CN114308160B - 一种数字pcr微腔芯片及制备方法 - Google Patents

一种数字pcr微腔芯片及制备方法 Download PDF

Info

Publication number
CN114308160B
CN114308160B CN202111645217.4A CN202111645217A CN114308160B CN 114308160 B CN114308160 B CN 114308160B CN 202111645217 A CN202111645217 A CN 202111645217A CN 114308160 B CN114308160 B CN 114308160B
Authority
CN
China
Prior art keywords
microcavity
substrate
digital pcr
bonding layer
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111645217.4A
Other languages
English (en)
Other versions
CN114308160A (zh
Inventor
殷敏
李睿文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenzhun Bio Technology Co ltd
Original Assignee
Zhenzhun Bio Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenzhun Bio Technology Co ltd filed Critical Zhenzhun Bio Technology Co ltd
Priority to CN202111645217.4A priority Critical patent/CN114308160B/zh
Publication of CN114308160A publication Critical patent/CN114308160A/zh
Application granted granted Critical
Publication of CN114308160B publication Critical patent/CN114308160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Micromachines (AREA)

Abstract

本申请公开了一种数字PCR微腔芯片及制备方法,该数字PCR微腔芯片包括:基底、第一键合层以及第二键合层,基底的正面设置有多个微腔结构,基底的背面设有与微腔结构连通的流道,第一键合层与基底的正面键合,第二键合层与基底的背面键合。该制备方法,包括如下步骤:在基底的正面进行微腔结构图形光刻;刻蚀出微腔结构;在基底的背面进行流道图形光刻;刻蚀出流道;在基底的正面和背面分别键合第一键合层和第二键合层。本申请通过在基底的双面分别设置微腔结构以及流道,保留了微腔芯片式的优势,液滴分样方便,便于实现高通量自动化数字PCR***开发;本申请提出的双面刻蚀的工艺既可保证流道和微腔结构的制备精度,而且制备方法简单,容易实现。

Description

一种数字PCR微腔芯片及制备方法
技术领域
本申请属于数字PCR技术领域,具体涉及一种数字PCR微腔芯片及制备方法。
背景技术
数字PCR(Polymerase Chain Reaction,聚合酶链式反应)是最新一代的微量核酸绝对定量工具,其原理是将反应液平均分散至皮升至纳升的微量反应体系中,在PCR循环反应之后,根据发出荧光信号的微量反应体系所占有的比例来判定原始DNA浓度,实现核酸分子绝对定量,该技术灵敏度高、特异性强、定量准确,可广泛应用于临床诊断、转基因成分定量、单细胞基因表达、环境微生物检测和下一代测序等方面。
提供可靠、均一、高质量、高密度的反应单元是dPCR(数字PCR)的核心。当前液滴分割的技术路线按照液滴分割方法和荧光检测方法分类,主要包括微滴式,微滴芯片式和微腔芯片式。其中,微腔芯片式,通过物理分割的方式预先分割好不同的微小反应单元,然后采用拍照的方式进行荧光检测,固相分割的方法,可以保证体系大小的稳定性、均一性不会随着反应体系的变化而变化。微腔芯片式对试剂的兼容性更高,便于体外诊断企业在***上开发自己的应用试剂盒,打造完全开放的数字PCR平台。在微腔芯片式技术路线中,对微腔构筑、表面处理以及液体进入微腔结构的方式,这两大核心决定了样本能否高效进行平均分割以及PCR反应能否顺利进行。
发明内容
针对上述现有技术的缺点或不足,本申请要解决的技术问题是提供一种数字PCR微腔芯片及制备方法。
本申请通过以下技术方案来实现:
本申请提出了一种数字PCR微腔芯片,包括:基底、第一键合层以及第二键合层,所述基底的正面设置有多个微腔结构,所述基底的背面设有与所述微腔结构连通的流道,其中,所述第一键合层与所述基底的正面键合,所述第二键合层与所述基底的背面键合。
可选地,上述的数字PCR微腔芯片,其中,所述流道的设置深度小于所述微腔结构的设置深度。
可选地,上述的数字PCR微腔芯片,其中,所述流道的设置深度与所述微腔结构的设置深度之和等于所述基底的厚度。
可选地,上述的数字PCR微腔芯片,其中,所述第一键合层采用透明材料制成。
可选地,上述的数字PCR微腔芯片,其中,所述流道包括主流道以及与所述主流道连通的多个分支流道,所述分支流道与其对应设置的所述微腔结构连通设置。
可选地,上述的数字PCR微腔芯片,其中,所述主流道的宽度大于所述分支流道的宽度。
可选地,上述的数字PCR微腔芯片,其中,所述微腔结构通过刻蚀方式刻蚀于所述基底的正面。
可选地,上述的数字PCR微腔芯片,其中,所述流道通过刻蚀方式刻蚀于所述基底的背面。
可选地,上述的数字PCR微腔芯片,其中,所述基底采用硅基底。
本申请另一方面还提出了一种所述的数字PCR微腔芯片的制备方法,所述制备方法包括如下步骤:
在基底的正面进行微腔结构图形光刻;
刻蚀出所述微腔结构;
在基底的背面进行流道图形光刻;
刻蚀出所述流道;
在所述基底的正面和背面分别键合所述第一键合层和所述第二键合层。
与现有技术相比,本申请具有如下技术效果:
本申请通过在基底的双面分别设置微腔结构以及流道,保留了微腔芯片式的优势,液滴分样方便,便于实现高通量自动化数字PCR***开发;并且本申请提出的双面刻蚀的工艺既可保证流道和微腔结构的制备精度,而且制备方法简单,容易实现。
本申请中,液体在一定的外部压力下经流道流入到微腔结构中,微腔结构内部经过表面处理,可以保证PCR反应高效进行。
本申请涉及基底双面刻蚀,首先在正面刻蚀出微腔结构,然后在背面刻蚀出流道,或者先在正面刻蚀出流道,然后在背面刻蚀出微腔结构,流道将与微腔结构相交,完成结构制备后,将该数字PCR微腔芯片进行封装;该数字PCR微腔芯片,在使用时,将反应液加入到芯片入口处,入口处将施加合适的外力,液体将均匀流入各微腔结构中,完成液体分割。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1:本申请一实施例数字PCR微腔芯片的封装结构图一;
图2:本申请一实施例数字PCR微腔芯片的封装结构图二;
图3:本申请一实施例中微腔结构的示意图;
图4:本申请一实施例中流道的结构示意图;
图5:本申请一实施例中基底的正面俯视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1和图2所示,在本申请的其中一个实施例中,一种数字PCR微腔芯片,包括:基底1、第一键合层5以及第二键合层6,所述基底1的正面设置有多个微腔结构2,所述基底1的背面设有与所述微腔结构2连通的流道,其中,所述第一键合层5与所述基底1的正面键合,所述第二键合层6与所述基底1的背面键合。本实施例通过在基底1的双面分别设置微腔结构2以及流道,保留了微腔芯片式的优势,液滴分样方便,便于实现高通量自动化数字PCR***开发。
在本实施例中,所述基底1优选地采用硅基底1。
进一步地,所述微腔结构2通过刻蚀方式刻蚀于所述基底1的正面,所述流道通过刻蚀方式刻蚀于所述基底1的背面。本实施例利用半导体刻蚀的方法可以方便地在基底1上形成体积一致的微腔结构2,这一微腔结构2可作为数字PCR的反应腔室。同时,可在每个微腔结构2旁可刻蚀出一定深度的流道,PCR反应液可以通过外力经过流道引流到微腔结构2中,可以实现数字PCR反应液的均一分样。
其中,在本实施例中,所述流道的设置深度小于所述微腔结构2的设置深度,上述结构可增加所述微腔结构2的毛细力,使得PCR反应液更加容易地被导流至所述微腔结构2中。
如,在一实施例中,所述基底1的设置厚度为300μm,所述流道的设置深度可以是100μm,所述微腔结构2的设置深度为200μm。
其中,在本实施例中,优选地,所述流道的设置深度与所述微腔结构2的设置深度之和等于所述基底1的厚度,这样可以保证所述流道与所述微腔结构2相连通,可以将PCR反应液导流至所述微腔结构2中。
如图4和图5所示,所述流道包括主流道3以及与所述主流道3连通的多个分支流道4,所述分支流道4与其对应设置的所述微腔结构2连通设置。在本实施例中,所述分支流道4的设置数量并不做限定,所述分支流道4的设置数量与所述微腔结构2的设置数量相同。其中,所述微腔结构2的布设方式可以按照矩形阵列的方式布设,如图3所示,该布设方式仅为举例说明,并不对本申请的保护范围进行限定。
进一步地,所述主流道3的宽度大于所述分支流道4的宽度。如,在一实施例中,所述主流道3的刻蚀宽度可以是100μm,所述分支流道4的刻蚀宽度可以是20μm。
其中,所述第一键合层5采用透明材料制成,如采用透明玻璃制成。所述第一键合层5的设置,在保证PCR反应后,对所述微腔结构2的荧光观测顺利进行。
本实施例对所述第二键合层6的制作材料并不做限定,以所述第二键合层6能与所述基底1发生键合为宜,其中,所述第二键合层6可采用,如玻璃、塑料等等。
本实施例另一方面还提出了一种所述的数字PCR微腔芯片的制备方法,所述制备方法包括如下步骤:
在基底1的正面进行微腔结构2图形光刻;
刻蚀出所述微腔结构2;
在基底1的背面进行流道图形光刻;
刻蚀出所述流道;
在所述基底1的正面和背面分别键合所述第一键合层5和所述第二键合层6。
在半导体刻蚀过程中,大致步骤有:涂光刻胶-光刻-HM刻蚀-去胶-清洗等步骤;在本数字PCR微腔芯片中,如果要构建不同深度的流道和微腔结构2,需要分两步进行。先进行沟道刻蚀,刻蚀后于沟道图形上通过再次涂胶-光刻-刻蚀等步骤进行微腔结构2的二次刻蚀;或者先进行微腔结构2的刻蚀,获得大密度的微腔结构2后,再于微腔结构2的图形上经过再次涂胶-光刻-刻蚀等步骤进行流道的二次刻蚀。但是这种方法存在一些弊端:1)二次刻蚀的图形需要与第一次刻蚀的图形进行严格的对准;2)二次刻蚀时,已经有的图形(微腔结构2或流道)会影响光刻胶的旋涂均一性,影响二次刻蚀图形的精度和均一性;3)二次刻蚀时,仍需要旋涂光刻胶,光刻胶将进入流道或者微腔结构2中,给后续清洗增加了麻烦。本实施例采用双面刻蚀的方法以避免上述技术缺陷。具体地,首先通过涂胶-光刻-刻蚀等步骤在基底1上刻蚀出高密度的微腔结构2,为避免现有图形对后续二次刻蚀的影响;在背面进行流道的刻蚀,通过涂胶-光刻-刻蚀等步骤实现流道的构建,保证流道的深度与微腔结构2的深度之和等于基底1的厚度。这样即可保证流道可与微腔结构2相连,可将反应液导流至微腔结构2中。实现流道和微腔结构2的刻蚀之后,将用透明塑料或玻璃对硅片进行双面封装,保证PCR反应后,对微腔结构2的荧光观测可顺利进行。
其中,对于双面刻蚀的先后顺序本实施例并不做限定,可以先进行正面刻蚀,也可以先进行背面刻蚀。以下通过两个实施例对上述制备方法进行详细描述。
实施例1
本实施例使用双面刻蚀工艺制备数字PCR微腔芯片。具体地,包括如下步骤:
步骤一,取300μm厚的硅片晶圆基底1,经过IPA等溶剂清洗;
步骤二,在所述基底1的正面进行微腔结构2的图形光刻,经过涂胶、曝光、显影等步骤;
步骤三,深硅刻蚀:刻蚀出如图1和图3所示的微腔结构2,深度约200μm,微腔结构2的直径约100μm;
步骤四,通过干法、湿法方式清洗去胶;
步骤五,在所述基底1的背面进行流道图形光刻,经过涂胶、曝光、显影等步骤;
步骤六,刻蚀出如图2和图5所示的流道,深度约100μm,可与微腔结构2相交,主流道3的宽度约100μm,支流道宽度约20μm;
步骤七,双面刻蚀完成后,将芯片进行亲水图层修饰;
步骤八,采用透明玻璃和玻璃与基底1进行键合。
步骤九,键合后,通过流道面将数字PCR反应液通过外力输送至流道内及微腔结构2内;
步骤十,经过PCR扩增后,光学***将通过微腔面获取荧光图像,进行后续分析。
实施例2
本实施例使用双面刻蚀工艺制备数字PCR微腔芯片。具体地,包括如下步骤:
步骤一,取300μm厚的硅片晶圆基底1,经过IPA等溶剂清洗;
步骤二,在所述基底1的背面进行流道图形光刻,经过涂胶、曝光、显影等步骤;
步骤三,刻蚀出如图2和图5所示的流道,深度约100μm,主流道32宽度约100μm,支流道宽度约20μm;
步骤四,通过干法、湿法方式清洗去胶;
步骤五,在所述基底1的正面进行微腔结构2的图形光刻,经过涂胶、曝光、显影等步骤;
步骤六,深硅刻蚀:刻蚀出如图1和图3所示的微腔结构2,与流道相交,深度约200μm,微腔结构2的直径约100μm;
步骤七,双面刻蚀完成后,将芯片进行亲水图层修饰;
步骤八,采用透明玻璃和玻璃与基底1进行键合。
步骤九,键合后,通过流道面将数字PCR反应液通过外力输送至流道内及微腔结构2内;
步骤十,经过PCR扩增后,光学***将通过微腔面获取荧光图像,进行后续分析。
本申请采用双面刻蚀的方法,在所述基底1的正面和背面分别刻蚀出微腔结构2以及流道,并将该数字PCR微腔芯片进行封装;该数字PCR微腔芯片,在使用时,将反应液加入到芯片入口处,入口处将施加合适的外力,液体将均匀流入各微腔结构2中,即可完成液体分割。保证PCR反应后,对微腔结构2的荧光观测可顺利进行。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
以上实施例仅用以说明本申请的技术方案而非限定,参照较佳实施例对本申请进行了详细说明。本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围内。

Claims (9)

1.一种数字PCR微腔芯片,其特征在于,包括:基底、第一键合层以及第二键合层,所述基底的正面设置有多个微腔结构,所述基底的背面设有与所述微腔结构连通的流道,其中,所述第一键合层与所述基底的正面键合,所述第二键合层与所述基底的背面键合;所述流道的设置深度小于所述微腔结构的设置深度。
2.根据权利要求1所述的数字PCR微腔芯片,其特征在于,所述流道的设置深度与所述微腔结构的设置深度之和等于所述基底的厚度。
3.根据权利要求1所述的数字PCR微腔芯片,其特征在于,所述第一键合层采用透明材料制成。
4.根据权利要求1所述的数字PCR微腔芯片,其特征在于,所述流道包括主流道以及与所述主流道连通的多个分支流道,所述分支流道与其对应设置的所述微腔结构连通设置。
5.根据权利要求4所述的数字PCR微腔芯片,其特征在于,所述主流道的宽度大于所述分支流道的宽度。
6.根据权利要求1至5任一项所述的数字PCR微腔芯片,其特征在于,所述微腔结构通过刻蚀方式刻蚀于所述基底的正面。
7.根据权利要求1至5任一项所述的数字PCR微腔芯片,其特征在于,所述流道通过刻蚀方式刻蚀于所述基底的背面。
8.根据权利要求1至5任一项所述的数字PCR微腔芯片,其特征在于,所述基底采用硅基底。
9.一种如权利要求1至8任一项所述的数字PCR微腔芯片的制备方法,其特征在于,所述制备方法包括如下步骤:
在基底的正面进行微腔结构图形光刻;
刻蚀出所述微腔结构;
在基底的背面进行流道图形光刻;
刻蚀出所述流道;
在所述基底的正面和背面分别键合所述第一键合层和所述第二键合层。
CN202111645217.4A 2021-12-29 2021-12-29 一种数字pcr微腔芯片及制备方法 Active CN114308160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111645217.4A CN114308160B (zh) 2021-12-29 2021-12-29 一种数字pcr微腔芯片及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111645217.4A CN114308160B (zh) 2021-12-29 2021-12-29 一种数字pcr微腔芯片及制备方法

Publications (2)

Publication Number Publication Date
CN114308160A CN114308160A (zh) 2022-04-12
CN114308160B true CN114308160B (zh) 2023-06-20

Family

ID=81017764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111645217.4A Active CN114308160B (zh) 2021-12-29 2021-12-29 一种数字pcr微腔芯片及制备方法

Country Status (1)

Country Link
CN (1) CN114308160B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977439A4 (en) * 2006-01-23 2010-04-28 Univ Illinois POLYMER DEVICES WITH MICROCAVES AND MICRO CHANNELS AND THE METHOD OF MANUFACTURING THEREOF
CN105854717B (zh) * 2016-05-13 2018-04-03 吉林大学 一种基于压电驱动集成式微混合器
CN107096580A (zh) * 2017-06-09 2017-08-29 北京百康芯生物科技有限公司 一种具有旋转阀结构的微流控芯片
CN109207360A (zh) * 2018-09-06 2019-01-15 段学欣 一种数字pcr芯片及其使用方法以及基于该芯片的试剂分割***
NL2025320B1 (en) * 2020-04-09 2021-10-25 Univ Twente Fluidic device, cell culturing system and method of testing a compound
CN212533007U (zh) * 2020-06-17 2021-02-12 山东大学 一种用于外泌体裂解和检测的微流控芯片

Also Published As

Publication number Publication date
CN114308160A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
JP4797196B2 (ja) マイクロチップ
CN103998394B (zh) 细胞捕获***和使用方法
US9885059B2 (en) Ultrahigh throughput microinjection device
WO2017028759A1 (zh) 芯片的制备方法、芯片及应用
US20190203289A1 (en) Gene sequencing chip and sequencing method thereof, and gene sequencing device
JP2001520377A (ja) 積層状マイクロ構造式装置および積層状マイクロ構造式装置製造方法
CN107828653B (zh) 开放式单细胞研究用芯片及其制备方法
EP3590603B1 (en) Interposer with first and second adhesive layers
Cai et al. On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood
US20190388888A1 (en) Chip and application thereof
KR20210158299A (ko) 활성 표면을 갖는 센서
TW200909794A (en) Integrated nucleic acid analysis
WO2021185091A1 (zh) 检测芯片及其修饰方法
CN112740016A (zh) 流动池及与其相关的方法
CN107209183A (zh) 免疫印迹***和方法
CN109937092B (zh) 具有微珠集成***的微流体芯片和芯片中集成受体的方法
US20180299360A1 (en) Methods for selectively analyzing biological samples
Vaidyanathan et al. Microfluidics for cell sorting and single cell analysis from whole blood
CN114308160B (zh) 一种数字pcr微腔芯片及制备方法
CN109844528A (zh) 用于纳米孔测序的集成电路和流动池的多芯片包装
WO2021185087A1 (zh) 检测芯片及其修饰方法
CN109971609B (zh) 一种数字pcr芯片及其制备方法
JP2002055098A (ja) 液体試料分析素子及び液体試料分析素子の製造方法
CN112113906A (zh) 一种样本检测装置及其制造方法
CN204874530U (zh) 一种单分子测序芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant