CN114213615B - 一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法 - Google Patents

一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法 Download PDF

Info

Publication number
CN114213615B
CN114213615B CN202111648192.3A CN202111648192A CN114213615B CN 114213615 B CN114213615 B CN 114213615B CN 202111648192 A CN202111648192 A CN 202111648192A CN 114213615 B CN114213615 B CN 114213615B
Authority
CN
China
Prior art keywords
swelling
phosphorylcholine
parts
polyurethane material
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111648192.3A
Other languages
English (en)
Other versions
CN114213615A (zh
Inventor
袁黎光
王杰
杨小牛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huangpu Institute of Materials
Original Assignee
Huangpu Institute of Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huangpu Institute of Materials filed Critical Huangpu Institute of Materials
Priority to CN202111648192.3A priority Critical patent/CN114213615B/zh
Publication of CN114213615A publication Critical patent/CN114213615A/zh
Application granted granted Critical
Publication of CN114213615B publication Critical patent/CN114213615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3878Low-molecular-weight compounds having heteroatoms other than oxygen having phosphorus
    • C08G18/3889Low-molecular-weight compounds having heteroatoms other than oxygen having phosphorus having nitrogen in addition to phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明属于高分子材料技术领域,具体涉及一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇24‑72份、二异氰酸酯90‑235份;组分B:甘油磷酰胆碱100份、二异氰酸酯20‑41份。本发明提供了一种耐溶胀的磷酰胆碱改性聚氨酯材料,相较于现有技术而言,可以有效的保证力学强度和抗溶胀性等关键性能,具有很强的应用价值和意义;组分中没有使用低聚物多元醇,材料的功能基团磷酰胆碱含量可大大的提高,功能基团表达显著。本发明的聚氨酯材料,可有效的平衡磷酰胆碱的空间位阻和吸水性,使聚氨酯材料之间形成强氢键,从而获得高磷酰胆碱含量的聚氨酯材料,有效的提高聚氨酯材料的亲水性、力学模量响应特性和耐溶胀性。

Description

一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法
技术领域
本发明属于高分子材料技术领域,具体涉及一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法。
背景技术
将亲水功能链段键合到聚氨酯链段中是一种常见的改性聚氨酯构建方法,且为了有良好的亲水效果,一般需要键入较高比例的功能链段,但在实际中发现亲水链段的加入会影响本体材料的力学性能,材料会因为溶胀而导致材料力学性能下降,随着时间推移导致材料降解,且随着亲水链段比例的提高,上述问题愈发明显。
现有技术中,一般利用甘油磷酰胆碱作为改性剂合成亲水聚氨酯,虽然材料初始力学性能较好,但在水中长时间浸泡后出现力学性能大幅下降的问题,限制了材料的应用。之后研究者们提出了引入氟碳链、更换低聚物多元醇种类等方法来构建磷酰胆碱型改性聚氨酯,但在材料的长期稳定性方面仍是需要克服的难点。
专利名称为一种侧链含磷酰胆碱基团聚醚型聚氨酯材料及其制备方法,公开号为CN 106674484 A,以及专利名称为一种高生物相容性磷酰胆碱改性聚氨酯材料及其制备方法,公开号为CN 106589290 A的专利中均公开了通过将磷酰胆碱作为扩链剂引入聚合物分子链侧基等形式合成磷酰胆碱型聚氨酯,为了保证力学性能,均使用了低聚物多元醇,直接造成功能基团磷酰胆碱的含量较低,业界通识是功能基团的密度会直接影响材料的功能表达效果,低聚物多元醇的引入会导致功能基团磷酰胆碱在界面处表达的机会降低,造成功能改性下降的问题。
发明内容
为了解决所述现有技术的不足,本发明提供了一种耐溶胀的磷酰胆碱改性聚氨酯材料,相较于现有技术而言,不仅可以有效的保证力学强度和抗溶胀性等关键性能,具有很强的应用价值和意义;而且组分中没有使用低聚物多元醇,材料的功能基团磷酰胆碱含量可大大的提高,功能基团表达显著。另外,本发明耐溶胀的磷酰胆碱改性聚氨酯材料,可有效的平衡磷酰胆碱的空间位阻和吸水性,使聚氨酯材料之间形成强氢键,从而获得高磷酰胆碱含量的聚氨酯材料,有效的提高聚氨酯材料的亲水性、力学模量响应特性和耐溶胀性。本发明还提供了一种耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,在不借助低聚物多元醇的情况下,直接采用小分子扩链剂和多异氰酸酯聚合的方法来合成聚氨酯材料;不仅解决了现有技术中磷酸胆碱改性聚氨酯的溶胀问题,所得材料磷酰胆碱含量高,不仅亲水性良好,具有良好的力学模量响应特性,在吸水平衡后长时间保持稳定,吸水率及溶胀性质不发生变化;而且力学性能稳定,在水或者模拟体液环境下不发生降解。
本发明所要达到的技术效果通过以下技术方案来实现:
本发明中耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇24-72份、二异氰酸酯90-235份;组分B:甘油磷酰胆碱100份、二异氰酸酯20-41份;其中所述小分子二醇为乙二醇、1,4丁二醇或1,3丁二醇。
作为其中的一种优选方案,由以下组分及组分质量份数组成,组分A:小分子二醇48-72份、二异氰酸酯176-235份;组分B:甘油磷酰胆碱100份、二异氰酸酯20-26份;其中所述小分子二醇为乙二醇、1,4丁二醇或1,3丁二醇。
本发明中耐溶胀的磷酰胆碱改性聚氨酯材料制备方法,包括以下步骤:
S01,将预计量如上所述干燥的组分A混合于溶剂中,在预设的温度条件下,反应一段时间;
S02,加入预计量如上所述干燥的组分B反应过夜;
S03,将经过反应的产物沉淀或蒸干,室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
作为其中的一种优选方案,在S01步骤中,溶剂为包括四氢呋喃、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中一种或多种的混合溶剂。
作为其中的一种优选方案,在S01步骤中,将预计量干燥的组分A混合于溶剂中,在30℃-80℃的温度条件下,反应0.5h-8h。
作为其中的一种优选方案,在S02步骤中,加入组分B后反应过夜的时间为8h-10h。
作为其中的一种优选方案,在S03步骤中,将经过反应的产物沉淀于***中,洗涤多次,室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
作为其中的一种优选方案,在S03步骤中,所述***的体积为产物的3-10倍。
作为其中的一种优选方案,在S03步骤中,采用水、乙醇中的一种或两种的混合溶剂来对沉淀后的产物进行洗涤。
综上所述,本发明至少具有以下有益之处:
1、本发明耐溶胀的磷酰胆碱改性聚氨酯材料,相较于现有技术而言,不仅可以有效的保证力学强度和抗溶胀性等关键性能,具有很强的应用价值和意义;而且组分中没有使用低聚物多元醇,材料的功能基团磷酰胆碱含量可大大的提高,功能基团表达显著。
2、本发明耐溶胀的磷酰胆碱改性聚氨酯材料,可有效的平衡磷酰胆碱的空间位阻和吸水性,使聚氨酯材料之间形成强氢键,从而获得高磷酰胆碱含量的聚氨酯材料,有效的提高聚氨酯材料的亲水性、力学模量响应特性和耐溶胀性。
3、本发明耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,在不借助低聚物多元醇的情况下,直接采用小分子扩链剂和多异氰酸酯聚合的方法来合成聚氨酯材料;不仅解决了现有技术中磷酸胆碱改性聚氨酯的溶胀问题,所得材料磷酰胆碱含量高,不仅亲水性良好,具有良好的力学模量响应特性,在吸水平衡后长时间保持稳定,吸水率及溶胀性质不发生变化;而且力学性能稳定,在水或者模拟体液环境下不发生降解。
附图说明
图1是本发明实施例中耐溶胀的磷酰胆碱改性聚氨酯材料的应力应变曲线图;
图2是本发明实施例中耐溶胀的磷酰胆碱改性聚氨酯材料的吸水率的变化曲线图;
图3是本发明实施例中耐溶胀的磷酰胆碱改性聚氨酯材料的拉伸强度和断裂伸长率变化对比图。
具体实施方式
第一方面,本发明提供一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇24-72份、二异氰酸酯90-235份;组分B:甘油磷酰胆碱100份、二异氰酸酯20-41份;其中小分子二醇为乙二醇、1,4丁二醇或1,3丁二醇。本发明中,包括组分A和组分B,组分中没有使用低聚物多元醇,其中,组分A直接采用小分子扩链剂和多异氰酸酯聚合,形成预聚物;随后,预聚物再与组分B结合,聚合成本发明中耐溶胀的磷酰胆碱改性聚氨酯材料,材料的功能基团磷酰胆碱含量可大大的提高,功能基团表达显著,相较于现有技术而言,不仅可以有效的保证力学强度和抗溶胀性等关键性能,具有很强的应用价值和意义;而且各组分可有效的平衡磷酰胆碱的空间位阻和吸水性,使聚氨酯材料之间形成强氢键,从而获得高磷酰胆碱含量的聚氨酯材料,有效的提高聚氨酯材料的亲水性、力学模量响应特性和耐溶胀性。
其中,本发明的耐溶胀的磷酰胆碱改性聚氨酯材料可优选为,由以下组分及组分质量份数组成,组分A:小分子二醇48-72份、二异氰酸酯176-235份;组分B:甘油磷酰胆碱100份、二异氰酸酯20-26份;其中小分子二醇为乙二醇、1,4丁二醇或1,3丁二醇。
第二方面,本发明还提供了上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将预计量干燥的组分A混合于溶剂中,在预设的温度条件下,反应一段时间;
S02,加入预计量干燥的组分B反应过夜;
S03,将经过反应的产物沉淀或蒸干,室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
进一步地,在S01步骤中,溶剂为包括四氢呋喃、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中一种或多种的混合溶剂,在30℃-80℃的温度条件下,反应0.5h-8h;在S02步骤中,加入组分B后反应过夜的时间为8h-10h。
在S03步骤中,将经过反应的产物沉淀于***中,洗涤多次,室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。优选地,***的体积为产物的3-10倍,采用水、乙醇中的一种或两种的混合溶剂来对沉淀后的产物进行洗涤。
下面将结合具体实施例来对本发明进行详细的说明,实施例仅是本发明的优选实施方式,并非对本发明的限定。
实施例1:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇72份和二异氰酸酯235份;组分B:甘油磷酰胆碱100份和二异氰酸酯26份;其中,小分子二醇为乙二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将72份干燥的乙二醇和235份二异氰酸酯(HDI)混合于二甲基亚砜(DMSO),于50℃下反应2h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和26份二异氰酸酯(HDI)反应8h;
S03,将经过反应的产物沉淀于5倍体积量的***中,再用乙醇溶液洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
实施例2:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇48份和二异氰酸酯176份;组分B:甘油磷酰胆碱100份和二异氰酸酯20份;其中,小分子二醇为乙二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将48份干燥的乙二醇和176份二异氰酸酯(HDI)混合于二甲基亚砜(DMSO),于50℃下反应2h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和20份二异氰酸酯(HDI)反应8h;
S03,将经过反应的产物沉淀于5倍体积量的***中,再用乙醇溶液洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
实施例3:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇24份和二异氰酸酯90份;组分B:甘油磷酰胆碱100份和二异氰酸酯41份;其中,小分子二醇为乙二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将24份干燥的乙二醇和90份二异氰酸酯(HDI)混合于二甲基亚砜(DMSO),于50℃下反应2h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和41份二异氰酸酯(HDI)反应8h;
S03,将经过反应的产物沉淀于5倍体积量的***中,再用乙醇溶液洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
实施例4:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇72份和二异氰酸酯176份;组分B:甘油磷酰胆碱100份和二异氰酸酯23份;其中,小分子二醇为1,3丁二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将72份干燥的1,3丁二醇和176份二异氰酸酯(HDI)混合于四氢呋喃溶剂中,于30℃下反应1h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和23份二异氰酸酯(HDI)反应10h;
S03,将经过反应的产物沉淀于3倍体积量的***中,再用水和乙醇的混合溶剂洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
实施例5:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇68份和二异氰酸酯227份;组分B:甘油磷酰胆碱100份和二异氰酸酯23份;其中,小分子二醇为1,4丁二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将68份干燥的1,4丁二醇和227份二异氰酸酯(HDI)混合于四氢呋喃溶剂中,于80℃下反应8h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和23份二异氰酸酯(HDI) 反应10h;
S03,将经过反应的产物沉淀于10倍体积量的***中,再用水和乙醇的混合溶剂洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
实施例6:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇68份和二异氰酸酯227份;组分B:甘油磷酰胆碱100份和二异氰酸酯23份;其中,小分子二醇为1,4丁二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将68份干燥的1,4丁二醇和227份二异氰酸酯(HDI)混合于N,N-二甲基甲酰胺中,于80℃下反应8h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和23份二异氰酸酯(HDI) 反应10h;
S03,将经过反应的产物沉淀于10倍体积量的***中,再用水和乙醇的混合溶剂洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
实施例7:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇72份和二异氰酸酯176份;组分B:甘油磷酰胆碱100份和二异氰酸酯23份;其中,小分子二醇为1,3丁二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将72份干燥的1,3丁二醇和176份二异氰酸酯(HDI)混合于N,N-二甲基甲酰胺、N,N-二甲基乙酰胺的混合溶剂中,于80℃下反应6h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和23份二异氰酸酯(HDI)反应10h;
S03,将经过反应的产物沉淀于3倍体积量的***中,再用水和乙醇的混合溶剂洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
实施例8:
一种耐溶胀的磷酰胆碱改性聚氨酯材料,由以下组分及组分质量份数组成,组分A:小分子二醇72份和二异氰酸酯235份;组分B:甘油磷酰胆碱100份和二异氰酸酯26份;其中,小分子二醇为乙二醇。
上述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,包括以下步骤:
S01,将72份干燥的乙二醇和235份二异氰酸酯(HDI)混合于二甲基亚砜(DMSO)和四氢呋喃的混合溶剂中,于65℃下反应6h;
S02,加入质量份数为100份干燥的甘油磷酰胆碱和26份二异氰酸酯(HDI)反应8h;
S03,将经过反应的产物沉淀于5倍体积量的***中,再用乙醇溶液洗涤三次,以除去反应物中可能存在的小分子原料或低分子量聚合物;室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
对比例1:
基于实施例1,不同之处仅在于:本对比例1中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
对比例2:
基于实施例2,不同之处仅在于:本对比例2中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
对比例3:
基于实施例3,不同之处仅在于:本对比例3中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
对比例4:
基于实施例4,不同之处仅在于:本对比例4中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
对比例5:
基于实施例5,不同之处仅在于:本对比例5中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
对比例6:
基于实施例6,不同之处仅在于:本对比例6中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
对比例7:
基于实施例7,不同之处仅在于:本对比例7中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
对比例8:
基于实施例8,不同之处仅在于:本对比例8中使用了等摩尔量的分子量1000的低聚物二元醇代替小分子二醇。
试验例1:力学模量响应特性验证
将实施例1-8中所得到的耐溶胀的磷酰胆碱改性聚氨酯材料,分别用国标4*75哑铃裁刀裁出哑铃型样条进行测试,分别对哑铃型样条在干燥状态下和浸泡8h完全实现平衡状态下进行拉伸测试,得到哑铃型样条的应力应变曲线如附图1所示;其中,附图1中的E表示弹性模量,根据国标中的弹性模量计算方法测得。
由附图1的应力应变曲线图可知,在干燥环境中,哑铃型样条弹性模量为764Mpa,在水环境下,哑铃型样条弹性模量为30 Mpa;由此可见,实施例1-8中耐溶胀的磷酰胆碱改性聚氨酯材料在不同的环境中体现出了不同的力学特性,具有良好的力学响应性质。
试验例2:亲水性及耐溶胀性验证
将实施例1-8中所得到的耐溶胀的磷酰胆碱改性聚氨酯材料,分别裁剪成100mm×10mm×1mm的长条样本,分别对长条样本为干燥状态下和浸泡至水中不同时间的状态下,进行质量称重,通过质量变化计算实施例1-8耐溶胀的磷酰胆碱改性聚氨酯材料长条样本吸水率的变化曲线如附图2所示。
由附图2的吸水率变化曲线的小图可知,长条样本在10分钟左右就达到了吸水平衡;再由附图2的吸水率变化曲线的大图可知,长条样本在后续20多小时的浸泡时间内,吸水一直没有变化;由此可知,实施例1-8中耐溶胀的磷酰胆碱改性聚氨酯材料浸泡后,可在短时间内达到溶胀平衡,且长时间浸泡的情况下,其耐溶胀性能不发生变化。
试验例3:力学强度验证
将实施例1-8中所得到的耐溶胀的磷酰胆碱改性聚氨酯材料,分别用国标4*75哑铃裁刀裁出哑铃型样条进行测试,通过拉力机测试耐溶胀的磷酰胆碱改性聚氨酯材料样条在初始平衡状态下和在PBS溶液中浸泡30天后的应力应变曲线得出其拉伸强度和断裂伸长率对比如附图3所示。
由附图3中拉伸强度和断裂伸长率的变化对比可知,样条在初始平衡状态下的拉伸强度约为13 Mpa,断裂伸长率约为275%;样条在PBS溶液中浸泡30条后的拉伸强度约为10Mpa,断裂伸长率约为290%;由此可见,实施例1-8中耐溶胀的磷酰胆碱改性聚氨酯材料在模拟液体中浸泡30天后,其拉伸强度和断裂伸长率没有显著变化,可证明耐溶胀的磷酰胆碱改性聚氨酯材料在模拟液体中浸泡30天后的力学强度基本维持不变。
试验例4:磷酰胆碱含量升高带来表面亲水性的改善
选取实施例1-4和对比例1-4所得到的耐溶胀的磷酰胆碱改性聚氨酯材料,分别采用水静态接触角进行测试,即通过将水滴滴在材料表面,用摄像机快速摄取水滴在材料表面的静态形状,通过计算软件计算出材料的静态水接触角,结果如下所示:
磷酰胆碱含量 接触角
实施例1 23% 28°
实施例2 29% 21°
实施例3 46% 15°
实施例4 23% 29°
对比例1 6.6% 68°
对比例2 9.3% 56°
对比例3 17.7% 39°
对比例4 9.1% 59°
由此可知,实施例1-4中的磷酰胆碱含量高,静态水接触角小,材料亲水性强;而对比例1-4中的磷酰胆碱含量低,静态水接触角大,材料亲水性较弱。
从上述实施例的技术方案可以看出,本发明提供了一种耐溶胀的磷酰胆碱改性聚氨酯材料,不仅可以有效的保证力学强度和抗溶胀性等关键性能,具有很强的应用价值和意义;而且组分中没有使用低聚物多元醇,材料的功能基团磷酰胆碱含量可大大的提高,功能基团表达显著。另外,可有效的平衡磷酰胆碱的空间位阻和吸水性,使聚氨酯材料之间形成强氢键,从而获得高磷酰胆碱含量的聚氨酯材料,有效的提高聚氨酯材料的亲水性、力学模量响应特性和耐溶胀性。本发明还提供了一种耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,在不借助低聚物多元醇的情况下,直接采用小分子扩链剂和多异氰酸酯聚合的方法来合成聚氨酯材料;不仅解决了现有技术中磷酸胆碱改性聚氨酯的溶胀问题,所得材料磷酰胆碱含量高,不仅亲水性良好,具有良好的力学模量响应特性,在吸水平衡后长时间保持稳定,吸水率及溶胀性质不发生变化;而且力学性能稳定,在水或者模拟体液环境下不发生降解。
虽然对本发明的描述是结合以上具体实施例进行的,但是,熟悉本技术领域的人员能够根据上述的内容进行许多替换、修改和变化、是显而易见的。因此,所有这样的替代、改进和变化都包括在附后的权利要求的精神和范围内。

Claims (9)

1.一种耐溶胀的磷酰胆碱改性聚氨酯材料,其特征在于,由以下组分及组分质量份数组成:
组分A:
小分子二醇 24-72份
二异氰酸酯 90-235份;
组分B:
甘油磷酰胆碱 100份
二异氰酸酯 20-41份;
其中所述小分子二醇为乙二醇、1,4丁二醇或1,3丁二醇。
2.根据权利要求1所述的磷酰胆碱改性聚氨酯材料,其特征在于,由以下组分及组分质量份数组成:
组分A:
小分子二醇 48-72份
二异氰酸酯 176-235份;
组分B:
甘油磷酰胆碱 100份
二异氰酸酯 20-26份;
其中所述小分子二醇为乙二醇、1,4丁二醇或1,3丁二醇。
3.一种如权利要求1或2所述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,其特征在于,包括以下步骤:
S01,将预计量干燥的组分A混合于溶剂中,在预设的温度条件下,反应一段时间;
S02,加入预计量干燥的组分B反应过夜;
S03,将经过反应的产物沉淀或蒸干,室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
4.根据权利要求3所述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,其特征在于,在S01步骤中,溶剂为包括四氢呋喃、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中一种或多种的混合溶剂。
5.根据权利要求3所述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,其特征在于,在S01步骤中,将预计量干燥的组分A混合于溶剂中,在30℃-80℃的温度条件下,反应0.5h-8h。
6.根据权利要求3所述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,其特征在于,在S02步骤中,加入组分B后反应过夜的时间为8h-10h。
7.根据权利要求3所述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,其特征在于,在S03步骤中,将经过反应的产物沉淀于***中,洗涤多次,室温下真空干燥,即可得到耐溶胀的磷酰胆碱改性聚氨酯材料。
8.根据权利要求7所述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,其特征在于,在S03步骤中,所述***的体积为产物的3-10倍。
9.根据权利要求7所述耐溶胀的磷酰胆碱改性聚氨酯材料的制备方法,其特征在于,在S03步骤中,采用水、乙醇中的一种或两种的混合溶剂来对沉淀后的产物进行洗涤。
