CN114252602A - 微流控芯片、基于微流控芯片的检测***及细菌的检测方法 - Google Patents

微流控芯片、基于微流控芯片的检测***及细菌的检测方法 Download PDF

Info

Publication number
CN114252602A
CN114252602A CN202111582058.8A CN202111582058A CN114252602A CN 114252602 A CN114252602 A CN 114252602A CN 202111582058 A CN202111582058 A CN 202111582058A CN 114252602 A CN114252602 A CN 114252602A
Authority
CN
China
Prior art keywords
hairpin
micro
reaction
oligonucleotide
pathogenic bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111582058.8A
Other languages
English (en)
Other versions
CN114252602B (zh
Inventor
蒋宇扬
高丹
孙冬丽
樊婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen International Graduate School of Tsinghua University
Original Assignee
Shenzhen International Graduate School of Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen International Graduate School of Tsinghua University filed Critical Shenzhen International Graduate School of Tsinghua University
Priority to CN202111582058.8A priority Critical patent/CN114252602B/zh
Priority to PCT/CN2022/080095 priority patent/WO2023115717A1/zh
Publication of CN114252602A publication Critical patent/CN114252602A/zh
Application granted granted Critical
Publication of CN114252602B publication Critical patent/CN114252602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开了微流控芯片、基于微流控芯片的检测***及细菌的检测方法,该微流控芯片由键合在一起的基片与盖片组成,盖片上设有混合微通道和反应微通道,混合微通道和所述反应微通道相互连接,反应微通道内具有微柱阵列,进一步地,微柱上修饰有发夹状寡核苷酸1。本发明检测方法是通过致病性细菌竞争结合引发两条发夹状寡核苷酸(H1,H2)发生催化发夹自组装反应,该反应不仅对致病性细菌的浓度进行放大,还将辣根过氧化物酶固定在微柱阵列上,进而催化鲁米诺和过氧化氢发生化学发光反应,通过化学反应信号强度来对致病性细菌进行定量。本发明具有良好的特异性,低的检测限和宽的线性范围,为定量检测食源性致病菌提供了较为准确的数据。

Description

微流控芯片、基于微流控芯片的检测***及细菌的检测方法
技术领域
本发明属于微流控芯片技术领域,具体涉及微流控芯片、基于微流控芯片的检测***及细菌的检测方法,特别是涉及一种用于致病性细菌的微流控芯片、基于微流控芯片的检测***及致病性细菌的检测方法。
背景技术
食源性致病菌是可以引起食物中毒或以食品为传播媒介的致病性细菌。致病性细菌直接或间接污染食品及水源,可导致畜禽传染病或人肠道传染病及食物中毒,是食品安全问题的根源之一。常见食源性致病菌主要有致病性大肠埃希氏菌、沙门氏菌、金黄葡萄球菌、单核细胞增生李斯特氏菌等。大肠埃希氏菌O157:H7(E.coil O157:H7)是主要的食源性致病细菌之一,它是肠出血性大肠埃希氏菌(EHEC)的代表菌株,感染剂量极低,潜伏期为3-10天,病程2-9天,可导致出血性结肠炎(HC),通常是突然发生剧烈腹痛和水样腹泻,数天后出现出血性腹泻,部分患者可发展为溶血性尿毒综合症(HUS)和血栓性血小板减少性紫癜(TTP)等,严重者可导致死亡。食源性致病菌引发的食物中毒给公共卫生带来了沉重负担,也给人们的生命健康带来了严重威胁。因此,食品中致病菌的限量将有助于预防和控制此类事件的发生与传播。根据《食品安全国家标准食品中致病菌限量》规定,除金黄葡萄球菌的可接受水平的限量值为100CFU/g(mL)外,大肠埃希氏菌O157:H7、沙门氏菌和单核细胞增生李斯特氏菌的可接受水平的限量值为0。食源性致病菌的限量必须依靠准确和快速的检测方法,所以,采用有效方法检测食源性致病菌至关重要。
目前,检测食源性致病菌的方法可分为间接法和直接法。间接法主要是对食源性致病菌的分泌物如内外毒素以及核酸进行检测,间接获得致病菌是否存在,往往需要复杂的样品前处理。直接法则是直接对样本中食源性致病菌的数量或浓度进行定量检测,包括平板计数法和生物传感器法。其中,平板计数法是食源性致病菌检测的金标准,拥有高的准确性和可靠性,但是需要专业的技术人员对样品进行长时间的培养和预富集,且检测时间长达2-3天,耗费大量时间和人力物力。
微流控芯片技术是一种将生物或者化学实验(如样品的反应制备、分析提纯,检测分析等)微型化并集成到具有微米甚至纳米尺度微通道的芯片上,通过对流体进行精确控制完成复杂的分析流程。由于微流控芯片技术具有样品和试剂消耗量小,多样本可并行检测,高通量,分析速度快,以及易于集成化和自动化等优点,使其被广泛应用到分析检测领域。越来越多的研究开发了基于微流控芯的食源性致病菌检测方法,例如比色法、荧光法、电化学法、表面拉曼散射法、表面等离子体共振法以及侧向流动条等方法。这些方法各自存在一定的不足,其中比色法和荧光法灵敏度不高,电化学法重现性较差,表面拉曼散射法、表面等离子体共振法需要复杂且昂贵的信号检测仪器。因此需要开发一种检测灵敏度高,信号检测仪器简单廉价的食源性致病菌检测方法。
发明内容
为了解决现有技术中的不足,本发明基于催化发夹自组装和化学发光法,提出微流控芯片、基于微流控芯片的检测***及细菌的检测方法。
化学发光法是一种将检测目标的浓度信号转换为化学发光强度的方法,主要的信号产生机制是基于通过酶催化底物和氧化剂(如鲁米诺-过氧化氢体系)发生化学发光反应。化学发光法依靠痕量分析物的化学反应产生化学发光,因此灵敏度高。此外,不需要激发光源,从而避免了光散射的干扰,并且化学发光法的仪器和操作简单,校准范围宽,其小型化的适用性为食源性致病菌的检测提供了巨大的潜力。
催化发夹自组装(catalysed hairpin assembly,CHA)是一种优越的信号放大策略,其基本原理是由精心设计的两条发夹状寡核苷酸和一条链状寡核苷酸,利用茎环结构上“立足点”,能够被序列互补的裸露核酸通过碱基互补配对原则及拓扑反应动力学作用改变结构,从而完成寡核苷酸之间的自组装及去组装过程。该反应的净结果是产生两条发夹状寡核苷酸的杂交链,通过在发夹状寡核苷酸中引入特定基团,将杂交链固定在基底上和产生分析信号。由于链状寡核苷酸被多次重复使用,只要将链状寡核苷酸和目标分析物建立关联,就可以通过上述反应,将目标分析物的浓度信号进行放大。
本发明具体技术方案如下:
本发明第一方面提供一种微流控芯片,所述微流控芯片由键合在一起的基片与盖片组成,所述盖片上设有混合微通道和反应微通道,所述混合微通道和所述反应微通道相互连接,所述反应微通道内具有微柱阵列。
进一步地,所述混合微通道为蛇形混合微通道,所述反应微通道为船形反应微通道;
所述船形反应微通道包括两个船头和位于两个船头之间的船身,一个船头作为进口,另一个作为出口;
所述混合微通道包括进口和出口;
优选地,所述混合微通道包括2个进口;
优选地,所述混合微通道出口与所述船形反应微通道的船头进口相互连接;
优选地,所述反应微通道的长为16mm,宽为3mm,进口处渐扩和出口处渐缩的流线形设计,避免了死角的产生,使混合后的试剂进入船形通道后可以分布的更加均匀;
优选地,所述蛇形混合微通道的宽度为200μm,深度为150μm,长度为20cm,其狭窄延长的特点在流体力学上更大程度地让化学发光试剂充分混合,能够快速产生较高的化学发光信号,且将混合通道折叠成蛇形可以直到节省空间的作用。
优选地,所述微柱的直径为200μm,深度为150μm,微柱间距为200μm,提高船形反应微通道的内表面积,为其内表面修饰提供了更多的空间,在流体力学上能更大程度上增加催化发夹自组装反应的引发链与微柱的碰撞几率,增加引发链与发夹状寡核苷酸1的结合效率;
优选地,所述盖片的材料为聚二甲基硅氧烷(PDMS),其生物兼容性强,易于表面修饰,透光性好,适合化学发光检测。
进一步地,所述微柱上修饰有发夹状寡核苷酸1(H1),所述发夹状寡核苷酸1用于发生催化发夹自组装反应;优选地,所述H1进行荧光标记来验证H1的成功修饰,正式实验使用无荧光标记的H1。
优选地,微柱进行链霉亲和素修饰,发夹状寡核苷酸1通过生物素和链霉亲和素的结合修饰在微柱上。
