CN114369452B - 一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉 - Google Patents

一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉 Download PDF

Info

Publication number
CN114369452B
CN114369452B CN202011104531.7A CN202011104531A CN114369452B CN 114369452 B CN114369452 B CN 114369452B CN 202011104531 A CN202011104531 A CN 202011104531A CN 114369452 B CN114369452 B CN 114369452B
Authority
CN
China
Prior art keywords
fluorescent
magnetic powder
magnetic
organic material
ferromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011104531.7A
Other languages
English (en)
Other versions
CN114369452A (zh
Inventor
郭贵全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Quankai New Materials Technology Co ltd
Original Assignee
Shanghai Quankai New Materials Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Quankai New Materials Technology Co ltd filed Critical Shanghai Quankai New Materials Technology Co ltd
Priority to CN202011104531.7A priority Critical patent/CN114369452B/zh
Publication of CN114369452A publication Critical patent/CN114369452A/zh
Application granted granted Critical
Publication of CN114369452B publication Critical patent/CN114369452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/187Metal complexes of the iron group metals, i.e. Fe, Co or Ni
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种荧光铁磁体,荧光铁磁体由带有活性官能团的荧光素、有机材料和磁性金属离子反应制得;其中,所述有机材料上具有烷基多胺或烷基羧酸活性官能团;所述荧光素上的活性官能团为异硫氰酸酯、羧基或胺基。该荧光铁磁体具有较高的磁导率,可代替传统的荧光粉包覆在磁粉上,制得的荧光磁粉磁饱和强度较高,磁响应度较高,同时荧光磁粉的粒径未见明显增大,荧光磁粉的粒径仍在微米级别。

Description

一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合 荧光磁粉
技术领域
本发明涉及荧光磁粉生产制备的化学领域,具体涉及一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉。
背景技术
荧光磁粉在磁无损探伤领域发挥着重要的作用,其是用粘接剂将顺磁性的无机磁粉(羰基铁或四氧化三铁)与荧光粉粘接在一起形成荧光磁粉,在磁化磁场中无机磁粉发挥导向作用,荧光粉发挥着放大信号的作用,在紫外光的照射下,磁粉产生荧光与工件存在鲜明的对比度,更易于观察到工件缺陷的存在。
为了提高荧光磁粉的灵敏度便于其在工业探伤线上的可使用性,在前面专利中我们研究了如何提高荧光磁粉中荧光粉抗剥离性能及如何提高荧光磁粉荧光亮度。但是顺磁性无机磁粉经过有机的荧光粉包覆后,由于有机荧光染料导磁率较低导致荧光磁粉的磁饱和强度发生明显的下降,这会降低荧光磁粉的磁响应,导致其在探伤线上灵敏度显著降低。虽然通过增大无机磁粉的颗粒度能提高包覆后荧光磁粉的磁饱和强度,但这会导致荧光磁粉的悬浮性较差,同时大颗粒的荧光磁粉不利于小裂缝的探伤,不适合工业磁粉探伤工艺需求,而颗粒较细的无机磁粉才适应磁探伤工艺的需求,因此,如何提高荧光粉的导磁性及包覆后荧光磁粉的磁饱和强度是噬待解决的技术问题。
发明内容
为了解决上述背景技术中存在的问题,本发明提供一种荧光铁磁体,具有较高的磁导率,可代替传统的荧光粉包覆在磁粉上,制得的荧光磁粉磁饱和强度较高,磁响应度较高,同时荧光磁粉的粒径未见明显增大,荧光磁粉的粒径仍在微米级别。为此,本发明还提供一种高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉。
为了实现上述目的,本发明采用以下技术方案:
本发明的第一方面,提供一种荧光铁磁体,所述荧光铁磁体由带有活性官能团的荧光素、有机材料和磁性金属离子反应制得;
其中,所述有机材料上具有烷基多胺或烷基羧酸活性官能团;
所述荧光素上的活性官能团为异硫氰酸酯、羧基或胺基。
其中,所述有机材料包括小分子有机材料和大分子有机材料,所述小分子有机材料为酞菁及其衍生物、卟啉及其衍生物,所述大分子有机材料为叠氮配位聚合物、双噻唑芳杂环聚合物。
其中,所述有机材料为小分子有机材料时,先将有机材料与磁性金属离子螯合反应得到金属有机铁磁体,再将带有活性官能团的荧光素接枝至金属有机铁磁体上,得到荧光铁磁体。
酞菁及其衍生物、卟啉及其衍生物的结构式见图1,其中结构式中R代表烷基多胺或烷基羧酸活性官能团,由于卟啉、酞菁等小分子对光、热甚至酸碱都具有较高的稳定性,而且具有很强的配位能力,几乎可以和所有的金属元素发生配位反应,形成金属配合物,俗称金属酞菁或金属卟啉。金属酞菁类(或金属卟啉类)化合物显示出了优异的光、电、热、磁性质和作为分子导体、分子电子元器件、分子磁体、光电转换、电致变色和液晶等新型功能性材料的巨大潜力,小分子金属酞菁或小分子金属卟啉与活性荧光素发生反应制备具有导磁性的小分子荧光铁磁体,反应示意图见图1。
其中,所述有机材料为大分子有机材料时,先将带有活性官能团的荧光素接枝至有机材料上,然后再与磁性金属离子螯合反应,得到荧光铁磁体。
其中,所述磁性金属离子为Mn2+、Ni2+、Cu2+、Fe2+、Fe3+
本发明的第二方面,提供一种高磁饱和强度的荧光磁粉,包括上述荧光铁磁体20-30份、磁粉80-90份、偶联剂5-10份、粘接剂2-5份和固化剂0.1-1份。
其中,磁粉为羰基铁粉、三氧化二铁、四氧化三铁或钴粉。
其中,所述偶联剂为具有环氧官能团的偶联剂,具体的可选用环氧基硅烷偶联剂。
其中,所述粘接剂为环氧树脂乳液,所述固化剂为聚酰胺固化剂。
本发明的第三方面,提供一种上述高磁饱和强度的荧光磁粉的制备方法,其特征在于,包括以下步骤:
S1、称取配方量的磁粉、偶联剂,将其加入至搅拌容器中,在搅拌反应下发生偶联反应,得到中间体A;
S2、将粘接剂和固化剂加入至另一搅拌容器中,搅拌混合均匀,得到粘接固化剂;
S3、将步骤S1中得到的中间体A、步骤S2中得到的粘接固化剂和荧光铁磁体依次加入至搅拌容器中,加热至100-160℃,搅拌反应20-60min;
S4、将步骤S3中得到的反应产物进行烘干、破碎、过筛处理,即得高磁饱和强度荧光磁粉。
本发明的第四方面,提供一种高灵敏度复合荧光磁粉,包括上述高磁饱和强度的荧光磁粉80-100份、消泡剂10-20份、分散剂10-20份和防锈剂50-70份。
其中,消泡剂为固体有机硅消泡剂,分散剂为十二烷基苯磺酸钠,防锈剂为三聚磷酸钠。
与现有技术相比,本发明具有如下有益效果:
本发明中磁性金属离子与有机材料螯合形成活性金属有机铁磁体,通过有机材料中的活性官能团与荧光素中的活性官能团发生缩合反应,将荧光素接枝至金属有机铁磁体上,得到荧光铁磁体,用其代替传统荧光粉包覆在磁粉上,制得的荧光磁粉磁饱和强度较高,磁响应度较高,同时荧光磁粉的粒径未见明显增大,荧光磁粉的粒径仍在微米级别;本发明中制得的高磁饱和强度荧光磁粉的生产工艺简单,成本较低,其磁响应度得到明显的提高,通过将多种不同的荧光素接枝到不同种类的金属有机铁磁体上,制备具有不同磁导率的荧光铁磁体,再与磁粉复合可以制备具有不同磁饱和强度的荧光磁粉,进而制备具有不同磁响应度的荧光磁粉,可以满足不同行业的不同工件探伤工艺的需求。
附图说明
下面结合附图与具体实施例对本发明作进一步详细说明。
图1为本发明中卟啉(酞青)荧光有机铁磁体的合成示意图;
图2为实施例1中荧光铜卟啉铁磁体制备反应过程示意图;
图3为实施例2中叠氮配位聚合物荧光铁磁体制备反应过程示意图;
图4为实施例3中水杨酸双噻唑聚合物荧光铁磁体制备反应过程示意图;
图5为实施例4中制得的荧光磁粉的粒径分布图;
图6为实施例4中制得的荧光磁粉的荧光照片和荧光强度;
图7为实施例4中制得的荧光磁粉的磁饱和强度;
图8为实施例5中制得的荧光磁粉的粒径分布图;
图9为实施例5中制得的荧光磁粉的荧光照片和荧光强度;
图10为实施例5中制得的荧光磁粉的磁饱和强度;
图11为实施例6中制得的荧光磁粉的粒径分布图;
图12为实施例6中制得的荧光磁粉的荧光照片和荧光强度;
图13为实施例6中制得的荧光磁粉的磁饱和强度;
图14为对比例1中制得的荧光磁粉的粒径分布图;
图15为对比例1中制得的荧光磁粉的荧光照片和荧光强度;
图16为对比例1中制得的荧光磁粉的磁饱和强度。
具体实施方式
实施例1
本实施例提供一种小分子荧光铁磁体,制备过程如下:
铜卟啉铁磁体的合成:
将羧基的卟啉与醋酸铜按摩尔比1:1比例在研钵中研磨,研磨时加少许乙醇,研磨时样品逐渐变为红色,研磨30分钟后用少量的乙醇洗涤,后烘干得到红色固体即得铜卟啉铁磁体。
荧光铜卟啉铁磁体的制备:将上述制备的铜卟啉铁磁体溶在水中与含氨基荧光素,在EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)催化下荧光素中的胺基与铜卟啉铁磁体中的羧基反应,其中,铜卟啉铁磁体、含氨基荧光素和EDC的摩尔比为1:5:0.01,可将荧光素接枝至铜卟啉铁磁体上,即制备荧光铜卟啉铁磁体(反应过程见图2)。
实施例2
本实施例提供一种叠氮配位聚合物荧光铁磁体,制备过程如下:
首先将羧基吡啶与氨基荧光素溶解于水中,在EDC的催化作用下反应24小时,制备带荧光分子的吡啶,其中,羧基吡啶、氨基荧光和EDC的摩尔比为1:6:0.015;
然后,室温下将荧光吡啶(0.2mmoL)溶于10mL甲醇中,搅拌下缓慢滴加Mn(OAc)2·4H2O(0.2mmoL)的水溶液10mL,然后缓慢加入10mLNaN3(0.4mmoL)水溶液,继续搅拌30分钟,室温下处理,得到浅黄色单晶,过滤后分别用水、甲醇与***抽滤洗涤,真空干燥,即制备得到叠氮配位聚合物荧光铁磁体{Mn(Py-CONHFD)2(N3)2}n,反应过程见图3。
实施例3
本实施例提供一种水杨酸双噻唑聚合物荧光铁磁体,制备过程如下:
双噻唑水杨酸缩聚物(SDP)的合成:
将水杨酸、2,2’一二氨基一4,4’-联噻唑(DABT)与HCl按摩尔比1:1:2混合加热到100℃,反应3小时后过滤出沉淀,用水、甲醇与***连续洗涤,得到双噻唑水杨酸缩聚物(SDP)。
水杨酸双噻唑聚合物荧光铁磁体的合成:
将得到的SDP与异硫氰酸荧光素(FITC)或胺基荧光染料(FD-NH2)溶在15mLDMSO(二甲基亚砜)溶液中,其中,荧光染料与DABT的摩尔比为1.5:1,通氮气反应24小时即制备FITC-SDP(或FD-SDP),再在该反应体系中加FeSO4,其中,加入的FeSO4与DABT的摩尔比为1:1,继续通氮反应5天后,烧瓶中产生红褐色沉淀,过滤后用水、甲醇与***连续洗涤,即制备FITC-SDP-Fe2+(或FD-SDP-Fe2+);将FITC-SDP-Fe2+(或FD-SDP-Fe2+)与K3[Fe(CN)6]溶解在DMSO中,通氮在室温下反应3天,产生蓝绿色沉淀,过滤后用水、甲醇与***连续洗涤抽滤,最后在50℃真空干燥24小时即制备水杨酸双噻唑聚合物荧光铁磁体FITC-SDP-Prussianblue(或FD-SDP-Prussian blue),反应过程见图4。
实施例4
本实施例采用实施例1中制备的荧光铜卟啉铁磁体包覆磁粉制备荧光磁粉,磁粉选用市场购买羰基铁粉,磁饱和强度为200emu/g,其平均粒径为2.5um,具体制备过程如下:
S1、称取磁粉86g、环氧基硅烷偶联剂5g,将其加入至搅拌容器中,在搅拌反应下发生偶联反应,得到中间体A;
S2、将粘接剂(环氧树脂乳液)3g和固化剂(聚酰胺固化剂)0.1g加入至另一搅拌容器中,搅拌混合均匀,得到粘接固化剂;
S3、将步骤S1中得到的中间体A、步骤S2中得到的粘接固化剂和荧光铁磁体20g依次加入至搅拌容器中,加热至100-160℃,搅拌反应20-60min;
S4、将步骤S3中得到的反应产物进行烘干、破碎、过筛处理,即得高磁饱和强度荧光磁粉。
使用马尔文粒径分析仪测试其平均粒径约为4.7um(见图5),使用荧光光谱仪测试荧光亮度与荧光显微镜拍摄的照片均显示该荧光磁粉荧光亮度较高(见图6),而且该小分子荧光铁磁体(荧光铜卟啉铁磁体)对磁粉的磁导率影响较小,荧光磁粉的磁饱和强度较高达到100emu/g(见图7)。
实施例5
本实施例中采用实施例2中制备的叠氮配位聚合物荧光铁磁体包覆磁粉制备荧光磁粉,磁粉的选用与实施例4相同,具体制备过程如下:
S1、称取磁粉80g、环氧基硅烷偶联剂10g,将其加入至搅拌容器中,在搅拌反应下发生偶联反应,得到中间体A;
S2、将粘接剂(环氧树脂乳液)5g和固化剂(聚酰胺固化剂)1g加入至另一搅拌容器中,搅拌混合均匀,得到粘接固化剂;
S3、将步骤S1中得到的中间体A、步骤S2中得到的粘接固化剂和荧光铁磁体25g依次加入至搅拌容器中,加热至100-160℃,搅拌反应20-60min;
S4、将步骤S3中得到的反应产物进行烘干、破碎、过筛处理,即得高磁饱和强度荧光磁粉。
使用马尔文粒径分析仪测试其平均粒径约为7um(见图8),使用荧光光谱仪测试荧光亮度与荧光显微镜拍摄的照片均显示该荧光磁粉荧光亮度较高(见图9),且由于荧光铁磁体的磁导率较高制备的荧光磁粉的磁饱和强度达到60emu/g(见图10)。
实施例6
本实施例中采用实施例3中制备的水杨酸双噻唑聚合物荧光铁磁体包覆磁粉制备荧光磁粉,磁粉的选用与实施例4相同,具体制备过程如下:
S1、称取磁粉90g、环氧基硅烷偶联剂7g,将其加入至搅拌容器中,在搅拌反应下发生偶联反应,得到中间体A;
S2、将粘接剂(环氧树脂乳液)2g和固化剂(聚酰胺固化剂)0.6g加入至另一搅拌容器中,搅拌混合均匀,得到粘接固化剂;
S3、将步骤S1中得到的中间体A、步骤S2中得到的粘接固化剂和荧光铁磁体30g依次加入至搅拌容器中,加热至100-160℃,搅拌反应20-60min;
S4、将步骤S3中得到的反应产物进行烘干、破碎、过筛处理,即得高磁饱和强度荧光磁粉。
使用马尔文粒径分析仪测试其平均粒径约为6.5um(见图11),荧光光谱仪测试荧光亮度与荧光显微镜拍摄的照片均显示该荧光磁粉荧光亮度较高(见图12),且水杨酸双噻唑聚合物荧光铁磁体对磁粉的磁导率影响较小,制备的荧光磁粉的磁饱和强度较高达到100emu/g(见图13)。
对比例1
采用从市场上购买的磁导率较低的荧光粉(JK-荧光系列)包覆磁粉制备荧光磁粉,磁粉的选用与实施例4相同,具体制备过程与实施例4相同,使用马尔文粒径分析仪测试荧光磁粉平均粒径约为6um(见图14),荧光光谱仪测试荧光亮度与荧光显微镜拍摄的照片均显示该荧光磁粉荧光亮度较高(见图15),但由于荧光粉的磁导率较低使得制备的荧光磁粉的磁饱和强度明显下降,只有30emu/g(见图16),实施例4至6中制备得到的荧光磁粉的磁饱和强度明显高于对比例1制备的荧光磁粉的磁饱和强度。
实施例7
本实施例提供一种高灵敏度复合荧光磁粉,其制备过程如下:
称取实施例4中制得的高磁饱和强度的荧光磁粉92g、消泡剂(固体有机硅消泡剂)14g、分散剂(十二烷基苯磺酸钠)10g和防锈剂(三聚磷酸钠)50g,将其混合均匀,既得。
实施例8
本实施例提供一种高灵敏度复合荧光磁粉,其制备过程如下:
称取实施例5中制得的高磁饱和强度的荧光磁粉80g、消泡剂(固体有机硅消泡剂)20g、分散剂(十二烷基苯磺酸钠)20g和防锈剂(三聚磷酸钠)70g,将其混合均匀,既得。
实施例9
本实施例提供一种高灵敏度复合荧光磁粉,其制备过程如下:
称取实施例6中制得的高磁饱和强度的荧光磁粉100g、消泡剂(固体有机硅消泡剂)10g、分散剂(十二烷基苯磺酸钠)14g和防锈剂(三聚磷酸钠)68g,将其混合均匀,既得。
对比例2
将对比例1中的荧光磁粉、消泡剂(固体有机硅消泡剂)14g、分散剂(十二烷基苯磺酸钠)10g和防锈剂(三聚磷酸钠)50g,将其混合均匀,得到复合荧光磁粉。
将对比例2制得的复合荧光磁粉、实施例7至实施例9中制得的高灵敏度复合荧光磁粉分别称取5g,并分别加入至1L水中,低速搅拌5min,得到四种磁悬液(对比样品、样品1、样品2、样品3)。按照标准GB/T 15822.2-2005/ISO 9934-2:2002和标准JB/T 6063-2006分别对对比样品、样品1、样品2、样品3的各项性能进行测试,测试结果如表1所示。
表1
通过表1中测试结果,本发明中实施例4-6中制得的荧光磁粉配置成复合荧光磁粉使用时,与传统荧光磁粉相比,在保持较细的颗粒度与较好的耐剥离性能的同时,具备更高的灵敏度,其中A1试片15/100显示更清晰,能清晰显示磁探伤工件上的细裂纹与小裂纹,有效的降低了探伤漏检率,这是由于金属荧光铁磁体包覆磁粉的磁饱和强度较高所致。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (8)

1.一种荧光铁磁体,其特征在于,所述荧光铁磁体由带有活性官能团的荧光素、有机材料和磁性金属离子反应制得;
其中,所述有机材料上具有烷基多胺或烷基羧酸活性官能团,所述有机材料包括小分子有机材料和大分子有机材料,所述小分子有机材料为酞菁及其衍生物、卟啉及其衍生物,所述大分子有机材料为叠氮配位聚合物、双噻唑芳杂环聚合物;
所述荧光素上的活性官能团为异硫氰酸酯、羧基或胺基;
所述磁性金属离子为Mn2+、Ni2+、Cu2+、Fe2+、Fe3+
2.根据权利要求1所述的荧光铁磁体,其特征在于,所述有机材料为小分子有机材料时,先将有机材料与磁性金属离子螯合反应得到金属有机铁磁体,再将带有活性官能团的荧光素接枝至金属有机铁磁体上,得到荧光铁磁体。
3.根据权利要求1所述的荧光铁磁体,其特征在于,所述有机材料为大分子有机材料时,先将带有活性官能团的荧光素接枝至有机材料上,然后再与磁性金属离子螯合反应,得到荧光铁磁体。
4.一种高磁饱和强度的荧光磁粉,其特征在于,包括如权利要求1至3中任一项所述的荧光铁磁体20-30份、磁粉80-90份、偶联剂5-10份、粘接剂2-5份和固化剂0.1-1份。
5.根据权利要求4所述的高磁饱和强度的荧光磁粉,其特征在于,所述偶联剂为具有环氧官能团的偶联剂。
6.根据权利要求4所述的高磁饱和强度的荧光磁粉,其特征在于,所述粘接剂为环氧树脂乳液,所述固化剂为聚酰胺固化剂。
7.一种如权利要求4所述的高磁饱和强度的荧光磁粉的制备方法,其特征在于,包括以下步骤:
S1、称取配方量的磁粉、偶联剂,将其加入至搅拌容器中,在搅拌反应下发生偶联反应,得到中间体A;
S2、将粘接剂和固化剂加入至另一搅拌容器中,搅拌混合均匀,得到粘接固化剂;
S3、将步骤S1中得到的中间体A、步骤S2中得到的粘接固化剂和荧光铁磁体依次加入至搅拌容器中,加热至100-160℃,搅拌反应20-60min;
S4、将步骤S3中得到的反应产物进行烘干、破碎、过筛处理,即得高磁饱和强度荧光磁粉。
8.一种高灵敏度复合荧光磁粉,其特征在于,包括如权利要求4所述的高磁饱和强度的荧光磁粉80-100份、消泡剂10-20份、分散剂10-20份和防锈剂50-70份。
CN202011104531.7A 2020-10-15 2020-10-15 一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉 Active CN114369452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011104531.7A CN114369452B (zh) 2020-10-15 2020-10-15 一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011104531.7A CN114369452B (zh) 2020-10-15 2020-10-15 一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉

Publications (2)

Publication Number Publication Date
CN114369452A CN114369452A (zh) 2022-04-19
CN114369452B true CN114369452B (zh) 2023-10-20

Family

ID=81137933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011104531.7A Active CN114369452B (zh) 2020-10-15 2020-10-15 一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉

Country Status (1)

Country Link
CN (1) CN114369452B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312711A (en) * 1990-07-19 1994-05-17 Agfa-Gevaert, N.V. Dry electrostatographic developer composition
JP2002039999A (ja) * 2000-07-27 2002-02-06 Marktec Corp 磁粉探傷試験用蛍光磁粉及びその製造法
CN1523076A (zh) * 2003-09-11 2004-08-25 复旦大学 一种具有核壳结构的磁性荧光双功能微球及其制备方法
WO2006037837A1 (en) * 2004-10-01 2006-04-13 Turun Yliopisto Dye particle and its preparation and use
CN102933591A (zh) * 2010-04-30 2013-02-13 联邦科学与工业研究组织 用于合成金属有机框架的结晶辅助剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312711A (en) * 1990-07-19 1994-05-17 Agfa-Gevaert, N.V. Dry electrostatographic developer composition
JP2002039999A (ja) * 2000-07-27 2002-02-06 Marktec Corp 磁粉探傷試験用蛍光磁粉及びその製造法
CN1523076A (zh) * 2003-09-11 2004-08-25 复旦大学 一种具有核壳结构的磁性荧光双功能微球及其制备方法
WO2006037837A1 (en) * 2004-10-01 2006-04-13 Turun Yliopisto Dye particle and its preparation and use
CN102933591A (zh) * 2010-04-30 2013-02-13 联邦科学与工业研究组织 用于合成金属有机框架的结晶辅助剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
单分散荧光磁性多功能微球的制备与表征研究;闫翠勤;;化工新型材料(06);249-251 *
磁性荧光粉的制备方法及其性能和应用的研究;王洪滨;发光学报(01);74-83 *

Also Published As

Publication number Publication date
CN114369452A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
Li et al. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals
Rajabzadeh et al. Generation of Cu nanoparticles on novel designed Fe 3 O 4@ SiO 2/EP. EN. EG as reusable nanocatalyst for the reduction of nitro compounds
Chen et al. Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA
Sun et al. A multifunctional magnetic core–shell fibrous silica sensing probe for highly sensitive detection and removal of Zn 2+ from aqueous solution
Hofmann et al. Highly monodisperse water-dispersable iron oxide nanoparticles for biomedical applications
JP4580359B2 (ja) 磁性ナノ粒子複合体
CN110407717B (zh) 一种对-二乙胺基水杨醛修饰的芴荧光探针及其制备方法
Niamsa et al. Hybrid organic–inorganic nanomaterial sensors for selective detection of Au 3+ using rhodamine-based modified polyacrylic acid (PAA)-coated FeNPs
Feng et al. CuFe 2 O 4@ PDA magnetic nanomaterials with a core–shell structure: synthesis and catalytic application in the degradation of methylene blue in water
Canakci et al. Synthesis, structural characterization of Co (II), Ni (II) and Cu (II) complexes of azo dye ligands derived from dihydroxy naphthalene
Hassanpoor et al. Constructing two 1D coordination polymers and one mononuclear complex by pyrazine-and pyridinedicarboxylic acids under mild and sonochemical conditions: magnetic and CSD studies
Beheshti et al. Selective high adsorption capacity for Congo red dye of a new 3D supramolecular complex and its magnetic hybrid
Rahmatpour et al. Catalytic performance of copper (II) Schiff base complex immobilized on Fe3O4 nanoparticles in synthesis of 2-amino-4H-benzo [h] chromenes and reduction of 4-nitrophenol
CN103241776B (zh) 四氧化三铁纳米复合颗粒及其制备方法和用途
Murugan et al. Efficient amphiphilic poly (propyleneimine) dendrimer stabilized gold nanoparticle catalysts for aqueous phase reduction of nitrobenzene
CN114369452B (zh) 一种荧光铁磁体、高磁饱和强度的荧光磁粉及高灵敏度复合荧光磁粉
Nasr-Esfahani et al. A highly efficient magnetic solid acid nanocatalyst for the synthesis of new bulky heterocyclic compounds
Pourjavadi et al. Immobilization of Au nanoparticles on poly (glycidyl methacrylate)‐functionalized magnetic nanoparticles for enhanced catalytic application in the reduction of nitroarenes and Suzuki reaction
Hajipour et al. Pd/Cu-free Heck and C–N coupling reactions using two modified magnetic chitosan cobalt catalysts: Efficient, inexpensive and green heterogeneous catalysts
Bagherzadeh et al. Sustainable and recyclable magnetic nanocatalyst of 1, 10-phenanthroline Pd (0) complex in green synthesis of biaryls and tetrazoles using arylboronic acids as versatile substrates
Sharma et al. AC 3-symmetrical tripodal acylhydrazone organogelator for the selective recognition of cyanide ions in the gel and solution phases: Practical applications in food samples
Kaur et al. The solvent-free one-pot multicomponent tandem polymerization of 3, 4-dihydropyrimidin-2 (1 H)-ones (DHPMs) catalyzed by ionic-liquid@ Fe 3 O 4 NPs: The development of polyamide gels
Zhang et al. Multi-step tandem functionalization assembly of MOFs-based hybrid polymeric films for color tuning luminescence and responsive sensing on organic vapors
Khodaei et al. Synthesis and characterization of Co 3 O 4 immobilized on dipeptide-functionalized silica-coated magnetite nanoparticles as a catalyst for the selective aerobic oxidation of alcohols
Zhu et al. Bis-Schiff base functionalized Fe3O4 nanoparticles for the sensitive fluorescence sensation of copper ions in aqueous medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant