CN107253858A - 具有超高压电响应的无铅压电陶瓷材料及制备方法 - Google Patents

具有超高压电响应的无铅压电陶瓷材料及制备方法 Download PDF

Info

Publication number
CN107253858A
CN107253858A CN201710418225.2A CN201710418225A CN107253858A CN 107253858 A CN107253858 A CN 107253858A CN 201710418225 A CN201710418225 A CN 201710418225A CN 107253858 A CN107253858 A CN 107253858A
Authority
CN
China
Prior art keywords
lead
extra
preparation
high voltage
responded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710418225.2A
Other languages
English (en)
Other versions
CN107253858B (zh
Inventor
沈波
李朋
翟继卫
刘百慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710418225.2A priority Critical patent/CN107253858B/zh
Publication of CN107253858A publication Critical patent/CN107253858A/zh
Application granted granted Critical
Publication of CN107253858B publication Critical patent/CN107253858B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及具有超高压电响应的无铅压电陶瓷材料及制备方法,其化学成份符合化学通式(0.99‑x)KNNS‑0.01CZ‑xBKH‑yNN;其中BKH的含量变化0.01≤x≤0.06;NN模板的含量y变化为0.01≤y≤0.10,其中的KNNS为(K0.5Na0.5)(Nb0.965Sb0.035)O3,CZ为CaZrO3,BKH为(Bi0.5K0.5)HfO3,NN为NaNbO3。与现有技术相比,本发明中的陶瓷组分结合织构化的制备方法制得的铌酸钾钠基无铅压电陶瓷具有超高的压电系数,不仅适用于超声换能器,声音转换器,微位移驱动器等高技术领域而且适用于压电陶瓷点火器,压电陶瓷蜂鸣器等日程生活设备中。

Description

具有超高压电响应的无铅压电陶瓷材料及制备方法
技术领域
本发明属于功能陶瓷材料领域,尤其是涉及一种具有超高压电响应的无铅压电陶瓷材料及制备方法。
背景技术
压电陶瓷是一种能够将机械能和电能相互转换的信息功能材料。压电陶瓷在机械应力的作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷即正压电效应。另外,压电陶瓷的自发极化也可以在外电场下发生改变,压电陶瓷极化强度的改变会导致压电陶瓷的伸长或收缩。这种由于电效应转变为机械效应的现象叫做逆压电效应。压电陶瓷所具有的正、逆压电效应使其在日常生活和高新技术领域都有广泛的应用。可以毫不夸张地说,压电陶瓷材料的应用已遍及人们日常生活中的每个角落,如压电点火器、煤气灶、电子钟表、报警器、儿童玩具、蜂鸣器等。此外,银行、商店、安全保密场所的管理以及侦察、破案等场合都可能要用上能验证每个人笔迹和声音特征的压电传感器;医院检查人体内脏器官用的超声仪都要用到压电陶瓷探头;原子力显微镜及其他需要精密定位的设备也都需要压电陶瓷的微位移功能。随着人们对环境保护意识的增强及对以压电材料为基础的功能器件的性能的要求的日趋苛刻,研发高性能无铅压电陶瓷来替代以锆钛酸铅(PZT)为代表的铅基压电陶瓷材料成为一项紧迫而具有经济价值的课题。
目前,对于无铅压电材料的研究主要集中在钛酸铋钠(BNT),铌酸钾钠(KNN),锆钛酸钡钙(BCZT)等体系。经过长时间的研究,这些无铅压电陶瓷材料在制备和性能上都取得了一定的进展,但总体来说每种材料体系都有其明显的缺点,现在还没有一种无铅压电材料能完全取代铅基材料。2004年,Saito等人利用织构化工艺得到了晶粒取向生长的铌酸钾钠基无铅压电陶瓷,其压电系数d33高达416pC/N,逆压电系数高达750pC/N,这些参数都可以和PZT基压电陶瓷相媲美。此研究结果大大地激发了科研工作者研究铌酸钾钠基压电材料及织构化制备工艺的热情。由于铌酸钾钠基无铅压电陶瓷优异的压电性能以及较高的居里温度,也使得铌酸钾钠基无铅压电陶瓷被认为是最具有希望取代铅基压电陶瓷的体系之一。目前对于铌酸钾钠基压电陶瓷材料的研究主要集中在利用元素掺杂来设计多晶型相界以提高材料的压电性能。虽然利用元素掺杂的手段在某种程度上已经提高了压电陶瓷的压电性能,但其居里温度通常也随着掺杂元素的含量的增加而剧烈降低,从而影响了压电陶瓷的温度稳定性。另外,利用元素掺杂的手段,随着掺杂元素的含量的变化陶瓷的成瓷温度也明显不同,从而给陶瓷的烧结带了很大的困难。
材料的性能和结构是密切相关的,通过微观结构的调控,材料的性能通常表现出大幅度的提升。最近,学者Deng等利用TSSG技术生长出了不同取向的KNN单晶发现(100)取向的单晶具有最高的压电系数和机电耦合系数。(Deng H,Zhao X,Zhang H,etal.Orientation dependence of electrical properties of large-sized sodiumpotassium niobate lead-free single crystals.CrystEngComm,2014,16(13):2760-2765.)学者Yang等利用SFSSCG技术生长出了(100)取向的(K0.45Na0.55)0.96Li0.04NbO3单晶,其压电系数高达689pC/N。(Yang J,Zhang F,Yang Q,et al.Large piezoelectricproperties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method.Applied Physics Letters,2016,108(18):182904.)这些结果说明铌酸钾钠基材料经过取向后在某一个方向上性能会有大幅度的提升,然而高质量的单晶一般制备较难、周期较长、成本较高及加工切割比较复杂等显著的缺点,限制了其实用化的发展。
中国专利CN 101863661B公开了织构化铌酸钾钠基无铅压电陶瓷的制备方法,属于无铅压电陶瓷制备领域。采用片状NaNbO3或片状KNbO3为模板或无模板,选用Na2CO3、K2CO3、Li2CO3、Nb2O5、Ta2O5、Sb2O3粉料,按化学式[(KmNa1-m)1-xLix](Nb1-y-zTaySbz)O33制备粉料并获得浆料,经丝网印刷所得到的陶瓷厚膜经过多层层叠压制获得素坯,对素坯排塑后,再进行烧结。该专利与本申请之间的区别主要在于材料组分、制备手段和最终性能的差异。具体来说,该专利使用的材料组分为[(KmNa1-m)1-xLix](Nb1-y-zTaySbz)O3,本申请使用的材料组分为(0.99-x)(K0.5Na0.5)(Nb0.965Sb0.035)-0.01CaZrO3-x(Bi0.5K0.5)HfO3。在制备生坯的过程中该专利使用的是丝网印刷的方法,本申请使用的是流延的方法,利用此方法可以严格控制刮刀的高度使模板在单层膜中能水平排列,从而可以获得更高的织构度。另外,在生坯烧结成瓷过程中该专利使用的是传统烧结法,本申请使用的是优化的两步烧结法,此方法和传统烧结法相比在烧结过程中具有更高的驱动力从而可以获得更高的织构度。本申请和该专利相比获得了更高的晶体取向度(织构度)和压电性能。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种新组成的无铅压电(0.99-x)KNNS-0.01CZ-xBKH陶瓷材料及该无铅压电陶瓷材料织构化的制备方法。本发明制备的无铅压电陶瓷,采用高长径比的片状铌酸钠为模板,运用流延工艺结合热压成型及两步烧结来实现(0.99-x)KNNS-0.01CZ-xBKH陶瓷的织构化,简单可行。采用此材料组成和制备工艺制备的无铅压电陶瓷具有高度的晶粒取向性及超高的压电性能从而克服了铌酸钾钠基压电陶瓷压电性能普遍偏低难以满足器件和设备中实际应用的困难。
本发明的目的可以通过以下技术方案来实现:
具有超高压电响应的无铅压电陶瓷材料,其化学成份符合化学通式(0.99-x)KNNS-0.01CZ-xBKH-yNN;其中BKH的含量变化0.01≤x≤0.06;NN模板的含量y变化为0.01≤y≤0.10,其中的KNNS为(K0.5Na0.5)(Nb0.965Sb0.035)O3,CZ为CaZrO3,BKH为(Bi0.5K0.5)HfO3,NN为NaNbO3
具有超高压电响应的无铅压电陶瓷材料的制备方法,采用以下步骤:
1)制备基料:以分析纯K2CO3,Na2CO3,Nb2O5,Sb2O3,CaZrO3,ZrO2,Bi2O3,HfO2为原料,按照化学式(0.99-x)KNNS-0.01CZ-xBKH称量、球磨18-24h、在温度850-900℃的条件下预烧3-6h、二次球磨18-24h、烘干、过筛得到混合粉料;
2)制备模板:运用双重熔盐法制备具有高长径比的片状NN模板;
3)将步骤1)得到的基料与步骤2)得到的模板按一定的化学计量比配料混合,加入2倍于粉体的质量的锆球,然后加入体积比为1:1的丙酮和乙醇作为共同溶剂,辊磨12-15小时后再加入有机粘结剂继续辊磨3-5小时,制得具有粘性和流动性的浆料;
4)将步骤3)得到的浆料,使用流延刮刀在玻璃板上进行流延,流延后平放静置,待湿膜干燥后用刀片将膜片从玻璃板上刮下;将膜片切割后叠片并热压成型;
5)将步骤4)得到的陶瓷坯体采用两步烧结工艺进行烧结成瓷,即首先快速升温至1120℃-1150℃,然后急速冷却至1090℃-1100℃,在此温度下保温3-5小时,随炉冷却后即可得到陶瓷样品;
6)将步骤5)得到的陶瓷样品两面被上银电极并在20-30kV/cm的直流电场下极化20-30分钟,得到高压电系数的铌酸钾钠基无铅压电陶瓷。
步骤2)具体采用以下步骤:
2-1)选用高纯Bi2O3,K2CO3,NbO5为原料按照摩尔比为6.5:7:10称量后加入NaCl作为熔盐,NaCl的质量为Bi2O3,K2CO3,NbO5的总质量的1.1倍;
2-2)将上述粉体球磨均匀后在1050℃-1100℃烧结,将得到的粉体用去离子水清洗后得到Bi2.5Na3.5Nb5O18的片状前驱体;
2-3)将Bi2.5Na3.5Nb5O18、K2CO3和NaCl粉体混合球磨后在970-1000℃保温烧结2h,其中Bi2.5Na3.5Nb5O18和K2CO3的物质的量之比为1:1.75,NaCl的质量是Bi2.5Na3.5Nb5O18和K2CO3总质量的1.1倍;
2-4)将烧结后的粉体用去离子水和稀硝酸冲洗多次直到未检测到Cl-和Bi3+的存在,即制备得到片状NN模板。
步骤3)中将基料与模板按照摩尔比为(99~90):(1~10)的比例混合。
步骤3)中加入的有机粘结剂为市售的LS粘结剂。
步骤3)中加入的有机粘结剂和基料的质量比为1:1。
步骤3)制备得到的浆料具有一定的粘性和流动性,其流动性要求其浆料在刮刀的作用下能自然的铺展平整。具有一定的粘性是为了保证刮膜的过程中膜不会断裂。
与现有技术相比,本发明具有以下优点:
1、本发明制得的铌酸钾钠基无铅压电织构陶瓷的织构度高达95%-98%,在室温下非常容易极化,即在极小的直流电压5kV/cm极化即可获得500pC/N以上的压电系数,且在20kV/cm的电压极化后压电系数d33可以高达704±8pC/N,超高的压电性能主要得益于此组分存在有利于极化的多晶型相界以及超高的晶体取向度。
2、本发明制得的铌酸钾钠基无铅压电陶瓷利用两步烧结工艺后具有较宽的成瓷温度(约15℃的成瓷温区)。宽的烧结温区主要是由于在第一步设置的温度处形成了一定的液相,该液相可以以NN模板为晶种在两步温度差的驱动力下外延生长。在第一步得到一定的液相的情况下第二步设置的降低的温度只是提供了一个温度差异的结晶驱动力,所以对第二步的温度要求并没有很苛刻,这是获得较宽的烧结温区的主要原因。
3、本发明制得的铌酸钾钠基无铅压电陶瓷在具有较高的压电性能的同时具备较高的居里温度,拓宽了压电陶瓷的应用温度区间。
4、本发明使用的流延技术制备成本低、工艺简单、化学成分易于精确控制适合大批量的工业化生产。
5、本发明制备的(0.99-x)KNNS-0.01CZ-xBKH织构化无铅压电陶瓷材料可广泛应用于换能器、传感器及驱动器等电子设备中。
附图说明
图1为实施例1中模板含量为1mol%织构化0.96KNNS-0.01CZ-0.03BKH-1NN陶瓷的XRD图谱。
图2实施例2中模板含量为3mol%织构化0.96KNNS-0.01CZ-0.03BKH-3NN陶瓷的XRD图谱。
图3实施例3中模板含量为5mol%织构化0.96KNNS-0.01CZ-0.03BKH-5NN陶瓷的XRD图谱。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1:
具有超高压电响应的无铅压电陶瓷材料的制备方法,采用以下步骤:
1、0.96(K0.5Na0.5)(Nb0.965Sb0.035)-0.01CaZrO3-0.03(Bi0.5K0.5)HfO3基料的制备:采用分析纯的NaCO3、KCO3、Bi2O3和TiO2为原料,称取6.9105g K2CO3,4.9841g Na2CO3,24.3613gNb2O5,0.9805g Sb2O3,0.2003g CaCO3,0.2490g ZrO2,0.6992g Bi2O3,1.2642g HfO2;将称量好的原料放入尼龙罐中加入无水乙醇作为介质,球磨24h,将得到的混合浆料在100℃烘干,得到混合的干粉料;将混合粉料在900℃预烧3h;将预烧后的粉料磨碎后放入球磨罐并加入无水乙醇后进行二次球磨12h,并将得到的浆料在100℃烘干;将烘干后的粉体磨碎并过筛后即可得到基料。
2、称取10g上述0.96(K0.5Na0.5)(Nb0.965Sb0.035)-0.01CaZrO3-0.03(Bi0.5K0.5)HfO3基料,然后称取0.09g铌酸钠模板,加入8g甲苯和8g无水乙醇后辊磨10小时后,加入10g粘结剂继续辊磨3小时,制得浆料;取出制好的浆料,使用刮刀在玻璃板上进行流延;将流延后的湿膜静置10小时后,将膜从玻璃板上刮下;将膜片切割成12*12mm的方片后叠片在50℃热压成型,热压压力为10MPa,保温保压20min;将成型后的坯体在550℃排粘得到陶瓷生坯,然后将生坯在马弗炉中烧结,烧结过程采用的是两步烧结方式,第一步是以10℃/min升温至1150℃;第二步是在1080℃下保温5h,制备出晶粒高度取向生长的KNNS-CZ-BKH-1NN无铅织构化压电陶瓷。
图1是NN模板含量为1mol%时0.96KNNS-0.01CZ-0.03BKH织构化无铅压电材料的XRD图谱。从图中可以看出,{001}衍射峰的相对强度较随机取向材料有明显的增强,表明NN模板诱导了晶粒的取向生长。根据XRD的衍射峰可以得到其取向度f=95%,压电系数d33=423±10pC/N。
实施例2:
称取10g上述0.96(K0.5Na0.5)(Nb0.965Sb0.035)-0.01CaZrO3-0.03(Bi0.5K0.5)HfO3基料,然后称取0.27g铌酸钠模板,加入8g甲苯和8g无水乙醇后辊磨10小时后,加入10g粘结剂继续辊磨3小时,制得浆料;取出制好的浆料,使用刮刀在玻璃板上进行流延;将流延后的湿膜静置10小时后,将膜从玻璃板上刮下;将膜片切割成12*12mm的方片后叠片在50℃热压成型,热压压力为10Mpa,保温保压20min;将成型后的坯体在550℃排粘得到陶瓷生坯,然后将生坯在马弗炉中烧结,烧结过冲采用的是两步烧结方式,第一步是以10℃/min升温至1140℃;第二步是在1080℃下保温5h,制备出晶粒高度取向生长的0.96KNNS-0.01CZ-0.03BKH-3NN无铅织构化压电陶瓷。
图2是NN模板含量为3mol%时0.96KNNS-0.01CZ-0.03BKH织构化无铅压电材料的XRD图谱。从图中可以看出,{001}衍射峰的相对强度较随机取向材料有明显的增强,表明NN模板诱导了晶粒的取向生长。根据XRD的衍射峰可以得到其取向度f=98%,压电系数d33=704±8pC/N。
实施例3:
称取10g上述0.96(K0.5Na0.5)(Nb0.965Sb0.035)-0.01CaZrO3-0.03(Bi0.5K0.5)HfO3基料,然后称取0.46g铌酸钠模板,加入8g甲苯和8g无水乙醇后辊磨10小时后,加入10g粘结剂继续辊磨3小时,制得浆料;取出制好的浆料,使用刮刀在玻璃板上进行流延;将流延后的湿膜静置10小时后,将膜从玻璃板上刮下;将膜片切割成12*12mm的方片后叠片在50℃热压成型,热压压力为10MPa,保温保压20min;将成型后的坯体在550℃排粘得到陶瓷生坯,然后将生坯在马弗炉中烧结,烧结过冲采用的是两步烧结方式,第一步是以10℃/min升温至1140℃;第二步是在1090℃下保温5h,制备出晶粒高度取向生长的0.96KNNS-0.01CZ-0.03BKH-5NN无铅织构化压电陶瓷。
图3是NN模板含量为5mol%时0.96KNNS-0.01CZ-0.03BKH织构化无铅压电材料的XRD图谱。从图中可以看出,{001}衍射峰的相对强度较随机取向材料有明显的增强,表明NN模板诱导了晶粒的取向生长。根据XRD的衍射峰可以得到其取向度f=97%,压电系数d33=610±8pC/N。
实施例4:
具有超高压电响应的无铅压电陶瓷材料,其化学成份符合化学通式0.98KNNS-0.01CZ-0.01BKH-0.1NN;其中的KNNS为(K0.5Na0.5)(Nb0.965Sb0.035)O3,CZ为CaZrO3,BKH为(Bi0.5K0.5)HfO3,NN为NaNbO3
具有超高压电响应的无铅压电陶瓷材料的制备方法,采用以下步骤:
1)制备基料:以分析纯K2CO3,Na2CO3,Nb2O5,Sb2O3,CaZrO3,ZrO2,Bi2O3,HfO2为原料,按照化学式0.98KNNS-0.01CZ-0.01BKH称量、球磨18h、在温度850℃的条件下预烧6h、二次球磨18h、烘干、过筛得到混合粉料;
2)制备模板:运用双重熔盐法制备具有高长径比的片状NN模板,具体采用以下步骤:
2-1)选用高纯Bi2O3,K2CO3,NbO5为原料按照摩尔比为6.5:7:10称量后加入NaCl作为熔盐,NaCl的质量为Bi2O3,K2CO3,NbO5的总质量的1.1倍;
2-2)将上述粉体球磨均匀后在1050℃烧结,将得到的粉体用去离子水清洗后得到Bi2.5Na3.5Nb5O18的片状前驱体;
2-3)将Bi2.5Na3.5Nb5O18、K2CO3和NaCl粉体混合球磨后在970-1000℃保温烧结2h,其中Bi2.5Na3.5Nb5O18和K2CO3的物质的量之比为1:1.75,NaCl的质量是Bi2.5Na3.5Nb5O18和K2CO3总质量的1.1倍;
2-4)将烧结后的粉体用去离子水和稀硝酸冲洗多次直到未检测到Cl-和Bi3+的存在,即制备得到片状NN模板;
3)将步骤1)得到的基料与步骤2)得到的模板按摩尔比为99:1化学计量比配料混合,加入2倍于粉体的质量的锆球,然后加入体积比为1:1的丙酮和乙醇作为共同溶剂,辊磨12小时后再加入市售的LS粘结剂继续辊磨3小时,粘结剂和基料的质量比为1:1,制得具有粘性和流动性的浆料,其流动性要求其浆料在刮刀的作用下能自然的铺展平整。具有一定的粘性是为了保证刮膜的过程中膜不会断裂;
4)将步骤3)得到的浆料,使用流延刮刀在玻璃板上进行流延,流延后平放静置,待湿膜干燥后用刀片将膜片从玻璃板上刮下;将膜片切割后叠片并热压成型;
5)将步骤4)得到的陶瓷坯体采用两步烧结工艺进行烧结成瓷,即首先快速升温至1120℃-1150℃,然后急速冷却至1090℃-1100℃,在此温度下保温3-5小时,随炉冷却后即可得到陶瓷样品;
6)将步骤5)得到的陶瓷样品两面被上银电极并在20kV/cm的直流电场下极化30分钟,得到高压电系数的铌酸钾钠基无铅压电陶瓷。
实施例5:
具有超高压电响应的无铅压电陶瓷材料,其化学成份符合化学通式0.95KNNS-0.01CZ-0.05BKH-0.05NN;其中的KNNS为(K0.5Na0.5)(Nb0.965Sb0.035)O3,CZ为CaZrO3,BKH为(Bi0.5K0.5)HfO3,NN为NaNbO3
具有超高压电响应的无铅压电陶瓷材料的制备方法,采用以下步骤:
1)制备基料:以分析纯K2CO3,Na2CO3,Nb2O5,Sb2O3,CaZrO3,ZrO2,Bi2O3,HfO2为原料,按照化学式0.95KNNS-0.01CZ-0.05BKH称量、球磨20h、在温度850℃的条件下预烧4h、二次球磨20h、烘干、过筛得到混合粉料;
2)制备模板:运用双重熔盐法制备具有高长径比的片状NN模板,具体采用以步骤:
2-1)选用高纯Bi2O3,K2CO3,NbO5为原料按照摩尔比为6.5:7:10称量后加入NaCl作为熔盐,NaCl的质量为Bi2O3,K2CO3,NbO5的总质量的1.1倍;
2-2)将上述粉体球磨均匀后在1050℃烧结,将得到的粉体用去离子水清洗后得到Bi2.5Na3.5Nb5O18的片状前驱体;
2-3)将Bi2.5Na3.5Nb5O18、K2CO3和NaCl粉体混合球磨后在980℃保温烧结2h,其中Bi2.5Na3.5Nb5O18和K2CO3的物质的量之比为1:1.75,NaCl的质量是Bi2.5Na3.5Nb5O18和K2CO3总质量的1.1倍;
2-4)将烧结后的粉体用去离子水和稀硝酸冲洗多次直到未检测到Cl-和Bi3+的存在,即制备得到片状NN模板;
3)将步骤1)得到的基料与步骤2)得到的模板按摩尔比为95:5的化学计量比配料混合,加入2倍于粉体的质量的锆球,然后加入体积比为1:1的丙酮和乙醇作为共同溶剂,辊磨14小时后再加入市售的LS粘结剂继续辊磨4小时,粘结剂和基料的质量比为1:1,制得具有粘性和流动性的浆料,其流动性要求其浆料在刮刀的作用下能自然的铺展平整。具有一定的粘性是为了保证刮膜的过程中膜不会断裂;
4)将步骤3)得到的浆料,使用流延刮刀在玻璃板上进行流延,流延后平放静置,待湿膜干燥后用刀片将膜片从玻璃板上刮下;将膜片切割后叠片并热压成型;
5)将步骤4)得到的陶瓷坯体采用两步烧结工艺进行烧结成瓷,即首先快速升温至1130℃,然后急速冷却至1090℃,在此温度下保温4小时,随炉冷却后即可得到陶瓷样品;
6)将步骤5)得到的陶瓷样品两面被上银电极并在25kV/cm的直流电场下极化25分钟,得到高压电系数的铌酸钾钠基无铅压电陶瓷。
实施例6:
具有超高压电响应的无铅压电陶瓷材料,其化学成份符合化学通式0.94KNNS-0.01CZ-0.06BKH-0.10NN;其中的KNNS为(K0.5Na0.5)(Nb0.965Sb0.035)O3,CZ为CaZrO3,BKH为(Bi0.5K0.5)HfO3,NN为NaNbO3
具有超高压电响应的无铅压电陶瓷材料的制备方法,采用以下步骤:
1)制备基料:以分析纯K2CO3,Na2CO3,Nb2O5,Sb2O3,CaZrO3,ZrO2,Bi2O3,HfO2为原料,按照化学式(0.99-x)KNNS-0.01CZ-xBKH称量、球磨24h、在温度900℃的条件下预烧6h、二次球磨24h、烘干、过筛得到混合粉料;
2)制备模板:运用双重熔盐法制备具有高长径比的片状NN模板,具体包括以下步骤:
2-1)选用高纯Bi2O3,K2CO3,NbO5为原料按照摩尔比为6.5:7:10称量后加入NaCl作为熔盐,NaCl的质量为Bi2O3,K2CO3,NbO5的总质量的1.1倍;
2-2)将上述粉体球磨均匀后在1100℃烧结,将得到的粉体用去离子水清洗后得到Bi2.5Na3.5Nb5O18的片状前驱体;
2-3)将Bi2.5Na3.5Nb5O18、K2CO3和NaCl粉体混合球磨后在1000℃保温烧结2h,其中Bi2.5Na3.5Nb5O18和K2CO3的物质的量之比为1:1.75,NaCl的质量是Bi2.5Na3.5Nb5O18和K2CO3总质量的1.1倍;
2-4)将烧结后的粉体用去离子水和稀硝酸冲洗多次直到未检测到Cl-和Bi3+的存在,即制备得到片状NN模板;
3)将步骤1)得到的基料与步骤2)得到的模板按摩尔比为90:10的化学计量比配料混合,加入2倍于粉体的质量的锆球,然后加入体积比为1:1的丙酮和乙醇作为共同溶剂,辊磨15小时后再加入市售的LS粘结剂继续辊磨5小时,粘结剂和基料的质量比为1:1,制得具有粘性和流动性的浆料,其流动性要求其浆料在刮刀的作用下能自然的铺展平整。具有一定的粘性是为了保证刮膜的过程中膜不会断裂;
4)将步骤3)得到的浆料,使用流延刮刀在玻璃板上进行流延,流延后平放静置,待湿膜干燥后用刀片将膜片从玻璃板上刮下;将膜片切割后叠片并热压成型;
5)将步骤4)得到的陶瓷坯体采用两步烧结工艺进行烧结成瓷,即首先快速升温至1150℃,然后急速冷却至1100℃,在此温度下保温5小时,随炉冷却后即可得到陶瓷样品;
6)将步骤5)得到的陶瓷样品两面被上银电极并在30kV/cm的直流电场下极化20分钟,得到高压电系数的铌酸钾钠基无铅压电陶瓷。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (7)

1.具有超高压电响应的无铅压电陶瓷材料,其特征在于,其化学成份符合化学通式(0.99-x)KNNS-0.01CZ-xBKH-yNN;其中BKH的含量变化0.01≤x≤0.06;NN模板的含量y变化为0.01≤y≤0.10,其中的KNNS为(K0.5Na0.5)(Nb0.965Sb0.035)O3,CZ为CaZrO3,BKH为(Bi0.5K0.5)HfO3,NN为NaNbO3
2.具有超高压电响应的无铅压电陶瓷材料的制备方法,其特征在于,该方法采用以下步骤:
1)制备基料:以分析纯K2CO3,Na2CO3,Nb2O5,Sb2O3,CaZrO3,ZrO2,Bi2O3,HfO2为原料,按照化学式(0.99-x)KNNS-0.01CZ-xBKH称量、球磨、预烧、二次球磨、烘干、过筛得到混合粉料;
2)制备模板:运用双重熔盐法制备具有高长径比的片状NN模板;
3)将步骤1)得到的基料与步骤2)得到的模板按一定的化学计量比配料混合,加入2倍于粉体的质量的锆球,然后加入体积比为1:1的丙酮和乙醇作为共同溶剂,辊磨12-15小时后再加入有机粘结剂继续辊磨3-5小时,制得具有粘性和流动性的浆料;
4)将步骤3)得到的浆料,使用流延刮刀在玻璃板上进行流延,流延后平放静置,待湿膜干燥后用刀片将膜片从玻璃板上刮下;将膜片切割后叠片并热压成型;
5)将步骤4)得到的陶瓷坯体采用两步烧结工艺进行烧结成瓷,即首先快速升温至1120℃-1150℃,然后急速冷却至1090℃-1100℃,在此温度下保温3-5小时,随炉冷却后即可得到陶瓷样品;
6)将步骤5)得到的陶瓷样品两面被上银电极并在20-30kV/cm的直流电场下极化20-30分钟,得到高压电系数的铌酸钾钠基无铅压电陶瓷。
3.根据权利要求2所述的具有超高压电响应的无铅压电陶瓷材料的制备方法,其特征在于,步骤2)具体采用以下步骤:
2-1)选用高纯Bi2O3,K2CO3,NbO5为原料按照摩尔比为6.5:7:10称量后加入NaCl作为熔盐,NaCl的质量为Bi2O3,K2CO3,NbO5的总质量的1.1倍;
2-2)将上述粉体球磨均匀后在1050℃-1100℃烧结,将得到的粉体用去离子水清洗后得到Bi2.5Na3.5Nb5O18的片状前驱体;
2-3)将Bi2.5Na3.5Nb5O18、K2CO3和NaCl粉体混合球磨后在970-1000℃保温烧结2h,其中Bi2.5Na3.5Nb5O18和K2CO3的物质的量之比为1:1.75,NaCl的质量是Bi2.5Na3.5Nb5O18和K2CO3总质量的1.1倍;
2-4)将烧结后的粉体用去离子水和稀硝酸冲洗多次直到未检测到Cl-和Bi3+的存在,即制备得到片状NN模板。
4.根据权利要求2所述的具有超高压电响应的无铅压电陶瓷材料的制备方法,其特征在于,步骤3)中将基料与模板按照摩尔比为(99~90):(1~10)。
5.根据权利要求2所述的具有超高压电响应的无铅压电陶瓷材料的制备方法,其特征在于,步骤3)中加入的有机粘结剂为市售的LS粘结剂。
6.根据权利要求2所述的具有超高压电响应的无铅压电陶瓷材料的制备方法,其特征在于,步骤3)中加入的有机粘结剂与基料的质量比为1:1。
7.根据权利要求2所述的具有超高压电响应的无铅压电陶瓷材料的制备方法,其特征在于,步骤3)制备得到的浆料对流动性的要求是浆体在刮刀的驱动下能平整的铺展在玻璃板上,对粘性的要求是在后期的刮膜过程中不会使膜断裂。
CN201710418225.2A 2017-06-06 2017-06-06 具有超高压电响应的无铅压电陶瓷材料及制备方法 Expired - Fee Related CN107253858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710418225.2A CN107253858B (zh) 2017-06-06 2017-06-06 具有超高压电响应的无铅压电陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710418225.2A CN107253858B (zh) 2017-06-06 2017-06-06 具有超高压电响应的无铅压电陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN107253858A true CN107253858A (zh) 2017-10-17
CN107253858B CN107253858B (zh) 2020-07-07

Family

ID=60023953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710418225.2A Expired - Fee Related CN107253858B (zh) 2017-06-06 2017-06-06 具有超高压电响应的无铅压电陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN107253858B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626988A (zh) * 2019-01-29 2019-04-16 同济大学 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN109734447A (zh) * 2019-02-13 2019-05-10 同济大学 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
CN113264766A (zh) * 2021-06-07 2021-08-17 西安交通大学 一种无铅压电薄膜材料及其制备方法
CN113582685A (zh) * 2021-08-05 2021-11-02 湖南省美程陶瓷科技有限公司 一种呼吸机用无铅压电陶瓷材料及其制备方法
CN114409400A (zh) * 2022-01-13 2022-04-29 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN114436653A (zh) * 2020-11-06 2022-05-06 清华大学 耐疲劳、高逆压电和高稳定性能的抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN116283286A (zh) * 2023-03-13 2023-06-23 同济大学 一种铌酸钠基无铅压电织构陶瓷及其制备方法
CN116730722A (zh) * 2023-08-16 2023-09-12 兰州大学 一种钙钛矿型铌酸钾钠基陶瓷及其制备方法
CN116768623A (zh) * 2023-06-13 2023-09-19 同济大学 具有温度稳定性的铌酸钾钠基织构压电陶瓷及其制备方法
CN116283286B (zh) * 2023-03-13 2024-06-28 同济大学 一种铌酸钠基无铅压电织构陶瓷及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185098A (zh) * 2011-03-21 2011-09-14 武汉理工大学 一种择优取向型铌酸盐无铅压电厚膜材料及其制备方法
WO2012108582A1 (ko) * 2011-02-08 2012-08-16 한국기계연구원 무연 압전 세라믹스의 결정 배향용 템플레이트 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108582A1 (ko) * 2011-02-08 2012-08-16 한국기계연구원 무연 압전 세라믹스의 결정 배향용 템플레이트 및 이의 제조방법
CN102185098A (zh) * 2011-03-21 2011-09-14 武汉理工大学 一种择优取向型铌酸盐无铅压电厚膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAI XU ET AL.: "Superior Piezoelectric Properties in Potassium–Sodium Niobate Lead-Free Ceramics", 《ADVANCE MATERIALS》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626988A (zh) * 2019-01-29 2019-04-16 同济大学 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN109626988B (zh) * 2019-01-29 2021-10-08 同济大学 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN109734447B (zh) * 2019-02-13 2021-10-08 同济大学 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
CN109734447A (zh) * 2019-02-13 2019-05-10 同济大学 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
CN114436653B (zh) * 2020-11-06 2022-11-01 清华大学 耐疲劳、高逆压电和高稳定性能的抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN114436653A (zh) * 2020-11-06 2022-05-06 清华大学 耐疲劳、高逆压电和高稳定性能的抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN113264766A (zh) * 2021-06-07 2021-08-17 西安交通大学 一种无铅压电薄膜材料及其制备方法
CN113582685A (zh) * 2021-08-05 2021-11-02 湖南省美程陶瓷科技有限公司 一种呼吸机用无铅压电陶瓷材料及其制备方法
CN113582685B (zh) * 2021-08-05 2022-07-15 湖南省美程陶瓷科技有限公司 一种呼吸机用无铅压电陶瓷材料及其制备方法
CN114409400A (zh) * 2022-01-13 2022-04-29 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN116283286A (zh) * 2023-03-13 2023-06-23 同济大学 一种铌酸钠基无铅压电织构陶瓷及其制备方法
CN116283286B (zh) * 2023-03-13 2024-06-28 同济大学 一种铌酸钠基无铅压电织构陶瓷及其制备方法
CN116768623A (zh) * 2023-06-13 2023-09-19 同济大学 具有温度稳定性的铌酸钾钠基织构压电陶瓷及其制备方法
CN116730722A (zh) * 2023-08-16 2023-09-12 兰州大学 一种钙钛矿型铌酸钾钠基陶瓷及其制备方法
CN116730722B (zh) * 2023-08-16 2023-10-20 兰州大学 一种钙钛矿型铌酸钾钠基陶瓷及其制备方法

Also Published As

Publication number Publication date
CN107253858B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN107253858A (zh) 具有超高压电响应的无铅压电陶瓷材料及制备方法
CN107459346B (zh) 高电学性能的无铅压电钛酸钡基织构陶瓷的制备方法和应用
Li et al. Dielectric and piezoelecrtic properties of lead-free (Na0. 5Bi0. 5) TiO3–NaNbO3 ceramics
Li Lead-free piezoelectric materials
JP4943043B2 (ja) 圧電セラミックスの製造方法
US20090242099A1 (en) Method of producing a piezostack device
CN109734447B (zh) 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
JP4450636B2 (ja) 圧電セラミックスの製造方法
CN104628379B (zh) 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN107098699A (zh) 宽烧结温区及宽组分调节的无铅压电织构陶瓷及制备方法
Minhong et al. Piezoelectric and dielectric properties of K0. 5Na0. 5NbO3–LiSbO3–BiScO3 lead-free piezoceramics
CN109608195A (zh) 高压电性、高电致应变的无铅压电陶瓷材料及其制备方法
Hussain et al. Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates
CN103102154A (zh) Bi0.5Na0.5TiO3-BaTiO3–BiMg0.5Ti0.5O3无铅压电陶瓷材料
CN110981468B (zh) 一种钛酸铋钠基压电陶瓷的制备方法
Bai et al. Dielectric, ferroelectric, and piezoelectric properties of textured BZT–BCT lead-free thick film by screen printing
WO2004102689A1 (ja) 圧電材料とその製造方法並びに非線形圧電素子
CN105198417A (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
CN101962292B (zh) 碱金属铌钽锑酸盐基无铅压电陶瓷及制备方法
Li et al. Piezoelectricity and flexoelectricity of sodium bismuth titanate-based ceramics
Chao et al. Fabrication, temperature stability and characteristics of Pb (ZrxTiy) O3–Pb (Zn1/3Nb2/3) O3–Pb (Ni1/3Nb2/3) O3 piezoelectric ceramics bimorph
CN104844202A (zh) 一种锰锑酸铅掺杂的铌镍-锆钛酸铅压电陶瓷
CN105732032A (zh) 高致密度的铌锑酸钾钠锂-锆酸铋钠钙二元系无铅压电陶瓷及其制备方法
Chen et al. Piezoelectric and dielectric properties of Bi0˙ 5 (Na0˙ 84K0˙ 16) 0˙ 5TiO3–Ba (Zr0˙ 04Ti0˙ 96) O3 lead free piezoelectric ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200707