本发明第二方面提供一种基于微流控芯片的检测***,包括所述微流控芯片、进样单元和检测分析单元,所述进样单元与所述微流控芯片混合微通道的进口连通;
优选地,所述检测分析单元包括PMT探测器和超微弱化学发光分析仪,所述PMT探测器的进光口与反应微通道相匹配;
优选地,所述进样单元包括微量注射泵、导管和注射器,微流控芯片可以通过导管与注射器相连,通过微量注射泵精确的控制流量和流速,编程后自动化灌注化学发光试剂;
优选地,所述检测***还包括与微流控芯片出口连通的废液池。
本发明第三方面提供一种基于微流控芯片的检测试剂盒,包括所述微流控芯片、致病性细菌的特异性核酸适配体(Apt)与引发链(I)形成的杂交链(I/Apt)、发夹状寡核苷酸2(H2)与辣根过氧化物酶(HRP)修饰的金纳米颗粒(H2-AuNP-HRP)、鲁米诺以及过氧化氢;
所述致病性细菌的特异性核酸适配体、引发链、发夹状寡核苷酸1和发夹状寡核苷酸2满足下述条件(1)或(2);
(1)所述致病性细菌的特异性核酸适配体具有m个碱基,所述致病性细菌的特异性核酸适配体3’端与引发链有n个互补配对碱基,其中n/m为1/4~1/3;
所述引发链的5’端与发夹状寡核苷酸1的3’端6~10个裸露的碱基互配对;
所述发夹状寡核苷酸1的5’端与发夹状寡核苷酸2的3’端6~10个裸露的碱基互补配对;
优选地,所述发夹状寡核苷酸1的5’端用生物素修饰;所述发夹状寡核苷酸2的5’端用巯基标记,辣根过氧化物酶上有氨基酸残基巯基,所述发夹状寡核苷酸2和辣根过氧化物酶通过金硫键修饰到金纳米颗上,形成发夹状寡核苷酸2与辣根过氧化物酶修饰的金纳米颗粒;
(2)所述致病性细菌的特异性核酸适配体具有m个碱基,所述致病性细菌的特异性核酸适配体5’端与引发链有n个互补配对碱基,其中n/m为1/4~1/3;
所述引发链的3’端与发夹状寡核苷酸1的5’端6~10个裸露的碱基互配对;
所述发夹状寡核苷酸1的3’端与发夹状寡核苷酸2的5’端6~10个裸露的碱基互补配对;
优选地,所述发夹状寡核苷酸1的3’端用生物素修饰;所述发夹状寡核苷酸2的3’端用巯基标记,辣根过氧化物酶上有氨基酸残基巯基,所述发夹状寡核苷酸2和辣根过氧化物酶通过金硫键修饰到金纳米颗上,形成发夹状寡核苷酸2与辣根过氧化物酶修饰的金纳米颗粒。
优选地,所述发夹状寡核苷酸2(H2)进行荧光标记来验证发夹状寡核苷酸1(H1)的成功修饰,正式实验使用无荧光标记的适配体2。
优选地,所述辣根过氧化物酶在420nm处有特征吸收峰,通过金纳米颗粒修饰前后在420nm处有无特征吸收峰,来验证辣根过氧化物酶。
进一步地,所述致病性细为大肠埃希氏菌O157:H7时,致病性细菌的特异性核酸适配体的序列如SEQ ID NO.1所示,所述引发链的序列如SEQ ID NO.2所示,所述发夹状寡核苷酸1的序列如SEQ ID NO.3所示,所述发夹状寡核苷酸2的序列如SEQ ID NO.4所示。
本发明第四方面提供所述微流控芯片、所述基于微流控芯片的检测***或所述基于微流控芯片的检测试剂盒在致病性细菌检测中的应用;
优选地,所述致病性细为食源性致病菌。
以致病性细菌的特异性核酸适配体3’端与引发链有若干互补配对碱基为例,本发明进行致病性细菌检测的原理为:致病性细菌可以结合到所述杂交链(I/Apt)中致病性细菌的特异性核酸适配体(Apt)上,从而将催化发夹自组装反应的引发链(I)竞争下来。催化发夹自组装反应的引发链(I)可以引发发夹状寡核苷酸1(H1)和发夹状寡核苷酸2(H2)自组装形成杂交链(H1/H2),具体地,引发链(I)的5’端与发夹状寡核苷酸1(H1)的3’端的裸露的碱基互配对,从而打开发夹状寡核苷酸1(H1),打开的发夹状寡核苷酸1(H1)的5’端与发夹状寡核苷酸2(H2)的3’端的裸露的碱基互补配对,从而打开发夹状寡核苷酸2(H2),随着发夹状寡核苷酸2(H2)结合到发夹状寡核苷酸1(H1)上形成杂交链(H1/H2),引发链(I)被竞争下来,被竞争下来的引发链(I)继续打开发夹状寡核苷酸1(H1),如此循环直到所有发夹状寡核苷酸2(H2)都结合到发夹状寡核苷酸1(H1)上。随着发夹状寡核苷酸2(H2)结合到发夹状寡核苷酸1(H1)上形成杂交链(H1/H2),从而固定在微柱阵列上,金纳米颗粒(AuNP)及其上修饰的辣根过氧化物酶(HRP)也固定在了微柱阵列上。在辣根过氧化物酶的催化下可以发生化学发光反应,产生化学发光信号,从而实现对致病性细菌的检测。
本发明第五方面提供一种基于微流控芯片的细菌检测方法,其特征在于,包括如下步骤:
将待测样品、致病性细菌的特异性核酸适配体与引发链形成的杂交链、发夹状寡核苷酸2混合均匀,注入所述微流控芯片的反应微通道中,静置,发生致病性细菌竞争结合引发的催化发夹自组装反应;
用缓冲溶液冲洗微流控芯片的反应微通道,采集反应微通道的本底信号;
向所述微流控芯片的混合微通道内分别注入鲁米诺和过氧化氢,在混合微通道内混合后注入反应微通道,在辣根过氧化物酶催化下发生化学发光反应;
采集反应微通道的化学发光图谱,用化学发光图谱判定待测样品中致病性细菌的有无及其浓度。
进一步地,所述基于微流控芯片的细菌检测方法还包括以待测致病性细菌为标准样品,采用上述检测方法采集本底信号和化学发光图谱,以标准样品浓度为横坐标,以其化学发光图谱的峰值为纵坐标绘制标准曲线,线性拟合得到标准方程;
优选地,将待测样品的化学发光图谱的峰值代入标准方程,得到待测样品中致病性细菌的浓度。
进一步地,所述缓冲溶液为Tris-HCl缓冲溶液;
所述鲁米诺和过氧化氢的体积比为1:1;
优选地,所述鲁米诺和过氧化氢的体积均为10μL;
优选地,所述鲁米诺和过氧化氢以10μL/min的流速注入混合微通道;
优选地,所述致病性细为食源性致病菌。
进一步地,采用超微弱化学发光分析仪采集本底信号和化学发光图谱;
优选地,超微弱化学发光分析仪预热30min后,再采集本底信号;
优选地,从开始注入鲁米诺和过氧化氢后的900s内采集化学发光图谱。
本发明的有益效果为:
1.本发明提供的基于催化发夹自组装(CHA)和化学发光生物传感的微流控芯片用于检测食源性致病菌时,与传统的食源性致病菌检测方法相比,所需样品、试剂消耗量少,自动化程度高,检出速度快。
进一步地,蛇形混合微通道狭窄延长的特点在流体力学上更大程度地让化学发光试剂充分混合,能够快速产生较高的化学发光信号,且将混合通道折叠成蛇形可以直到节省空间的作用。船形反应微通道采用进口处渐扩和出口处渐缩的流线形设计,避免了死角的产生,使混合后的试剂进入船形通道后可以分布的更加均匀。微柱阵列的直径为200μm,深度为150μm,微柱间距为200μm,提高了船形反应微通道的内表面积,为其内表面修饰提供了更多的空间,在流体力学上能更大程度上增加催化发夹自组装反应的引发链(I)与微柱的碰撞几率,增加引发链(I)与发夹状寡核苷酸1(H1)的结合效率。微流控芯片的材料采用聚二甲基硅氧烷(PDMS),其生物兼容性好,透光性强,适用于生物标志物的检测。
2.本发明提供的致病性细菌的检测方法,通过致病性细菌竞争结合引发两条发夹状寡核苷酸(H1,H2)发生催化发夹自组装反应(CHA),其中发夹状寡核苷酸1(H1)修饰在微流控芯片船形反应微通道内的微柱阵列上,发夹状寡核苷酸2(H2)和辣根过氧化物酶(HRP)共同修饰在金纳米颗粒表面,催化发夹自组装反应(CHA)不仅对致病性细菌的浓度进行放大,还将辣根过氧化物酶(HRP)固定在微柱阵列上,进而催化鲁米诺和过氧化氢发生化学发光反应,通过化学反应信号强度来对致病性细菌进行定量。该方法具有良好的特异性,低的检测限和宽的线性范围,为定量检测致病性细菌提供了较为准确的数据。该方法在食源性致病菌检测领域具有重要的应用前景。此外,本发明在较短时间内即可检测出样品中食源性致病菌的浓度,大大提高了定量检测食源性致病菌的效率。并且微流控芯片平台具有试剂用量小,可集成化与自动化,大大减少了定量检测食源性致病菌的材料成本和人力成本,为食源性致病菌检测提供了新的技术平台,具有较好的食品安全检测应用前景。
附图说明
图1为实施例1的微流控芯片的立体结构图;1-蛇形混合微通道,2-船形反应微通道,3-微柱阵列;
图2为实施例2的盖片通道掩膜尺寸设计图;
图3为实施例2的微通道修饰结果图;
图4为实施例3的基于微流控芯片的检测***;a-微量注射泵,b-注射器,c-PTFE导管,d-微流控芯片,e-废液池,f-PMT探测器,g-超微弱化学发光分析仪。
具体实施方式
为了更清楚地理解本发明,现参照下列实施例及附图进一步描述本发明。实施例仅用于解释而不以任何方式限制本发明。实施例中,各原始试剂材料均可商购获得,未注明具体条件的实验方法为所属领域熟知的常规方法和常规条件,或按照仪器制造商所建议的条件。
实施例1:微流控芯片的结构
本实施例提供一种微流控芯片,其立体结构如图1所示。该微流控芯片由键合在一起的基片和盖片组成。在本实施例中基片的材料为玻璃,盖片的材料为聚二甲基硅氧烷(PDMS)。盖片上设有蛇形混合微通道1和船形反应微通道2,船形反应微通道2内均匀分布微柱阵列3。所述船形反应微通道2包括两个船头和位于两个船头之间的船身,一个船头作为进口,另一个作为出口。所述混合微通道包括2个进口和1个出口,2个进口分别作为鲁米诺和过氧化氢的进口。混合微通道出口与船形反应微通道的船头进口相互连接。
蛇形混合微通道1的宽度为200μm,深度为150μm,长度为20cm,其狭窄延长的特点在流体力学上更大程度地让化学发光试剂充分混合,能够快速产生较高的化学发光信号,且将混合通道折叠成蛇形可以起到节省空间的作用。
船形反应微通道2的长为16mm,宽为3mm,进口处渐扩和出口处渐缩的流线形设计,避免了死角的产生,使混合后的试剂进入船形通道后可以分布的更加均匀。
芯片的微柱阵列3的直径为200μm,深度为150μm,微柱间距为200μm,提高船形微通道的内表面积,为其内表面修饰提供了更多的空间。
进一步地,微柱上修饰有发夹状寡核苷酸1(H1),此发夹状寡核苷酸用于发生催化发夹自组装反应。微柱进行链霉亲和素修饰,发夹状寡核苷酸1(H1)通过生物素和链霉亲和素的结合修饰在微柱上。
实施例2:微流控芯片的制备
将硅片先用乙醇超声5分钟后,再用去离子水超声5分钟,进行三次后,在加热板上加热120分钟。
在硅片上甩涂一薄层SU-82050负性光刻胶,通过控制转速使胶层厚度大约为50μm。将具有图2结构的掩膜与硅片贴合,紫外线通过光掩模使光刻胶曝光,未曝光的部分用显影液溶解。硅片表面上凸起的SU-8结构作为PDMS盖片的阳模。然后将硅阳模硅烷化过夜。
PDMS预聚体(单体/固化剂=10/1混合)浇注在硅阳模上并真空脱气,然后放入75℃烘箱中固化2小时左右,然后将PDMS从阳模剥离,形成了PDMS的盖片。将PDMS盖片切割,并进行打孔。
将玻璃基片与PDMS盖片一起放入氧等离子体真空管中,抽真空90秒,打开高频电源,90秒后取出基片和盖片,立即键合。
键合后在室温下用4%(v/v)MPTS的无水乙醇溶液处理通道,静置30min。再用无水乙醇进行洗涤,重复三次或至完全洗涤干净。洗涤干净后将芯片放置于100℃的烘箱中干燥1h。
在室温下将芯片用新鲜制备的0.01μmol/mL GMBS的无水乙醇溶液在室温下处理,同样静置30min。再用无水乙醇进行洗涤,重复三次或至完全洗涤干净。洗涤干净后将芯片放置于100℃的烘箱中干燥1h。
在室温下用10μg/mL链霉亲和素的PBS溶液填充通道,静置1h,之后引入浓度为1μM的生物素标记的发夹状寡核苷酸1(H1)溶液,并在室温下孵育30min,然后用PBS缓冲液洗涤以除去未结合的发夹状寡核苷酸1(H1)。修饰完成后将该芯片保存在4℃,备用。
在一个具体的实施方案中,使用修饰有FAM基团的生物素标记的发夹状寡核苷酸1(H1)修饰微通道来验证成功修饰发夹状寡核苷酸1(H1),并用PBS缓冲液洗涤除去了未结合的捕获适配体。使用荧光显微镜拍摄微通道的照片,如图3。
实施例3:基于微流控芯片的检测***
本实施例提供一种基于微流控芯片的检测***,如图4所示,包括实施例1所述微流控芯片d、进样单元和检测分析单元,所述进样单元与所述微流控芯片混合微通道的进口连通。
在一个具体的实施方案中,所述检测分析单元包括PMT探测器f和超微弱化学发光分析仪g。微流控芯片大小与PMT探测器的匣子中的卡槽相匹配(25*25mm),并使其放置后所述船形反应微通道正好与PMT探测器的进光口位置相匹配,产生的化学发光信号由PMT收集并由超微弱化学发光分析仪g分析处理。
所述进样单元包括微量注射泵a、PTFE导管c和注射器b,微流控芯片d可以通过PTFE导管c与注射器b相连,通过微量注射泵a精确的控制流量和流速,编程后自动化灌注化学发光试剂。
微流控芯片出口需由PTFE导管与废液池e相连,防止出口处的液体对PMT探测器造成损伤。
实施例4:基于微流控芯片的检测试剂盒
包括实施例1所述微流控芯片、致病性细菌的特异性核酸适配体与引发链形成的杂交链、发夹状寡核苷酸2与辣根过氧化物酶修饰的金纳米颗粒、鲁米诺以及过氧化氢。
所述致病性细菌的特异性核酸适配体3’端与引发链有若干个互补配对碱基,其中互补配对碱基数量占特异性核酸适配体序列碱基数量的1/3左右,致病性细菌的特异性核酸适配体与引发链形成杂交链(I/Apt),致病性细菌可以结合到所述杂交链(I/Apt)中致病性细菌的特异性核酸适配体(Apt)上,从而将催化发夹自组装反应的引发链(I)竞争下来。
所述引发链的5’端与发夹状寡核苷酸1的3’端裸露的碱基互配对。所述发夹状寡核苷酸1的5’端与发夹状寡核苷酸2的3’端裸露的碱基互补配对。催化发夹自组装反应的引发链(I)可以引发发夹状寡核苷酸1(H1)和发夹状寡核苷酸2(H2)自组装形成杂交链(H1/H2)。具体地,引发链(I)的5’端与发夹状寡核苷酸1(H1)的3’端的裸露的碱基互配对,从而打开发夹状寡核苷酸1(H1),打开的发夹状寡核苷酸1(H1)的5’端与发夹状寡核苷酸2(H2)的3’端的裸露的碱基互补配对,从而打开发夹状寡核苷酸2(H2),随着发夹状寡核苷酸2(H2)结合到发夹状寡核苷酸1(H1)上形成杂交链(H1/H2),引发链(I)被竞争下来,被竞争下来的引发链(I)继续打开发夹状寡核苷酸1(H1),如此循环直到所有发夹状寡核苷酸2(H2)都结合到发夹状寡核苷酸1(H1)上。
随着发夹状寡核苷酸2(H2)结合到发夹状寡核苷酸1(H1)上形成杂交链(H1/H2),从而固定在微柱阵列上,金纳米颗粒(AuNP)及其上修饰的辣根过氧化物酶(HRP)也固定在了微柱阵列上。在辣根过氧化物酶的催化下可以发生化学发光反应,产生化学发光信号,从而实现对致病性细菌的检测。
实施例4:基于微流控芯片的细菌检测方法
利用实施例2制得的微流控芯片检测大肠埃希氏菌O157:H7。具体步骤如下:
(1)将待测样品,大肠埃希氏菌O157:H7特异性核酸适配体与CHA引发链形成的复合物,发夹状寡核苷酸2(H2)与辣根过氧化物酶修饰的金纳米颗粒,三者混合均匀后,注入微流控芯片的船形反应微通道内,静置,发生大肠埃希氏菌O157:H7竞争结合引发的催化发夹自组装反应。
(2)用Tris-HCl缓冲溶液冲洗微流控芯片的船型反应微通道三次。
(3)打开超微弱化学发光分析仪及分析软件,预热30min后,采集本底信号。
(4)将微流控芯片放置在带有PMT探测器的匣子中的卡槽里,用两只注射器分别吸取鲁米诺和过氧化氢,用PTFE导管与微流控芯片相连,通过精密微量注射器以10μL/min的流速向微流控芯片中灌注10μL鲁米诺和10μL过氧化氢,经混合微通道混合后流入船形反应微通道,在辣根过氧化物酶的催化下发生化学发光反应。
(5)采集从开始灌注化学发光试剂后的900s内的化学发光图谱。
(6)按照上述步骤(1)~(5)采集500,103,104,105,106,106,107,108CFU/mL的大肠埃希氏菌O157:H7标准样品的化学发光图谱。
(7)以大肠埃希氏菌O157:H7标准样品浓度为横坐标,以其化学发光图谱的峰值为纵坐标绘制标准曲线,线性拟合得到标准方程。
(8)按照上述步骤(1)~(5)采集待测样品的化学发光图谱,将其化学发光图谱的峰值代入步骤(7)的标准方程,得到待测样品中大肠埃希氏菌O157:H7的浓度。
本实施例中大肠埃希氏菌O157:H7特异性核酸适配体、引发链、发夹状寡核苷酸1和发夹状寡核苷酸2的核苷酸序列如下表所示。发夹状寡核苷酸1的5’端用生物素修饰,发夹状寡核苷酸2的5’端用巯基标记。
Figure BDA0003426420320000101
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
SEQUENCE LISTING
<110> 清华大学深圳国际研究生院
<120> 微流控芯片、基于微流控芯片的检测***及细菌的检测方法
<130> CP121011279C
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 72
<212> DNA
<213> 人工序列
<400> 1
atccgtcaca cctgctctgt ctgcgagcgg ggcgcgggcc cggcggggga tgcgtggtgt 60
tggctcccgt at 72
<210> 2
<211> 24
<212> DNA
<213> 人工序列
<400> 2
atacgggagc caacaccacg catc 24
<210> 3
<211> 58
<212> DNA
<213> 人工序列
<400> 3
ttttttttca acaccacgca tccaaagtca aagtgatgcg tggtgttggc tcccgtat 58
<210> 4
<211> 57
<212> DNA
<213> 人工序列
<400> 4
tttttttttc aaagtcaaag tgccaacacc acgcatcact ttgactttgg atgcgtg 57

Claims (10)

1.一种微流控芯片,其特征在于,所述微流控芯片由键合在一起的基片与盖片组成,所述盖片上设有混合微通道和反应微通道,所述混合微通道和所述反应微通道相互连接,所述反应微通道内具有微柱阵列。
2.根据权利要求1所述的微流控芯片,其特征在于,所述混合微通道为蛇形混合微通道,所述反应微通道为船形反应微通道;
所述船形反应微通道包括两个船头和位于两个船头之间的船身,一个船头作为进口,另一个作为出口;
所述混合微通道包括进口和出口;
优选地,所述混合微通道包括2个进口;
优选地,所述混合微通道出口与所述船形反应微通道的船头进口相互连接;
优选地,所述反应微通道的长为16mm,宽为3mm;
优选地,所述蛇形混合微通道的宽度为200μm,深度为150μm,长度为20cm;
优选地,所述微柱的直径为200μm,深度为150μm,微柱间距为200μm;
优选地,所述盖片的材料为聚二甲基硅氧烷。
3.根据权利要求1所述的微流控芯片,其特征在于,所述微柱上修饰有发夹状寡核苷酸1,所述发夹状寡核苷酸1用于发生催化发夹自组装反应;
优选地,微柱进行链霉亲和素修饰,发夹状寡核苷酸1通过生物素和链霉亲和素的结合修饰在微柱上。
4.一种基于微流控芯片的检测***,其特征在于,包括权利要求1-3任一项所述微流控芯片、进样单元和检测分析单元,所述进样单元与所述微流控芯片混合微通道的进口连通;
优选地,所述检测分析单元包括PMT探测器和超微弱化学发光分析仪,所述PMT探测器的进光口与反应微通道相匹配;
优选地,所述进样单元包括微量注射泵、导管和注射器;
优选地,所述检测***还包括与微流控芯片出口连通的废液池。
5.一种基于微流控芯片的检测试剂盒,其特征在于,包括权利要求1-3任一项所述微流控芯片、致病性细菌的特异性核酸适配体与引发链形成的杂交链、发夹状寡核苷酸2与辣根过氧化物酶修饰的金纳米颗粒、鲁米诺以及过氧化氢;
所述致病性细菌的特异性核酸适配体、引发链、发夹状寡核苷酸1和发夹状寡核苷酸2满足下述条件(1)或(2);
(1)所述致病性细菌的特异性核酸适配体具有m个碱基,所述致病性细菌的特异性核酸适配体3’端与引发链有n个互补配对碱基,其中n/m为1/4~1/3;
所述引发链的5’端与发夹状寡核苷酸1的3’端6~10个裸露的碱基互配对;
所述发夹状寡核苷酸1的5’端与发夹状寡核苷酸2的3’端6~10个裸露的碱基互补配对;
优选地,所述发夹状寡核苷酸1的5’端用生物素修饰;所述发夹状寡核苷酸2的5’端用巯基标记,辣根过氧化物酶上有氨基酸残基巯基,所述发夹状寡核苷酸2和辣根过氧化物酶通过金硫键修饰到金纳米颗上,形成发夹状寡核苷酸2与辣根过氧化物酶修饰的金纳米颗粒;
(2)所述致病性细菌的特异性核酸适配体具有m个碱基,所述致病性细菌的特异性核酸适配体5’端与引发链有n个互补配对碱基,其中n/m为1/4~1/3;
所述引发链的3’端与发夹状寡核苷酸1的5’端6~10个裸露的碱基互配对;
所述发夹状寡核苷酸1的3’端与发夹状寡核苷酸2的5’端6~10个裸露的碱基互补配对;
优选地,所述发夹状寡核苷酸1的3’端用生物素修饰;所述发夹状寡核苷酸2的3’端用巯基标记,辣根过氧化物酶上有氨基酸残基巯基,所述发夹状寡核苷酸2和辣根过氧化物酶通过金硫键修饰到金纳米颗上,形成发夹状寡核苷酸2与辣根过氧化物酶修饰的金纳米颗粒。
6.根据权利要求5所述的基于微流控芯片的检测试剂盒,其特征在于,所述致病性细为大肠埃希氏菌O157:H7时,所述致病性细菌的特异性核酸适配体的序列如SEQ ID NO.1所示,所述引发链的序列如SEQ ID NO.2所示,所述发夹状寡核苷酸1的序列如SEQ ID NO.3所示,所述发夹状寡核苷酸2的序列如SEQ ID NO.4所示。
7.权利要求1-3任一项所述微流控芯片、权利要求4所述基于微流控芯片的检测***或权利要求5或6所述基于微流控芯片的检测试剂盒在致病性细菌检测中的应用;
优选地,所述致病性细为食源性致病菌。
8.一种基于微流控芯片的细菌检测方法,其特征在于,包括如下步骤:
将待测样品、致病性细菌的特异性核酸适配体与引发链形成的杂交链、发夹状寡核苷酸2混合均匀,注入权利要求1所述微流控芯片的反应微通道中,静置,发生致病性细菌竞争结合引发的催化发夹自组装反应;
用缓冲溶液冲洗微流控芯片的反应微通道,采集反应微通道的本底信号;
向权利要求1所述微流控芯片的混合微通道内分别注入鲁米诺和过氧化氢,在混合微通道内混合后注入反应微通道,在辣根过氧化物酶催化下发生化学发光反应;
采集反应微通道的化学发光图谱,用化学发光图谱判定待测样品中致病性细菌的有无及其浓度。
9.根据权利要求8所述的检测方法,其特征在于,所述检测方法还包括以待测致病性细菌为标准样品,采用权利要求8所述检测方法采集本底信号和化学发光图谱,以标准样品浓度为横坐标,以其化学发光图谱的峰值为纵坐标绘制标准曲线,线性拟合得到标准方程;
优选地,将待测样品的化学发光图谱的峰值代入标准方程,得到待测样品中致病性细菌的浓度。
10.根据权利要求8所述的检测方法,其特征在于,所述缓冲溶液为Tris-HCl缓冲溶液;
所述鲁米诺和过氧化氢的体积比为1:1;
优选地,所述鲁米诺和过氧化氢的体积均为10μL;
优选地,所述鲁米诺和过氧化氢以10μL/min的流速注入混合微通道;
优选地,所述致病性细为食源性致病菌;
优选地,采用超微弱化学发光分析仪采集本底信号和化学发光图谱;
优选地,超微弱化学发光分析仪预热30min后,再采集本底信号;
优选地,从开始注入鲁米诺和过氧化氢后的900s内采集化学发光图谱。
CN202111582058.8A 2021-12-22 2021-12-22 微流控芯片、基于微流控芯片的检测***及细菌的检测方法 Active CN114252602B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111582058.8A CN114252602B (zh) 2021-12-22 2021-12-22 微流控芯片、基于微流控芯片的检测***及细菌的检测方法
PCT/CN2022/080095 WO2023115717A1 (zh) 2021-12-22 2022-03-10 微流控芯片、基于微流控芯片的检测***及细菌的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111582058.8A CN114252602B (zh) 2021-12-22 2021-12-22 微流控芯片、基于微流控芯片的检测***及细菌的检测方法

Publications (2)

Publication Number Publication Date
CN114252602A true CN114252602A (zh) 2022-03-29
CN114252602B CN114252602B (zh) 2023-09-12

Family

ID=80796775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111582058.8A Active CN114252602B (zh) 2021-12-22 2021-12-22 微流控芯片、基于微流控芯片的检测***及细菌的检测方法

Country Status (2)

Country Link
CN (1) CN114252602B (zh)
WO (1) WO2023115717A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353968A (zh) * 2022-10-20 2022-11-18 湖南冠牧生物科技有限公司 一种快速核酸检测微流控芯片、核酸检测***及方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001123A1 (en) * 2003-06-30 2005-01-06 Tsinghua University Dna chip based genetic typing
CN101643701A (zh) * 2009-07-23 2010-02-10 清华大学 基于免疫磁性分离技术的细胞分选微流控芯片及其应用
CN201628717U (zh) * 2010-02-09 2010-11-10 中国人民解放军第三军医大学 用于检测病原微生物的微流控芯片
US20130053252A1 (en) * 2009-09-25 2013-02-28 President & Fellows Of Harvard College Nucleic acid amplification and sequencing by synthesis with fluorogenic nucleotides
WO2013063366A2 (en) * 2011-10-27 2013-05-02 Stc.Unm Methods for screening viral like particles and identifying neutralizing epitopes and related vaccines, constructs, and libraries
CN104955959A (zh) * 2012-11-02 2015-09-30 生命技术公司 用于增强pcr特异性的新颖组合物、方法和试剂盒
CN105648070A (zh) * 2016-02-25 2016-06-08 青岛科技大学 基于酶循环放大及纳米颗粒增强spr检测核酸或细胞的方法
WO2016177808A1 (en) * 2015-05-07 2016-11-10 Paris Sciences Et Lettres - Quartier Latin Formation of hairpins in situ using force-induced strand invasion
WO2017189525A1 (en) * 2016-04-25 2017-11-02 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
CN107400623A (zh) * 2016-05-20 2017-11-28 益善生物技术股份有限公司 循环肿瘤细胞自动捕获微流控芯片及其自动捕获方法
US20170362640A1 (en) * 2016-06-16 2017-12-21 Life Technologies Corporation Novel compositions, methods and kits for microorganism detection
US20180251825A1 (en) * 2017-02-02 2018-09-06 New York Genome Center Inc. Methods and compositions for identifying or quantifying targets in a biological sample
CN110095608A (zh) * 2019-04-12 2019-08-06 南方医科大学南方医院 基于磁性分离和dna自组装的肿瘤外泌体纳米荧光传感器
WO2020218831A1 (ko) * 2019-04-22 2020-10-29 포항공과대학교 산학협력단 신규한 등온 단일 반응용 프로브 세트 및 이의 용도
US20200354767A1 (en) * 2017-11-16 2020-11-12 The Regents Of The University Of Colorado, A Body Corporate Methods to measure functional heterogeneity among single cells
CN112011435A (zh) * 2020-09-11 2020-12-01 徐州工程学院 一种用于精准捕获循环肿瘤细胞的微流控***及制备方法
WO2021074087A1 (en) * 2019-10-16 2021-04-22 Illumina, Inc. Systems and methods for detecting multiple analytes
CN112964767A (zh) * 2021-03-19 2021-06-15 济南大学 光热效应-光电生物传感纸芯片在microRNA-141检测中的应用
CN113820487A (zh) * 2020-06-18 2021-12-21 海宁先进半导体与智能技术研究院 一种用于癌症标记物检测的微流控芯片及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900723B (zh) * 2009-05-27 2013-05-08 中国科学技术大学 鲁米诺直接键合的纳米金在免疫分析中的应用
CN206715966U (zh) * 2017-04-28 2017-12-08 刘玲 一种生物分析用微流控检测装置
CN111804356B (zh) * 2020-07-16 2021-11-09 清华大学 微流控芯片及其制备方法和微流控装置及致病菌的检测方法
CN214668024U (zh) * 2021-01-15 2021-11-09 南京大学 一种微流控样品预处理芯片
CN113533719B (zh) * 2021-06-18 2023-08-22 清华大学 基于微流控芯片的食源性致病菌的检测方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001123A1 (en) * 2003-06-30 2005-01-06 Tsinghua University Dna chip based genetic typing
CN101643701A (zh) * 2009-07-23 2010-02-10 清华大学 基于免疫磁性分离技术的细胞分选微流控芯片及其应用
US20130053252A1 (en) * 2009-09-25 2013-02-28 President & Fellows Of Harvard College Nucleic acid amplification and sequencing by synthesis with fluorogenic nucleotides
CN201628717U (zh) * 2010-02-09 2010-11-10 中国人民解放军第三军医大学 用于检测病原微生物的微流控芯片
WO2013063366A2 (en) * 2011-10-27 2013-05-02 Stc.Unm Methods for screening viral like particles and identifying neutralizing epitopes and related vaccines, constructs, and libraries
CN104955959A (zh) * 2012-11-02 2015-09-30 生命技术公司 用于增强pcr特异性的新颖组合物、方法和试剂盒
WO2016177808A1 (en) * 2015-05-07 2016-11-10 Paris Sciences Et Lettres - Quartier Latin Formation of hairpins in situ using force-induced strand invasion
CN105648070A (zh) * 2016-02-25 2016-06-08 青岛科技大学 基于酶循环放大及纳米颗粒增强spr检测核酸或细胞的方法
WO2017189525A1 (en) * 2016-04-25 2017-11-02 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
CN107400623A (zh) * 2016-05-20 2017-11-28 益善生物技术股份有限公司 循环肿瘤细胞自动捕获微流控芯片及其自动捕获方法
US20170362640A1 (en) * 2016-06-16 2017-12-21 Life Technologies Corporation Novel compositions, methods and kits for microorganism detection
US20180251825A1 (en) * 2017-02-02 2018-09-06 New York Genome Center Inc. Methods and compositions for identifying or quantifying targets in a biological sample
US20200354767A1 (en) * 2017-11-16 2020-11-12 The Regents Of The University Of Colorado, A Body Corporate Methods to measure functional heterogeneity among single cells
CN110095608A (zh) * 2019-04-12 2019-08-06 南方医科大学南方医院 基于磁性分离和dna自组装的肿瘤外泌体纳米荧光传感器
WO2020218831A1 (ko) * 2019-04-22 2020-10-29 포항공과대학교 산학협력단 신규한 등온 단일 반응용 프로브 세트 및 이의 용도
WO2021074087A1 (en) * 2019-10-16 2021-04-22 Illumina, Inc. Systems and methods for detecting multiple analytes
CN115176028A (zh) * 2019-10-16 2022-10-11 伊鲁米纳公司 用于检测多种分析物的***和方法
CN113820487A (zh) * 2020-06-18 2021-12-21 海宁先进半导体与智能技术研究院 一种用于癌症标记物检测的微流控芯片及其制备方法
CN112011435A (zh) * 2020-09-11 2020-12-01 徐州工程学院 一种用于精准捕获循环肿瘤细胞的微流控***及制备方法
CN112964767A (zh) * 2021-03-19 2021-06-15 济南大学 光热效应-光电生物传感纸芯片在microRNA-141检测中的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353968A (zh) * 2022-10-20 2022-11-18 湖南冠牧生物科技有限公司 一种快速核酸检测微流控芯片、核酸检测***及方法

Also Published As

Publication number Publication date
CN114252602B (zh) 2023-09-12
WO2023115717A1 (zh) 2023-06-29

Similar Documents

Publication Publication Date Title
US9753032B2 (en) Method for pretreating specimen and method for assaying biological substance
JP2573443B2 (ja) 遺伝子検出法
Liu et al. Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels
CN108342459B (zh) 一种基于金纳米颗粒的定量pcr检测方法
CN112391448A (zh) 一种用于外泌体及表面蛋白分析的dna纳米分子机器及应用
US8092999B2 (en) Biological sample reaction chip and biological sample reaction method
CN110305770B (zh) 一种dna纳米结构修饰的微流控芯片用于光学生物传感及其制备和应用
US9862987B2 (en) Label free molecular detection methods, systems and devices
CN106947811B (zh) 一种检测miRNAs-21的方法、探针组及试剂盒
CN106854674B (zh) 一种基于毛细管微阵列的核酸高通量快速检测方法
EP2837695A1 (en) Nucleic acid quantification method, detection probe, detection probe set, and nucleic acid detection method
CN114252602B (zh) 微流控芯片、基于微流控芯片的检测***及细菌的检测方法
Yao et al. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles
CN113025476A (zh) 一种双层微流控芯片、检测新型冠状病毒的试剂盒及方法
CN110129413A (zh) 一种选择性捕获和纯化microRNA的纳米磁性颗粒及其制备方法和应用
CN100590204C (zh) 一种无需激发剂三维凝胶微阵列芯片的制备方法
KR101193304B1 (ko) 금속이온 부착 탄소나노튜브 고정화 분석칩 및 이를 이용한 분광분석법에 의한 생화학물질 분석방법
Kuroda et al. Microfluidics-based in situ padlock/rolling circle amplification system for counting single DNA molecules in a cell
Vo-Dinh et al. Development of a multiarray biosensor for DNA diagnostics
Adampourezare et al. Microfluidic assisted recognition of miRNAs towards point-of-care diagnosis: Technical and analytical overview towards biosensing of short stranded single non-coding oligonucleotides
CN115305183A (zh) 集等温扩增和CRISPR/Cas核酸检测于一体的离心式微流控芯片及方法
CN212404104U (zh) 双色荧光双重检测的微流控芯片
EP3184647A1 (en) Laser pcr and bead detection in one reaction chamber
CN107937242B (zh) 一种基于纸基的dna电固相萃取方法与装置
CN117181322A (zh) 微流控芯片、基于微流控芯片的抗原的检测试剂盒和检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant