion.
WO2016098127A1 (en) * 2014-12-16 2016-06-23 Council Of Scientific & Industrial Research NOVEL TITANIUM DIOXIDE - GRAPHENE QUANTUM DOTS (TiO2-GQDS) HYBRID MULTIFUNCTIONAL MATERIAL AND PREPARATION THEREOF
CN106512939B (zh) * 2016-11-23 2019-08-09 杭州电子科技大学 一种多层石墨烯负载二氧化钛、铁钛双金属纳米颗粒及其制备方法
CN109126756A (zh) * 2018-08-28 2019-01-04 绍兴文理学院 一种高活性纳米二氧化钛的制备方法
CN110642524B (zh) * 2019-10-31 2020-06-30 山东大学 一种二氧化钛纳米颗粒辅助红外纳秒激光在玻璃表面制备微结构的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006727A (zh) * 2016-05-17 2016-10-12 苏州盛丰源新材料科技有限公司 均相晶化TiO2纳米溶液及其制备方法、晶化设备
CN108295827A (zh) * 2017-12-23 2018-07-20 佛山科学技术学院 一种石墨烯负载可见光响应二氧化钛的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Single-Step Preparation of TiO2/MWCNT Nanohybrid Materials by Laser Pyrolysis and Application to Efficient Photovoltaic Energy Conversion";Jin Wang,et al;《ACS Appl. Mater. Interfaces》;51−56 *

Also Published As

Publication number Publication date
WO2023115426A1 (zh) 2023-06-29
CN114433046A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
Zhao et al. Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates
Kooshki et al. Eco-friendly synthesis of PbTiO3 nanoparticles and PbTiO3/carbon quantum dots binary nano-hybrids for enhanced photocatalytic performance under visible light
Duan et al. TiO2 faceted nanocrystals on the nanofibers: Homojunction TiO2 based Z-scheme photocatalyst for air purification
Sabzehmeidani et al. CeO2 nanofibers-CdS nanostructures n–n junction with enhanced visible-light photocatalytic activity
Liu et al. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light
Xie et al. Characterization and photocatalysis of Eu3+–TiO2 sol in the hydrosol reaction system
Wei et al. Preparation of magnetic g-C3N4/Fe3O4/TiO2 photocatalyst for visible light photocatalytic application
Xiong et al. Hierarchical pn heterostructure BiOI@ ZnTi-LDH for Cr (VI) reduction under visible light
CN109759114B (zh) 一种g-C3N4/TiO2/RGO三维Z型光催化剂及其原位电纺制备方法
Issarapanacheewin et al. Photodegradation of organic dyes by CeO2/Bi2WO6 nanocomposite and its physicochemical properties investigation
Sultanov et al. Aligned composite SrTiO3/PAN fibers as 1D photocatalyst obtained by electrospinning method
Zhao et al. Degradation of rhodamine B and safranin‐T by MoO3: CeO2 nanofibers and air using a continuous mode
Xue et al. La/Ce-codoped Bi2O3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye
Shen et al. Preparation of doped TiO 2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green
Weng et al. Hierarchical structures constructed by BiOX (X= Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange
Yu et al. AgI-modified TiO2 supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO
Lee et al. Electrospun tungsten trioxide nanofibers decorated with palladium oxide nanoparticles exhibiting enhanced photocatalytic activity
CN114433046B (zh) 负载有氧化钛纳米颗粒的碳基材料及其制备方法和应用
Zou et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy
Wang et al. Carbon dots induced in-situ formation of porous europium micro-networks with enhanced photocatalysis
Liu et al. Optimizing the interface of C/titania@ reduced graphene oxide nanofibers for improved photocatalytic activity
Maimaiti et al. Synthesis and visible-light photocatalytic CO2/H2O reduction to methyl formate of TiO2 nanoparticles coated by aminated cellulose
Hua et al. Preparation of visible light-responsive photocatalytic paper containing BiVO4@ diatomite/MCC/PVBCFs for degradation of organic pollutants
Zhu et al. Nanoflower-like CdS and SnS2 loaded TiO2 nanotube arrays for photocatalytic wastewater treatment and hydrogen production
Liu et al. Ionic liquid-induced preparation of novel CNTs/PbBiO2Cl nanosheet photocatalyst with boosted photocatalytic activity for the removal of organic contaminants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant