CN114400332B - 一种可逆固体氧化物电池的电极材料的复合材料、制备方法 - Google Patents

一种可逆固体氧化物电池的电极材料的复合材料、制备方法 Download PDF

Info

Publication number
CN114400332B
CN114400332B CN202210025477.XA CN202210025477A CN114400332B CN 114400332 B CN114400332 B CN 114400332B CN 202210025477 A CN202210025477 A CN 202210025477A CN 114400332 B CN114400332 B CN 114400332B
Authority
CN
China
Prior art keywords
electrode material
sbfm
solid oxide
composite material
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210025477.XA
Other languages
English (en)
Other versions
CN114400332A (zh
Inventor
金芳军
孙宁
沈羽
王芳
***
徐铭泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202210025477.XA priority Critical patent/CN114400332B/zh
Publication of CN114400332A publication Critical patent/CN114400332A/zh
Application granted granted Critical
Publication of CN114400332B publication Critical patent/CN114400332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

一种可逆固体氧化物电池的电极材料的复合材料、制备方法涉及电极材料领域,解决了现有电池成本高和寿命短的问题。所述复合材料为Sr3FeMoO6.5‑BiFe@Sr2‑xBixFe1.5Mo0.5O6‑δ,其中0<δ<0.2,0<x≤0.1。电极材料Sr2‑ xBixFe1.5Mo0.5O6‑δ为钙钛矿结构氧化物,本发明制备的钙钛矿结构的SBFM材料具有成分较简单、均匀,合成工艺较简单等特点。在氢气气氛中高温还原,析出大量且分布均匀的纳米颗粒,同时产生较多的氧空位。纳米颗粒可以显著提升SBFM电极材料的导电性能,并提供大量的活性位点,以SBFM作为阳极,对反应气体具有快速催化的作用。在碳氢燃料气氛中,钙钛矿阳极中析出的纳米颗粒具有良好的催化活性,表现出良好的电化学性能。同时以本发明的SBFM材料用于制备多孔阳极,可以在碳氢燃料气氛中稳定的工作。

Description

一种可逆固体氧化物电池的电极材料的复合材料、制备方法
技术领域
本发明涉及电极材料领域,具体涉及一种可逆固体氧化物电池的电极材料的复合材料、制备方法。
背景技术
自改革开放以来,我国的能源行业取得了长足的发展,形成了以煤碳、石油、电力为核心,新能源和可再生能源全面发展的能源供应体系,为改善民生和经济发展提供了强有力的保证。然而,化石燃料的过度使用,如石油和煤炭,已经引发了许多问题,如空气污染,温室效应和动物灭绝。可逆对称固体氧化物电池(RSOC)作为一种能量转换装置,可以实现化学能和电能的高效洁净无污染的可逆转换。它既可以在固体氧化物燃料电池(solidoxide fuel cells,SOFCs)模式下运行,以电化学反应的方式将燃料中的化学能转化为电能,相比于受卡诺循环限制的传统发电技术,燃料电池减少了中间过程的能量损失,同时具有高转换效率、低污染和无噪音等优点。又可以在固体氧化物电解池(solid oxideelectrolysis cells,SOECs)模式下高效的将富余的电能快速高效地转换为化学能储存起来。然而,由于运行温度高(>850℃)所带来的一系列问题(成本高和寿命短等),阻碍了SOCs技术的商业化。因此迫切需要将SOCs的运行温度降低至中温区(600~800℃)。然而,温度的降低会使电极的极化电阻急剧增加,从而导致整个电池的性能衰减。因此,在中温区发展高效、稳定且成本低廉的电极材料对于实现SOCs商业化具有重要意义。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种可逆固体氧化物电池的电极材料的复合材料、制备方法,解决了现有电池成本高和寿命短的问题。
本发明解决技术问题所采用的技术方案如下:
一种可逆固体氧化物电池的电极材料,所述电极材料为钙钛矿结构氧化物,结构式为Sr2-xBixFe1.5Mo0.5O6-δ,其中0<δ<0.2,0<x≤0.1。
制备一种可逆固体氧化物电池的电极材料的方法,该方法包括如下步骤:
步骤一:按化学计量比,称取含有Sr、Bi、Fe、Mo元素的粉末,加入无水乙醇进行搅拌处理,获得固液混合物;
步骤二:对步骤一所得的固液混合物球磨,直至充分混合均匀;
步骤三:将步骤二所得物质烘干,所得粉末在1100℃~1200℃烧结,烧结时间为10h~15h,获得钙钛矿结构的Sr2-xBixFe1.5Mo0.5O6-δ粉末,其中0<δ<0.2,0<x≤0.1。
优选的,步骤一所述的粉末为:所述含Sr元素的粉末为碳酸盐,Bi、Fe、Mo元素的粉末均为氧化物。
优选的,步骤二所述的球磨的速度为350-500转/分钟,球磨时间为12-24h。
优选的,所述电极材料作为阳极层在制备固体氧化物燃料电池中的应用。
一种可逆固体氧化物电池的电极材料的应用,该应用包括如下步骤:
步骤一:将电极粉末Sr2-xBixFe1.5Mo0.5O6-δ,其中0<δ<0.2,0<x≤0.1加入松油醇-乙基纤维素混合研磨,制成均匀混合的浆料作为阳极浆料;将阴极粉末NdBaCo2O5+δ加入松油醇-乙基纤维素混合研磨,制成均匀混合的阴极浆料;
步骤二:将步骤一得到的阳极浆料涂覆于电解质层两侧,在空气气氛下烧结获得钙钛矿Sr2-xBixFe1.5Mo0.5O6-δ的多孔电极层的固体氧化物燃料电池半电池;
步骤三:将步骤一得到的阳极浆料涂覆于电解质层一侧,阴极浆料涂覆于电解质另外一侧,在空气气氛下烧结获得钙钛矿Sr2-xBixFe1.5Mo0.5O6-δ的多孔电极层的固体氧化物燃料电池单电池。
一种复合材料,所述复合极材料为Sr3FeMoO6.5-BiFe@Sr2-xBixFe1.5Mo0.5O6-δ,其中0<δ<0.2,0<x≤0.1。
制备一种复合材料的方法,将电极材料Sr2-xBixFe1.5Mo0.5O6-δ,0<δ<0.2,0<x≤0.1至于还原气氛下经过煅烧得到。
一种复合材料的制备方法,所述还原气氛为氢气,还原时间为4h~6h,煅烧温度为800℃~900℃。
本发明的有益效果是:本发明制备的钙钛矿结构的SBFM材料属于一种新的电极材料,具有成分较简单、均匀,合成工艺较简单等特点。可在氢气气氛中进行高温还原,从而析出大量且分布均匀的纳米颗粒,同时产生较多的氧空位。这些纳米颗粒可以显著提升SBFM电极材料的导电性能,并提供大量的活性位点,以SBFM作为阳极,对反应气体具有快速催化的作用。在碳氢燃料气氛中,钙钛矿阳极中析出的纳米颗粒具有良好的催化活性,表现出良好的电化学性能。同时以本发明的SBFM材料用于制备多孔阳极,可以在碳氢燃料气氛中稳定的工作。
附图说明
图1为本发明Sr2Fe1.5Mo0.5O6-δ(SFM)和Sr1.9Bi0.1Fe1.5Mo0.5O6-δ(SBFM0.1)电极材料的XRD图。
图2本发明SBFM0.1电极材料还原后的XRD图。
图3本发明SBFM0.1电极材料还原后的透射电子显微镜图。
图4本发明SBFM0.1|LSGM|NBC的固体氧化物燃料电池以氢气作为燃料时,在不同温度下测得的功率密度图。
图5本发明SBFM0.1|LSGM|NBC的固体氧化物燃料电池以乙醇作为燃料时,在不同温度下测得的功率密度图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明,但本发明的保护范围不局限于以下实施例。
实施例1
一种新型的可逆固体氧化物电池电极材料,具体分子式为Sr1.9Bi0.1Fe1.5Mo0.5O6-δ
可逆固体氧化物电池电极材料的制备方法包括:取5.6098g碳酸锶,0.4659g三氧化二铋,2.3953g三氧化二铁,1.4396g三氧化钼,加入适量乙醇进行搅拌处理,获得固液混合物;将固液混合物置于球磨机中,以350转/分钟的速度球磨24h,将球磨后的粉体放入80℃的干燥箱里干燥。最后在空气氛围下1200℃焙烧12h得到具有钙钛矿相结构的Sr1.9Bi0.1Fe1.5Mo0.5O6-δ电极材料。将制备的电极材料在5%H2/Ar气氛中850℃还原5h后,获得具有钙钛矿支撑体结构的Sr3FeMoO6.5-BiFe@Sr1.9Bi0.1Fe1.5Mo0.5O6-δ的复合材料。
实施例2
一种新型的可逆固体氧化物电池电极材料,具体分子式为Sr1.92Bi0.08Fe1.5Mo0.5O6-δ
可逆固体氧化物电池电极材料的制备方法包括:取5.6689g碳酸锶,0.3728g三氧化二铋,2.3953g三氧化二铁,1.4396g三氧化钼,加入适量乙醇进行搅拌处理,获得固液混合物;将固液混合物置于球磨机中,以450转/分钟的速度球磨20h,将球磨后的粉体放入80℃的干燥箱里干燥。最后在空气氛围下1150℃焙烧14h得到具有钙钛矿相结构的Sr1.92Bi0.08Fe1.5Mo0.5O6-δ电极材料。将制备的电极材料在5%H2/Ar气氛中900℃还原4h后,获得具有钙钛矿支撑体结构的Sr3FeMoO6.5-BiFe@Sr1.92Bi0.08Fe1.5Mo0.5O6-δ的复合材料。
实施例3
一种新型的可逆固体氧化物电池电极材料,具体分子式为Sr1.95Bi0.05Fe1.5Mo0.5O6-δ
可逆固体氧化物电池电极材料的制备方法包括:取5.7575g碳酸锶,0.2329g三氧化二铋,2.3953g三氧化二铁,1.4396g三氧化钼,加入适量乙醇进行搅拌处理,获得固液混合物;将固液混合物置于球磨机中,以500转/分钟的速度球磨12h,将球磨后的粉体放入80℃的干燥箱里干燥。最后在空气氛围下1100℃焙烧15h得到具有钙钛矿相结构的Sr1.95Bi0.05Fe1.5Mo0.5O6-δ电极材料。将制备的电极材料在5%H2/Ar气氛中800℃还原6h后,获得具有钙钛矿支撑体结构的Sr3FeMoO6.5-BiFe@Sr1.95Bi0.05Fe1.5Mo0.5O6-δ的复合材料。
对实施例1所得的电极材料进行XRD分析表明所制备的氧化物对应钙钛矿的标准峰,如图1所示,没有杂峰出现,表明样品合成成功;将实施例1制备的电极材料在5%H2/Ar气氛中850℃还原5h后进行XRD分析,如图2所示,表明有金属纳米颗粒的出溶;通过透射电镜电镜观察还原后的材料表面形貌,如图3所示,同样表明有金属纳米颗粒的出溶。
以实施例1合成的材料为阳极材料,以NdBaCo2O5+δ为阴极材料,La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)作为电解质,将阳极粉末和阴极粉末分别与松油醇乙基纤维素混合,在研钵中研磨2h,分别制成均匀混合的浆料;通过丝网印刷的方式将浆料分别刷在电解质两侧组装成单电池,继而在空气氛围下950℃烧结处理4h,最终完成SBFM|LSGM|NBC的固体氧化物燃料单电池的制备。对单电池的阳极层(以SBFM0.1为例),先在H2气氛中进行850℃还原处理2h,随后在不同气氛中进行电化学性能测试,如图4和5所示。以氢气或乙醇为燃料时,电池的功率密度都随温度的增加而增加。相比于氢气,使用乙醇为燃料时开路电压会略有降低,并且相同温度下功率密度也略有降低。

Claims (3)

1.一种可逆固体氧化物电池的电极材料的复合材料,其特征在于,所述复合材料为Sr3FeMoO6.5-BiFe@Sr2-xBixFe1.5Mo0.5O6-δ,其中0<δ<0.2,0<x≤0.1,Sr2-xBixFe1.5Mo0.5O6-δ为钙钛矿结构氧化物。
2.制备权利要求1所述的一种复合材料的制备方法,其特征在于,将电极材料Sr2- xBixFe1.5Mo0.5O6-δ,0<δ<0.2,0<x≤0.1置于还原气氛下经过煅烧得到。
3.根据权利要求2所述的一种复合材料的制备方法,其特征在于,所述还原气氛为氢气,还原时间为4h~6h,煅烧温度为800℃~900℃。
CN202210025477.XA 2022-01-11 2022-01-11 一种可逆固体氧化物电池的电极材料的复合材料、制备方法 Active CN114400332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210025477.XA CN114400332B (zh) 2022-01-11 2022-01-11 一种可逆固体氧化物电池的电极材料的复合材料、制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210025477.XA CN114400332B (zh) 2022-01-11 2022-01-11 一种可逆固体氧化物电池的电极材料的复合材料、制备方法

Publications (2)

Publication Number Publication Date
CN114400332A CN114400332A (zh) 2022-04-26
CN114400332B true CN114400332B (zh) 2024-01-23

Family

ID=81231929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210025477.XA Active CN114400332B (zh) 2022-01-11 2022-01-11 一种可逆固体氧化物电池的电极材料的复合材料、制备方法

Country Status (1)

Country Link
CN (1) CN114400332B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191153A (ja) * 2003-12-25 2005-07-14 Seiko Epson Corp キャパシタ及びその製造方法、並びに半導体装置
JP2009152014A (ja) * 2007-12-19 2009-07-09 Tokyo Institute Of Technology 固体酸化物型電池
CN102290583A (zh) * 2011-07-15 2011-12-21 天津大学 一种阳极材料及利用甲醇为燃料的固体氧化物燃料电池
KR20130040311A (ko) * 2011-10-14 2013-04-24 한국에너지기술연구원 고체산화물 연료전지용 이중층 접속자, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
JP2013143187A (ja) * 2012-01-06 2013-07-22 Noritake Co Ltd 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
WO2016032100A1 (ko) * 2014-08-28 2016-03-03 한국생산기술연구원 단일상 페롭스카이트계 고체전해질과 이를 포함한 고체산화물연료전지 및 그 제조방법
CN110581283A (zh) * 2019-09-19 2019-12-17 中国科学技术大学 一种铋掺杂固体氧化物电池燃料极材料及其制备方法与应用
CN111883789A (zh) * 2020-06-28 2020-11-03 华南理工大学 一种固体氧化物燃料电池的电极材料及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778560B2 (en) * 2010-02-03 2014-07-15 University Of South Carolina Mixed ionic and electronic conductor based on Sr2Fe2-xM0XO6 perovskite
CN112531156A (zh) * 2019-09-19 2021-03-19 株式会社东芝 电极组、非水电解质二次电池、电池包及车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191153A (ja) * 2003-12-25 2005-07-14 Seiko Epson Corp キャパシタ及びその製造方法、並びに半導体装置
JP2009152014A (ja) * 2007-12-19 2009-07-09 Tokyo Institute Of Technology 固体酸化物型電池
CN102290583A (zh) * 2011-07-15 2011-12-21 天津大学 一种阳极材料及利用甲醇为燃料的固体氧化物燃料电池
KR20130040311A (ko) * 2011-10-14 2013-04-24 한국에너지기술연구원 고체산화물 연료전지용 이중층 접속자, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
JP2013143187A (ja) * 2012-01-06 2013-07-22 Noritake Co Ltd 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
WO2016032100A1 (ko) * 2014-08-28 2016-03-03 한국생산기술연구원 단일상 페롭스카이트계 고체전해질과 이를 포함한 고체산화물연료전지 및 그 제조방법
CN110581283A (zh) * 2019-09-19 2019-12-17 中国科学技术大学 一种铋掺杂固体氧化物电池燃料极材料及其制备方法与应用
CN111883789A (zh) * 2020-06-28 2020-11-03 华南理工大学 一种固体氧化物燃料电池的电极材料及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A位缺位双钙钛矿Sr1.85MgMoO6-δ阳极的电化学性能;姚桂彬等;《辽宁石油化工大学学报》;第39卷(第4期);第28-33页 *
Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3-δperovskite as a novel redox-stable efficient anode for solid oxide fuel cells;Shaowei Zhang等;《Journal of Materials Chemistry A》(第8期);第11553-11563页 *
In Situ Coexsolution of Metal Nanoparticle-Decorated Double Perovskites As Anode Materials for Solid Oxide Fuel Cells;Ning Sun等;《ACS Applied Energy Materials》;第4卷(第8期);第7992-8002页 *
固体氧化物燃料电池La_xSr_(2-3x/2)Fe_(1.5)Ni_(0.1)Mo_(0.4)O_(6-δ)阳极性能研究(英文);夏天;孟燮;骆婷;占忠亮;;无机材料学报(第5期);第617-622页 *
固体氧化物燃料电池新型钙钛矿La_(0.9)Ca_(0.1)Fe_(0.9)Nb_(0.1)O_(3-δ)阳极的制备及其性能研究;赵晓虹;王勇;刘立敏;李斌;;无机材料学报(第11期);第1188-1194页 *

Also Published As

Publication number Publication date
CN114400332A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN111477881B (zh) 一种NiFe合金纳米颗粒包覆Pr0.8Sr1.2(FeNi)O4-δ材料及其制法
CN104078687B (zh) 含有碱金属或碱土金属元素的固体氧化物燃料电池的阳极材料及其制备方法和用途
CN103811772B (zh) 含有钙钛矿型结构氧化物的复合材料及其制备方法和用途
CN110581283B (zh) 一种铋掺杂固体氧化物电池燃料极材料及其制备方法与应用
Yu et al. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes
CN111430734B (zh) (Pr0.5Sr0.5)xFe1-yRuyO3-δ钙钛矿材料及其制备方法与应用
Tongyun et al. NdFeO3 as anode material for S/O2 solid oxide fuel cells
CN113839054B (zh) 一种可逆质子陶瓷电池电极材料及其制备方法和用途
Duranti et al. Electrochemical performance and stability of LSFMn+ NiSDC anode in dry methane
CN111224140B (zh) 一种铁基双钙钛矿结构的氧化物材料及其制备方法
CN111883789A (zh) 一种固体氧化物燃料电池的电极材料及其制备方法与应用
CN115528259B (zh) 一种铋离子修饰铁酸镨基固体氧化物燃料电池阳极材料及其制备方法
CN115180936B (zh) 一种质子导体可逆电池空气电极、制备方法和用途
CN114400332B (zh) 一种可逆固体氧化物电池的电极材料的复合材料、制备方法
CN113430548B (zh) 一种二氧化碳转化电解池及其制备方法与应用
TIAN et al. Performance of reversible solid oxide cells based on La0. 6Ca0. 4Fe0. 7Sc0. 1Ni0. 2O3–δ oxygen electrode
CN115650312A (zh) 一种质子导体可逆电池空气电极、制备方法和用途
CN113968596A (zh) 一种铁基双钙钛矿型电极粉末材料及制备方法、基于其的燃料电池电极材料及制备方法
Wang et al. Characterization of Pr 0.5 A 0.5 Fe 0.9 W 0.1 O 3− δ (A= Ca, Sr and Ba) as symmetric electrodes for solid oxide fuel cells
Xia et al. Recent progress on efficient perovskite ceramic anodes for high-performing solid oxide fuel cells
Qin Study on Preparation and Properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3-Δ-mGd0. 2Ce0. 8O2 (M= 0, 30, 40 and 50) Composite Cathode
CN115548356B (zh) 一种钙钛矿型固体氧化物电池电极催化剂的制备方法及应用
Jasinski et al. Single Chamber Solid Oxide Fuel Cell—Investigation of Cathodes
CN116014159A (zh) 一种固体氧化物电池氧电极材料、制备方法与应用
CN114628704A (zh) 原位析出核壳结构NiFe双金属合金纳米催化剂及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant