CN114409400A - 一种铌酸钾钠基无铅压电陶瓷及其制备方法 - Google Patents

一种铌酸钾钠基无铅压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN114409400A
CN114409400A CN202210036677.5A CN202210036677A CN114409400A CN 114409400 A CN114409400 A CN 114409400A CN 202210036677 A CN202210036677 A CN 202210036677A CN 114409400 A CN114409400 A CN 114409400A
Authority
CN
China
Prior art keywords
sodium niobate
potassium
piezoelectric ceramic
multilayer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210036677.5A
Other languages
English (en)
Inventor
李敬锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202210036677.5A priority Critical patent/CN114409400A/zh
Publication of CN114409400A publication Critical patent/CN114409400A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及功能陶瓷材料技术领域,具体而言涉及一种铌酸钾钠基无铅压电陶瓷及其制备方法。本发明制备方法采用固相法,直接将陶瓷粉制备成多层结构铌酸钾钠基无铅压电陶瓷,从而实现良好的温度稳定性。本发明制备方法制备的多层结构铌酸钾钠基无铅压电陶瓷中每层的成分可调控,每层陶瓷均具有多相共存结构,转变温度从一层依次上升到另一层。每层组分采用相似的化学成分,以确保良好的共烧和易于控制在高温下的扩散。最终使得到的多层铌酸钾钠基压电陶瓷样品在保留较高的压电性能的同时兼具较好的温度稳定性。本发明制备方法操作简便、周期短、成本低、能耗少。

Description

一种铌酸钾钠基无铅压电陶瓷及其制备方法
技术领域
本发明涉及功能陶瓷材料技术领域,具体而言涉及一种铌酸钾钠基无铅压电陶瓷及其制备方法。
背景技术
压电材料可以通过正逆压电效应实现电能与机械能的直接转换,是传感器与致动器的关键材料,广泛应用于生物医疗、先进制造、电子信息以及航空航天等领域。在各种无铅陶瓷中,铌酸钾钠(KNN)陶瓷因其较高的压电特性和居里温度引起了研究人员的兴趣。广泛的研究集中在构建菱方-四方R-T(或菱方-正交-四方R-O-T)相界实现超高压电系数(d33)(>500pC/N),使其可以与铅基压电材料相媲美。但许多应用场景要求压电材料具有优异的温度稳定性。与PZT基压电陶瓷的几乎温度无关的准同型相界(MPB)不同,KNN基陶瓷的相界具有很强的压电温度依赖性,不仅受成分的影响,还受温度的影响。如果环境温度偏离相变温度,铌酸钾钠基陶瓷的压电响应会迅速下降,导致温度稳定性较差。虽然,在室温附近构建相变可以显著改善电性能,但与此同时温度稳定性会下降。压电材料的稳定性除了增强压电特性外,对实际应用也具有重要意义,特别是对于那些涉及喷油器、气体速度传感器等高温操作的材料。在改变KNN基陶瓷多相共存的同时,保持温度的稳定性是很重要的。现有专利均采用流延法制备多层陶瓷来提高KNN基陶瓷的应变稳定性。然而,较高的生产成本和复杂的合成工艺严重限制了其在压电器件中的广泛应用。
发明内容
本发明旨在部分解决已有技术中的问题,基于本申请人以前研究的单层Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2系列陶瓷,当环境温度超过相变温度后,压电性能迅速下降,导致其温度稳定性差,严重限制了陶瓷材料的实际应用。
有鉴于此,本发明的目的在于提出一种铌酸钾钠基无铅压电陶瓷及其制备方法,采用固相法,以多个具有R-O-T相变铌酸钾钠基压电陶瓷粉体为基础,制备在较宽的温度范围内具有连续R-O-T相变的多层结构铌酸钾钠基无铅压电陶瓷,以实现在较宽温度范围内保留较大压电性能的同时兼具良好的温度稳定性。
本发明的实施例提出了一种铌酸钾钠基无铅压电陶瓷,该铌酸钾钠基无铅压电陶瓷为多层,每层铌酸钾钠基无铅压电陶瓷的分子结构式为:
Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2
其中x和y为摩尔分数,0≤x<0.48,0≤y<0.5。
在一些实施例中,所述每层铌酸钾钠基无铅压电陶瓷中,每层的x值互不相等,且每层的y值互不相等。
本发明的实施例提出了一种铌酸钾钠基无铅压电陶瓷的制备方法,包括以下步骤:
(1)制备多种不同成分的铌酸钾钠基压电陶瓷粉体;
(2)将步骤(1)得到的多种不同成分的铌酸钾钠基压电陶瓷粉体铺成多层,进行冷等静压处理,制备得到多层铌酸钾钠基压电材料胚体;
(3)对步骤(2)的多层铌酸钾钠基压电材料胚体进行煅烧,得到多层铌酸钾钠基压电陶瓷材料;
(4)将步骤(3)的多层铌酸钾钠基压电陶瓷陶瓷材料用砂纸抛光,在多层铌酸钾钠基压电陶瓷材料的上表面和下表面分别被覆银电极。而后进行在100℃、30kV下极化处理,以便测试所述铌酸钾钠基无铅压电陶瓷的压电性能。
本发明上述实施例的优点是:采用固相法直接将Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2系列陶瓷粉制备成多层结构铌酸钾钠基无铅压电陶瓷,其中的成分可调控,从而实现在保留较大的d33的同时兼具良好的温度稳定性。
在一些实施例中,所述步骤(1)中,制备多种不同成分的铌酸钾钠基压电陶瓷粉体,包括以下步骤:
(1)根据铌酸钾钠基无铅压电陶瓷的分子结构式Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2的化学计量比,分别称取Na2CO3、Li2CO3、K2CO3、Nb2O5、Ba2CO3、ZrO2、HfO2和Bi2O3,原料混合后球磨处理,得到浆料,烘干后得到粉体;
(2)预烧步骤(1)的粉体,得到预烧粉;
(3)将步骤(2)的预烧粉进行球磨,得到浆料,烘干后得到铌酸钾钠基压电陶瓷粉体;
(4)多次改变铌酸钾钠基无铅压电陶瓷的分子结构式中的x、y值,分别重复步骤(1)~步骤(3),得到多种不同成分的铌酸钾钠基压电陶瓷粉体。
在一些实施例中,所述球磨的条件为:磨球与原料比为(10~20):1,转速为200~350r/分钟,球磨时间为16~30小时。
在一些实施例中,所述预烧的温度为800~1000℃,预烧时间为2~6小时。
在一些实施例中,所述多种不同成分的铌酸钾钠基压电陶瓷粉体铺成多层,得到的多层陶瓷材料中,每层陶瓷粉体的厚度为0.5~2毫米,层数为2~5。
在一些实施例中,所述对多层陶瓷材料进行冷等静压时间为2~5分钟,压力为200Mpa。
在一些实施例中,所述多层铌酸钾钠基压电陶瓷材料胚体的煅烧温度为1000~1200℃,煅烧时间为3~8小时。
根据本发明实施例制备得到的铌酸钾钠基无铅压电陶瓷,其优点是:
1、与已有技术做多层的方法相比,本发明制备方法操作简便、周期短、成本低、能耗少。每层组分采用相似的化学成分,以确保良好的共烧和易于控制在高温下的扩散。本发明实施例制备得到的多层铌酸钾钠基压电陶瓷材料结构致密,层与层之间没有明显的界线。
2、本发明通过调控成分制备的多层结构铌酸钾钠基无铅压电陶瓷,每层陶瓷均具有多相共存结构,转变温度从一层依次上升到另一层。最终使得到的多层铌酸钾钠基压电陶瓷样品在保留较高的压电性能同时兼具较好的温度稳定性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显然,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的一个实施例制备得到的多层铌酸钾钠基压电陶瓷与已有的单层铌酸钾钠基压电陶瓷的相变温度比较示意图。
图2是根据本发明的实施例1、实施例2、实施例3和实施例4的压电常数变化率示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提出了一种铌酸钾钠基无铅压电陶瓷,该铌酸钾钠基无铅压电陶瓷为多层,每层铌酸钾钠基无铅压电陶瓷的分子结构式为:
Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2
其中x和y为摩尔分数,0≤x<0.48,0≤y<0.5。
根据本发明实施例的铌酸钾钠基无铅压电陶瓷,所述每层铌酸钾钠基无铅压电陶瓷中,每层的x值互不相等,且每层的y值互不相等。
本发明实施例提出的铌酸钾钠基无铅压电陶瓷中,成分可调控,为多层结构,每一层铌酸钾钠基层压陶瓷均具有多相共存结构,转变温度从一层依次上升到另一层。最终使得到的多层铌酸钾钠基压电陶瓷样品在保留较高的压电性能同时,兼具了较好的温度稳定性。
本发明实施例提出了一种铌酸钾钠基无铅压电陶瓷的制备方法,包括以下步骤:
(1)制备多种不同成分的铌酸钾钠基压电陶瓷粉体;
(2)将步骤(1)得到的多种不同成分的铌酸钾钠基压电陶瓷粉体铺成多层,进行冷等静压处理,制备得到多层铌酸钾钠基压电材料胚体;
(3)对步骤(2)的多层铌酸钾钠基压电材料胚体煅烧,得到多层铌酸钾钠基压电陶瓷材料;
(4)将步骤(3)的多层铌酸钾钠基压电陶瓷陶瓷材料用砂纸抛光,在多层铌酸钾钠基压电陶瓷材料的上表面和下表面分别被覆银电极。而后进行在100℃、30kV下极化处理,以便测试所述铌酸钾钠基无铅压电陶瓷的压电性能。
本发明实施例提出的铌酸钾钠基无铅压电陶瓷的制备方法,以Na2CO3、K2CO3、Nb2O5、Ba2CO3、ZrO2、HfO2、Bi2O3和金属氧化物为原料,通过控制固相法制备的R-O-T相变峰值在不同温度范围的陶瓷粉体的层数和厚度,制得结构致密、电学性能良好、温度度稳定性优异的多层结构铌酸钾钠基压电材料。
根据本发明的铌酸钾钠基无铅压电陶瓷的制备方法,其中,所述步骤(1)中,制备多种不同成分的铌酸钾钠基压电陶瓷粉体,包括以下步骤:
(1)根据铌酸钾钠基无铅压电陶瓷的分子结构式Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2的化学计量比,分别称取Na2CO3、Li2CO3、K2CO3、Nb2O5、Ba2CO3、ZrO2、HfO2和Bi2O3,原料混合后球磨处理,得到浆料,烘干后得到粉体;
(2)预烧步骤(1)的粉体,得到预烧粉;
(3)将步骤(2)的预烧粉进行球磨,得到浆料,烘干后得到铌酸钾钠基压电陶瓷粉体;
(4)多次改变铌酸钾钠基无铅压电陶瓷的分子结构式中的x、y值,分别重复步骤(1)~步骤(3),得到多种不同成分的铌酸钾钠基压电陶瓷粉体。
在一些实施例中,所述球磨条件为:磨球与原料比为(10~20):1,转速为200~350r/分钟,球磨时间为16~30小时。
在一些实施例中,所述预烧的温度为800~1000℃,预烧时间为2~6小时。
在一些实施例中,所述多种不同成分的铌酸钾钠基压电陶瓷粉体铺成多层,得到的多层陶瓷材料中,每层陶瓷粉体的厚度为0.5~2毫米,层数为2~5。
在一些实施例中,所述对多层陶瓷材料进行冷等静压时间为2~5分钟,压力为200Mpa。
在一些实施例中,所述多层铌酸钾钠基压电陶瓷材料胚体的煅烧温度为1000~1200℃,煅烧时间为3~8小时。
以下对本发明的实施例进行详细描述。所有的实施例都是示例性的,旨在解释本发明,而不能理解为对本发明的限制。
表1本发明为Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2多层无铅压电陶瓷的实施例
Figure BDA0003468692270000051
Figure BDA0003468692270000061
图2给出了实施例1、实施例2、实施例3和实施例4制备的2~5层铌酸钾钠基无铅压电陶瓷的压电常数的变化率,从图2中可以看出,本发明实施例制备的多层铌酸钾钠基无铅压电陶瓷,随着层数的增加,压电常数的变化率逐渐变小。实施例4制备的五层铌酸钾钠基无铅压电陶瓷的压电常数的峰更宽泛,在50~75℃温度区间可达508pC/N;在25~150℃温度区间压电系数d33变化率仅为13%。本发明制备的多层铌酸钾钠无铅压电材料具有优异的温度稳定性,在实际应用中有巨大潜力。

Claims (9)

1.一种铌酸钾钠基无铅压电陶瓷,其特征在于,铌酸钾钠基无铅压电陶瓷为多层,每层铌酸钾钠基无铅压电陶瓷的分子结构式为:
Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2
其中x和y为摩尔分数,0≤x<0.48,0≤y<0.5。
2.根据权利要求1所述的铌酸钾钠基无铅压电陶瓷,其特征在于,所述每层铌酸钾钠基无铅压电陶瓷中,每层的x值互不相等,且每层的y值互不相等。
3.一种铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,包括:
(1)制备多种不同成分的铌酸钾钠基压电陶瓷粉体;
(2)将步骤(1)得到的多种不同成分的铌酸钾钠基压电陶瓷粉体铺成多层,进行冷等静压处理,制备得到多层铌酸钾钠基压电材料胚体;
(3)对步骤(2)的多层铌酸钾钠基压电材料胚体进行煅烧,得到多层铌酸钾钠基压电陶瓷材料;
(4)将步骤(3)的多层铌酸钾钠基压电陶瓷陶瓷材料用砂纸抛光,在多层铌酸钾钠基压电陶瓷材料的上表面和下表面分别被覆银电极。而后进行在100℃、30kV下极化处理,以便测试所述铌酸钾钠基无铅压电陶瓷的压电性能。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述制备多种不同成分的铌酸钾钠基压电陶瓷粉体包括:
(1)根据铌酸钾钠基无铅压电陶瓷的分子结构式Lix(K0.48-xNa0.52)Nb1-ySbyO3-BaZrO3-(Na0.5Bi0.5)HfO3-MnO2的化学计量比,分别称取Na2CO3、Li2CO3、K2CO3、Nb2O5、Ba2CO3、ZrO2、HfO2和Bi2O3,原料混合后球磨处理,得到浆料,烘干后得到粉体;
(2)预烧步骤(1)的粉体,得到预烧粉;
(3)将步骤(2)的预烧粉进行球磨,得到浆料,烘干后得到铌酸钾钠基压电陶瓷粉体;
(4)多次改变铌酸钾钠基无铅压电陶瓷的分子结构式中的x、y值,分别重复步骤(1)~步骤(3),得到多种不同成分的铌酸钾钠基压电陶瓷粉体。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)和步骤(3)中,所述球磨条件为:磨球与原料比为(10~20):1,转速为200~350r/分钟,球磨时间为16~30小时。
6.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述预烧的温度为800~1000℃,预烧时间为2~6小时。
7.根据权利要求3或4所述的制备方法,其特征在于,所述多种不同成分的铌酸钾钠基压电陶瓷粉体铺成多层,得到的多层陶瓷材料中,每层陶瓷粉体的厚度为0.5~2毫米,层数为2~5。
8.根据权利要求3或4所述的制备方法,其特征在于,所述对多层陶瓷材料进行冷等静压时间为2~5分钟,压力为200Mpa。
9.根据权利要求3或4所述的制备方法,其特征在于,所述多层铌酸钾钠基压电陶瓷材料胚体的煅烧温度为1000~1200℃,煅烧时间为3~8小时。
CN202210036677.5A 2022-01-13 2022-01-13 一种铌酸钾钠基无铅压电陶瓷及其制备方法 Pending CN114409400A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210036677.5A CN114409400A (zh) 2022-01-13 2022-01-13 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210036677.5A CN114409400A (zh) 2022-01-13 2022-01-13 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN114409400A true CN114409400A (zh) 2022-04-29

Family

ID=81274287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210036677.5A Pending CN114409400A (zh) 2022-01-13 2022-01-13 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114409400A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988874A (zh) * 2022-06-28 2022-09-02 聊城大学 一种织构化铌酸钾钠基压电陶瓷及其制备方法和应用
CN114988871A (zh) * 2022-05-16 2022-09-02 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法和应用
CN116496083A (zh) * 2023-04-11 2023-07-28 四川大学 一种核壳结构硬化铌酸钾钠基无铅压电陶瓷及其制备方法
CN116730722A (zh) * 2023-08-16 2023-09-12 兰州大学 一种钙钛矿型铌酸钾钠基陶瓷及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515760A (zh) * 2011-11-24 2012-06-27 景德镇陶瓷学院 一种高性能铌酸钾钠基无铅压电陶瓷及其制备方法
CN105272244A (zh) * 2015-10-23 2016-01-27 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN107162583A (zh) * 2017-07-05 2017-09-15 西安交通大学 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN107253858A (zh) * 2017-06-06 2017-10-17 同济大学 具有超高压电响应的无铅压电陶瓷材料及制备方法
CN107903055A (zh) * 2017-11-21 2018-04-13 天津大学 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN111747738A (zh) * 2020-06-19 2020-10-09 西安交通大学 梯度陶瓷压电材料的制备方法及压电材料、压电传感器
CN111925209A (zh) * 2020-08-10 2020-11-13 国网河南省电力公司电力科学研究院 一种无铅声振压电换能材料及其制备方法
CN113666744A (zh) * 2021-09-17 2021-11-19 四川大学 一种成分梯度铌酸钾钠基无铅压电陶瓷及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515760A (zh) * 2011-11-24 2012-06-27 景德镇陶瓷学院 一种高性能铌酸钾钠基无铅压电陶瓷及其制备方法
CN105272244A (zh) * 2015-10-23 2016-01-27 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN107253858A (zh) * 2017-06-06 2017-10-17 同济大学 具有超高压电响应的无铅压电陶瓷材料及制备方法
CN107162583A (zh) * 2017-07-05 2017-09-15 西安交通大学 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN107903055A (zh) * 2017-11-21 2018-04-13 天津大学 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN111747738A (zh) * 2020-06-19 2020-10-09 西安交通大学 梯度陶瓷压电材料的制备方法及压电材料、压电传感器
CN111925209A (zh) * 2020-08-10 2020-11-13 国网河南省电力公司电力科学研究院 一种无铅声振压电换能材料及其制备方法
CN113666744A (zh) * 2021-09-17 2021-11-19 四川大学 一种成分梯度铌酸钾钠基无铅压电陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QING LIU: "Practical High-Performance Lead-Free Piezoelectrics: Structural Flexibility Beyond Utilizing Multiphase Coexistence", 《NATIONAL SCIENCE REVIEW》 *
TING ZHENG: "Compositionally Graded KNN‐Based Multilayer Composite with Excellent Piezoelectric", 《ADVANCED MATERIALS》 *
朱景川等: "钛酸锶铅梯度功能陶瓷的显微结构及介电性能", 《无机材料学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988871A (zh) * 2022-05-16 2022-09-02 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法和应用
CN114988874A (zh) * 2022-06-28 2022-09-02 聊城大学 一种织构化铌酸钾钠基压电陶瓷及其制备方法和应用
CN116496083A (zh) * 2023-04-11 2023-07-28 四川大学 一种核壳结构硬化铌酸钾钠基无铅压电陶瓷及其制备方法
CN116496083B (zh) * 2023-04-11 2024-03-12 四川大学 一种核壳结构硬化铌酸钾钠基无铅压电陶瓷及其制备方法
CN116730722A (zh) * 2023-08-16 2023-09-12 兰州大学 一种钙钛矿型铌酸钾钠基陶瓷及其制备方法
CN116730722B (zh) * 2023-08-16 2023-10-20 兰州大学 一种钙钛矿型铌酸钾钠基陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN114409400A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN113213930B (zh) 一种多元素掺杂铌酸钾钠基压电陶瓷及其制备方法
KR100821542B1 (ko) 압전 자기 및 그 제조방법
JP5929640B2 (ja) 圧電磁器および圧電素子
JP2518703B2 (ja) 積層型複合圧電体およびその製造方法
WO2012086449A1 (ja) 圧電セラミックス、圧電セラミックス部品、及び該圧電セラミックス部品を用いた圧電デバイス
KR20130037985A (ko) 온도안정성이 우수한 전왜성 무연 세라믹 조성물 및 이의 제조방법
CN110981468B (zh) 一种钛酸铋钠基压电陶瓷的制备方法
KR102020605B1 (ko) 변형율이 높은 삼성분계 무연 압전 세라믹 조성물
KR20120136143A (ko) 저온 소결용 압전체의 제조방법 및 이를 이용한 압전체
US20120112607A1 (en) Ceramic composition for piezoelectric actuator and piezoelectric actuator including the same
KR101091192B1 (ko) 저온 소성용 무연 압전세라믹 조성물 및 제조방법
CN111548155B (zh) 一种高压电高居里点铌酸钾钠-锑酸钾钠系无铅压电陶瓷及其制备方法
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
KR20150042075A (ko) 저온 소결용 압전재료
WO2011118884A1 (ko) 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법
CN103011815A (zh) 三元铁电固溶体铌镥酸铅-铌镁酸铅-钛酸铅
CN105218092B (zh) 一种同时具备大位移及低滞后的锆钛酸铅基压电陶瓷材料及其制备方法
KR20100026660A (ko) 압전 재료 및 그 제조 방법
JPH03104179A (ja) アクチュエータ用圧電セラミック組成物
KR102540032B1 (ko) 압전 세라믹 적층체
JP6156434B2 (ja) 圧電磁器および圧電素子
CN114276134B (zh) 一种具有高温度稳定电致应变的无铅压电陶瓷材料及其制备方法
CN111548157B (zh) 基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用
CN115231921B (zh) 一种铁磁耦合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220429