CN202111648192.3A 2021-12-29 2021-12-29 一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法 Active CN114213615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111648192.3A CN114213615B (zh) 2021-12-29 2021-12-29 一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111648192.3A CN114213615B (zh) 2021-12-29 2021-12-29 一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114213615A CN114213615A (zh) 2022-03-22
CN114213615B true CN114213615B (zh) 2022-09-16

Family

ID=80706927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111648192.3A Active CN114213615B (zh) 2021-12-29 2021-12-29 一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114213615B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117843674B (zh) * 2023-12-29 2024-06-04 珠海宏昌电子材料有限公司 含有磷酰胆碱结构的二异氰酸酯及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046659A1 (fr) * 1997-04-17 1998-10-22 Toyobo Co., Ltd. Polymeres biocompatibles
JPH10287687A (ja) * 1997-02-13 1998-10-27 Nof Corp ホスホリルコリン基含有ジオール、製造方法、ポリウレタン及び用途
CN106674486A (zh) * 2016-12-28 2017-05-17 山东师范大学 一种侧链含磷酰胆碱基团聚酯型聚氨酯材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002950340A0 (en) * 2002-07-23 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Biodegradable polyurethane/urea compositions
JP4628951B2 (ja) * 2003-02-18 2011-02-09 学校法人東海大学 ホスホリルコリン基を有する化合物、その重合体ならびにその製造方法
EP2058353B1 (en) * 2006-09-01 2012-02-15 Tokai University Educational System Diamine compound having phosphorylcholine group, polymer thereof and method for producing the same
JP2011162522A (ja) * 2010-02-15 2011-08-25 Tokai Univ ホスホリルコリン基を有するジオール化合物および重合体
CN104448153B (zh) * 2013-09-17 2017-05-24 同济大学 一种含磷酸胆碱的高强度聚氨酯水凝胶及其制备方法
CN106589290B (zh) * 2016-12-28 2019-06-28 山东师范大学 一种高生物相容性磷酰胆碱改性聚氨酯材料及其制备方法
CN106674484B (zh) * 2016-12-28 2019-09-24 山东师范大学 一种侧链含磷酰胆碱基团聚醚型聚氨酯材料及其制备方法
CN107216435B (zh) * 2017-06-26 2020-01-31 山东师范大学 一种侧链为磷脂化聚乙二醇的聚(氨酯-脲)及其制备方法
CN111234170A (zh) * 2020-01-15 2020-06-05 中国科学院长春应用化学研究所 一种聚氨酯材料及其制备方法和在人工半月板材料上的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287687A (ja) * 1997-02-13 1998-10-27 Nof Corp ホスホリルコリン基含有ジオール、製造方法、ポリウレタン及び用途
WO1998046659A1 (fr) * 1997-04-17 1998-10-22 Toyobo Co., Ltd. Polymeres biocompatibles
CN106674486A (zh) * 2016-12-28 2017-05-17 山东师范大学 一种侧链含磷酰胆碱基团聚酯型聚氨酯材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
含有磷酰胆碱基聚氨酯的合成及其结构—性能研究;张琦;《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》;20150315(第03期);E080-27 *

Also Published As

Publication number Publication date
CN114213615A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
O'Sickey et al. Structure–property relationships of poly (urethane urea) s with ultra‐low monol content poly (propylene glycol) soft segments. I. Influence of soft segment molecular weight and hard segment content
US4137200A (en) Crosslinked hydrophilic foams and method
Petrini et al. Design, synthesis and properties of polyurethane hydrogels for tissue engineering
Al‐Salah et al. Polyurethane cationomers. I. Structure–properties relationships
MAHMOUD et al. Morphological Studies Of Polyurethane Elastomers Extended With Alpha, Ω Alkane Diols
Jeong et al. Compressive viscoelastic properties of softwood kraft lignin-based flexible polyurethane foams
CN114213615B (zh) 一种耐溶胀的磷酰胆碱改性聚氨酯材料及其制备方法
GB2024233A (en) Polyurethanes of trans - cyclohexane - 1,4 diisocyanate
Aduba Jr et al. Electrospinning of plant oil‐based, non‐isocyanate polyurethanes for biomedical applications
US4851482A (en) Blends and articles of linear alternating polyketone polymer with polyurethane polymer
US20060276613A1 (en) Polyurethaneurea segmented copolymers
Ni et al. Synthesis of polyurethanes from solvolysis lignin using a polymerization catalyst: mechanical and thermal properties
Nierzwicki et al. Microphase separation and properties of urethane elastomers
PT97089A (pt) Processo para a preparacao de polioxialquileno-poliois contendo blocos internos de polioxietileno e de poliuretanos obtidos a partir deles
JPWO2010001898A1 (ja) 多分岐性ポリエステルの製造方法、ポリウレタンの製造方法、ポリウレタン
JP7229346B2 (ja) ポリオール組成物
Gao et al. Influence of siloxane co-segment length and content of waterborne polysiloxane-urethane copolymers on their water resistance, thermal stability and mechanical properties
Chung et al. Synthesis, characterization and properties of biomass and carbon dioxide derived polyurethane reactive hot-melt adhesives
Abt et al. Isocyanate toughened pCBT: Reactive blending and tensile properties
Kasprzyk et al. Green thermoplastic poly (ether-urethane) s–synthesis, chemical structure and selected properties investigation
Dzierża Stress–relaxation properties of segmented polyurethane rubbers
Santerre et al. Microstructure of polyurethane ionomers derivatized with dodecylamine and polyethylene oxide in the hard segment
Cohen et al. Polyurethane elastomers containing polybutadiene and aliphatic diols: Polymerization and structure
Niu et al. The preparation and performance of phenolic foams modified by active polypropylene glycol
KR20200132551A (ko) 인장물성이 우수한 형상기억 폴리우레탄 제조방법 및 이에 의해 제조된 형상기억 폴리우레탄

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant