CN114189881A - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
CN114189881A
CN114189881A CN202010960614.XA CN202010960614A CN114189881A CN 114189881 A CN114189881 A CN 114189881A CN 202010960614 A CN202010960614 A CN 202010960614A CN 114189881 A CN114189881 A CN 114189881A
Authority
CN
China
Prior art keywords
signaling
signal
timing
node
synchronization reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010960614.XA
Other languages
English (en)
Inventor
蒋琦
张晓博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Langbo Communication Technology Co Ltd
Original Assignee
Shanghai Langbo Communication Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Langbo Communication Technology Co Ltd filed Critical Shanghai Langbo Communication Technology Co Ltd
Priority to CN202010960614.XA priority Critical patent/CN114189881A/zh
Publication of CN114189881A publication Critical patent/CN114189881A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信号,随后发送第一信令和第一参考信号;所述第一信号通过空中接口传输,所述第一信号被所述节点用于确定第一接收定时,所述第一接收定时和第一时间偏移量被用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。本申请优化副链路上通过无线信号进行定位的方法和装置,以提高定位性能。

Description

一种被用于无线通信的节点中的方法和装置
技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及无线通信中的用于定位的无线信号的传输方案和装置。
背景技术
移动设备的定位技术对于紧急电话、导航。
未来无线通信***的应用场景越来越多元化,不同的应用场景对***提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation PartnerProject,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
针对迅猛发展的车联网(Vehicle-to-Everything,V2X)业务,3GPP也开始启动了在NR框架下的标准制定和研究工作。目前3GPP已经完成了面向5G V2X业务的需求制定工作,并写入标准TS22.886中。3GPP为5G V2X业务识别和定义了4大用例组(Use CaseGroup),包括:自动排队驾驶(Vehicles Platnooning),支持扩展传感(ExtendedSensors),半/全自动驾驶(Advanced Driving)和远程驾驶(Remote Driving)。在3GPPRAN#80次全会上已启动基于NR的V2X技术研究。
发明内容
在NR V2X***中,在覆盖外、隧道、缺少网络信号等场景中,通过SL(Sidelink,副链路)可提供覆盖广,延迟小,并且更精准的定位。通常的定位方法是通过多个通信节点发送多个定位参考信号来实现三点定位。传统的定位方法中,往往需要发送定位信号的节点之间保持相同的定时,进而保证接收端能够准确估计接收到的定位信号所经历的传输延迟,以推算与定位信号发送端的距离,进而进行定位。V2X***中,终端能够自主的选择同步参考(Synchronization Reference),且考虑到对蜂窝网上行接收的干扰,蜂窝网覆盖下的V2X信号的发送往往需要参考基站的上行定时;且对于进行定位的终端,可能会收到来自不同同步参考的定位信号。上述问题,给采用终端之间传输的无线信号进行的定位的方法提出了挑战。
针对上述问题,本申请公开了一种SL(Sidelink,副链路)定位参考信号的传输方法,并考虑到定时、同步参考及干扰等多种因素。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对SL,但本申请也能被用于UL(Uplink,上行链路)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对V2X场景,但本申请也同样适用于终端与基站,终端与中继,以及中继与基站之间的通信场景,取得类似的V2X场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
进一步的,在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS(TechnicalSpecification)36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信号;
发送第一信令和第一参考信号;
其中,所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,上述方法的一个技术特征在于:通过第一信令,即动态信令指示所述第一信令所参考的同步源和所述第一参考信号所参考的同步源是否相同,以告知接收所述第一参考信号的接收者是否可以按照来自所述第一节点的发送定时确定所述第一参考信号的发送定时,进而提高定时精度。
作为一个实施例,上述方法的另一个技术特征在于:上述方法使所述第一参考信号的接收者能够接收来自不同同步源的PRS(Positioning Reference Signal,定位参考信号)进行定位,大大增加了副链路上定位的灵活性和可实施性。
根据本申请的一个方面,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第一域,所述第一域被用于指示第二时间偏移值,所述第一信令的发送定时和所述第一参考信号的发送定时之间的时间差等于所述第二时间偏移值。
作为一个实施例,上述方法的技术特征在于:通过所述第一信令中的所述第一域动态指示所述第一同步参考和所述第二同步参考之间的定时偏差,帮助接收定位信号的终端正确进行定位。
根据本申请的一个方面,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第二域,第一时频资源集合被预留用于所述第一参考信号的传输,所述第一参考信号在第二时频资源集合中被传输,所述第一时频资源集合在时域偏移K1个多载波符号后确定所述第二时频资源集合,所述第二域被用于指示所述K1,所述K1是整数。
作为一个实施例,上述方法的技术特征在于:当所述第一参考信号的同步参考和所述第一信令的同步参考不同时,即存在不对齐时,所述第一信令按照所述第一同步参考的定时将所述第一参考信号所占用的时频位置指示出,方便其它非定位用户进行信道感知以避免与所述第一参考信号相互干扰。
根据本申请的一个方面,包括:
发送第一信息块;
其中,所述第一同步参考和所述第二同步参考分别对应第一标识和第二标识,所述第一信息块包括所述第一标识和所述第二标识,所述第一信息块指示第二时间偏移值,所述第一同步参考所对应的定时和所述第二同步参考所对应的定时之间的时间差等于所述第二时间偏移值。
作为一个实施例,上述方法的技术特征在于:通过高层信令发送所述第二时间偏移值,以降低物理层信令开销。
根据本申请的一个方面,所述第一时频资源集合是M1个候选时频资源集合中的一个候选时频资源集合,所述第一信令被用于从所述M1个候选时频资源集合中指示所述第一时频资源集合。
作为一个实施例,上述方法的技术特征在于:配置多个用于定位参考信号发送的时频资源集合,且灵活指示其中一个,以提高定位参考信号发送的灵活性。
根据本申请的一个方面,包括:
发送第二信号;
其中,所述第二信号的发送定时和所述第一信令的发送定时相同,所述第二信号占用目标时频资源集合,所述第一信令被用于指示所述目标时频资源集合。
根据本申请的一个方面,包括:
接收目标信令;
其中,所述目标信令被用于触发所述第一参考信号的发送。
根据本申请的一个方面,包括:
发送目标同步信号;
其中,所述第一接收定时和所述第一时间偏移值被共同用于确定所述目标同步信号的发送定时;所述目标同步信号被用于确定所述第二信号的接收定时。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
接收第一信令和第一参考信号;
其中,所述第一信令被用于确定第一同步参考和第二同步参考的关系;第一接收定时被关联到所述第一同步参考,所述第二同步参考被用于确定所述第一参考信号的发送定时;所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一信令的发送者通过接收的第一信号确定所述第一接收定时;所述第一信号的发送者和所述第二节点是非共址的;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
根据本申请的一个方面,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第一域,所述第一域被用于指示第二时间偏移值,所述第一信令的发送定时和所述第一参考信号的发送定时之间的时间差等于所述第二时间偏移值。
根据本申请的一个方面,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第二域,第一时频资源集合被预留用于所述第一参考信号的传输,所述第一参考信号在第二时频资源集合中被传输,所述第一时频资源集合在时域偏移K1个多载波符号后确定所述第二时频资源集合,所述第二域被用于指示所述K1,所述K1是整数。
根据本申请的一个方面,包括:
接收第一信息块;
其中,所述第一同步参考和所述第二同步参考分别对应第一标识和第二标识,所述第一信息块包括所述第一标识和所述第二标识,所述第一信息块指示第二时间偏移值,所述第一同步参考所对应的定时和所述第二同步参考所对应的定时之间的时间差等于所述第二时间偏移值。
根据本申请的一个方面,所述第一时频资源集合是M1个候选时频资源集合中的一个候选时频资源集合,所述第一信令被用于从所述M1个候选时频资源集合中指示所述第一时频资源集合。
根据本申请的一个方面,包括:
接收第二信号;
其中,所述第二信号的发送定时和所述第一信令的发送定时相同,所述第二信号占用目标时频资源集合,所述第一信令被用于指示所述目标时频资源集合。
根据本申请的一个方面,包括:
发送目标信令;
其中,所述目标信令被用于触发所述第一参考信号的发送。
根据本申请的一个方面,包括:
接收目标同步信号;
其中,所述第一接收定时和所述第一时间偏移值被共同用于确定所述目标同步信号的发送定时;所述目标同步信号被用于确定所述第二信号的接收定时。
本申请公开了一种用于无线通信的第三节点中的方法,包括:
发送第一信号;
其中,所述第一信号通过空中接口传输,所述第一信号的接收者包括第一节点,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
根据本申请的一个方面,包括:
发送目标信令;
其中,所述目标信令被用于触发所述第一参考信号的发送。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信号;
第一收发机,发送第一信令和第一参考信号;
其中,所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
本申请公开了一种用于无线通信的第二节点,包括:
第二收发机,接收第一信令和第一参考信号;
其中,所述第一信令被用于确定第一同步参考和第二同步参考的关系;第一接收定时被关联到所述第一同步参考,所述第二同步参考被用于确定所述第一参考信号的发送定时;所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一信令的发送者通过接收的第一信号确定所述第一接收定时;所述第一信号的发送者和所述第二节点是非共址的;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
本申请公开了一种用于无线通信的第三节点,包括:
第一发射机,发送第一信号;
其中,所述第一信号通过空中接口传输,所述第一信号的接收者包括第一节点,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.通过第一信令,即动态信令指示所述第一信令所参考的同步源和所述第一参考信号所参考的同步源是否相同,以告知接收所述第一参考信号的接收者是否可以按照来自所述第一节点的发送定时确定所述第一参考信号的发送定时,进而提高定时精度;
-.通过显性信息指示所述第一同步参考和所述第二同步参考之间的定时偏差,帮助接收定位信号的终端正确进行定位,进而使所述第一参考信号的接收者能够接收来自不同同步源的参考信号并将上述参考信号共同用于定位,大大增加了副链路上定位的灵活性和可实施性;
-.当所述第一参考信号的同步参考和所述第一信令的同步参考不同时,即存在不对齐时,所述第一信令按照所述第一同步参考的定时将所述第一参考信号所占用的时频位置指示出,方便其它非定位用户进行信道感知以避免与所述第一参考信号相互干扰。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信号的流程图;
图6示出了根据本申请的一个实施例的第一信息块的流程图;
图7示出了根据本申请的一个实施例的目标信令的流程图;
图8示出了根据本申请的一个实施例的第一节点,第二节点和第三节点的示意图;
图9示出了根据本申请的一个实施例的第一时间偏移值的示意图;
图10示出了根据本申请的一个实施例的第二时间偏移值的示意图;
图11示出了根据本申请的一个实施例的第一时频资源集合和第二时频资源集合的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第三节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信号;在步骤102中发送第一信令和第一参考信号。
实施例1中,所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号被用于指示所述第一时间偏移值。
作为一个实施例,所述第一信号通过RRC(Radio Resource Control,无线资源控制)信令传输。
作为一个实施例,所述第一信号通过物理层信令传输。
作为一个实施例,所述第一信号通过MAC(Multimedia Access Control,多媒体接入控制)层信令传输。
作为一个实施例,所述第一信号通过MAC CE(Control Elements,控制单元)传输。
作为一个实施例,所述第一信号通过空中接口传输的意思包括:所述第一信息块通过无线链路传输。
作为一个实施例,所述第一信号通过空中接口传输的意思包括:所述第一信息块的发送者和所述第一节点之间不存在有线连接。
作为一个实施例,所述第一信号通过定时提前命令(Timing Advance Command)MAC CE传输。
作为一个实施例,所述第一信号通过RAR(Random Access Response,随机接入响应)传输。
作为一个实施例,所述第一信号通过Msg2(消息2)传输。
作为一个实施例,所述第一信号通过MsgB(消息B)传输。
作为一个实施例,所述第一时间偏移值的单位是毫秒。
作为一个实施例,所述第一时间偏移值的单位是微秒。
作为一个实施例,所述第一时间偏移值的单位是纳秒。
作为一个实施例,所述第一时间偏移值等于正整数个TC,所述TC参考TS 38.211。
作为该实施例的一个子实施例,所述TC是一个基本时间单元。
作为该实施例的一个子实施例,所述TC等于1/(ΔfmaxNf),其中,Δfmax等于480000赫兹,所述Nf等于4096。
作为一个实施例,所述第一信号包括PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第一信号包括SSS(Secondary Synchronization Signal,辅同步信号)。
作为一个实施例,所述第一信号包括SSB(SS/PBCH Block,同步信号/物理广播信道块)。
作为一个实施例,承载所述第一信号的物理层信道包括PSBCH(PhysicalSidelink Broadcasting Channel,物理副链路广播信道)。
作为一个实施例,承载所述第一信号的物理层信道包括PSDCH(PhysicalSidelink Discovery Channel,物理副链路发现信号)。
作为一个实施例,所述第一信号包括PSSS(Primary Sidelink SynchronizationSignal,主副链路同步信号)。
作为一个实施例,所述第一信号包括SSSS(Secondary SidelinkSynchronization Signal,辅副链路同步信号)。
作为一个实施例,所述第一信号在蜂窝链路上被传输。
作为一个实施例,所述第一信号在Uu口上被传输。
作为一个实施例,所述第一信号的发送者是一个基站。
作为一个实施例,所述第一信号的发送者是一个终端。
作为一个实施例,所述第一信号被所述第一节点用于确定第一接收定时的意思包括:所述第一节点通过接收所述第一信号确定来自所述第一信号的发送者的无线信号的接收时刻。
作为一个实施例,所述第一信号被所述第一节点用于确定第一接收定时的意思包括:所述第一节点通过接收所述第一信号确定来自所述第一信号的发送者的无线信号所参考的DFN(Direct Frame Number,直接帧号)。
作为一个实施例,所述第一信号被所述第一节点用于确定第一接收定时的意思包括:所述第一节点通过接收所述第一信号确定来自所述第一信号的发送者的无线信号所参考的SFN(System Frame Number,***帧号)。
作为一个实施例,所述第一信号被所述第一节点用于确定第一接收定时的意思包括:所述第一节点通过接收所述第一信号确定来自所述第一信号的发送者的无线信号所占用的子帧的边界。
作为一个实施例,所述第一信号被所述第一节点用于确定第一接收定时的意思包括:所述第一节点通过接收所述第一信号确定来自所述第一信号的发送者的无线信号所占用的时隙的边界。
作为一个实施例,上述句子“所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时”的意思包括:所述第一接收定时提前所述第一时间偏移值后是所述第一信令的所述发送定时。
作为一个实施例,上述句子“所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时”的意思包括:发送所述第一信令的时隙的边界相较按照所述第一接收定时确定的时隙的边界提前了所述第一时间偏移值。
作为一个实施例,上述句子“所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时”的意思包括:所述第一信令在第K1个时隙开始发送,所述第K1个时隙按照所述第一接收定时在时域的起始时刻是T1毫秒,所述第一信令在时域的实际发送起始时刻较所述T1毫秒提前了所述第一时间偏移值。
作为一个实施例,所述第一时间偏移值等于所述第一信号的发送者到所述第一节点的传输时延。
作为一个实施例,所述第一时间偏移值等于所述第一节点到所述第一信号的发送者的TA(Timing Advance,定时提前)。
作为一个实施例,所述第一时间偏移值等于所述第一节点到所述第一信号的发送者的TA的一半。
作为一个实施例,所述第一信号被用于指示所述第一时间偏移值。
作为一个实施例,所述第一信令是SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,承载所述第一信令的物理层信道包括PSCCH(PhysicalSidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一信令是第一级(1st Stage)SCI。
作为一个实施例,所述第一信令是第二级(2nd Stage)SCI。
作为一个实施例,承载所述第一信令的物理层信道包括PSSCH(PhysicalSidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一信令被用于指示所述第一参考信号被发送。
作为一个实施例,所述第一参考信号是PRS(Positioning Reference Signal,定位参考信号)。
作为一个实施例,所述第一参考信号是SL-PRS(Sidelink PositioningReference Signal,副链路定位参考信号)。
作为一个实施例,所述第一参考信号的接收者包括第二节点,所述第一参考信号被所述第二节点用于自身定位。
作为一个实施例,本申请中的所述副链路包括Sidelink。
作为一个实施例,本申请中的所述副链路被用于终端和终端直接的传输。
作为一个实施例,上述句子“所述第一接收定时被关联到第一同步参考”的意思包括:所述第一同步参考所发送的无线信号被用于确定所述第一接收定时。
作为一个实施例,上述句子“所述第一接收定时被关联到第一同步参考”的意思包括:所述第一同步参考所发送的无线信号被用于确定所述第一接收定时。
作为一个实施例,上述句子“所述第一接收定时被关联到第一同步参考”的意思包括:所述第一接收定时的同步源是所述第一同步参考。
作为一个实施例,上述句子“所述第一接收定时被关联到第一同步参考”的意思包括:所述第一同步参考自身的定时被用于确定所述第一接收定时。
作为一个实施例,上述句子“所述第一接收定时被关联到第一同步参考”的意思包括:所述第一同步参考的发送定时被用于确定所述第一接收定时。
作为一个实施例,所述第一同步参考是GNSS(Global Navigation SatelliteSystem,全球导航卫星***)。
作为一个实施例,所述第一同步参考是基站。
作为一个实施例,所述第一同步参考是终端。
作为一个实施例,上述句子“第二同步参考被用于确定所述第一参考信号的发送定时”的意思包括:所述第二同步参考所发送的无线信号被用于确定所述第一参考信号的发送定时。
作为一个实施例,上述句子“第二同步参考被用于确定所述第一参考信号的发送定时”的意思包括:所述第二同步参考所发送的无线信号被用于确定所述第一参考信号的发送定时。
作为一个实施例,上述句子“第二同步参考被用于确定所述第一参考信号的发送定时”的意思包括:所述第二同步参考的发送定时和所述第一参考信号的发送定时相同。
作为一个实施例,上述句子“第二同步参考被用于确定所述第一参考信号的发送定时”的意思包括:所述第二同步参考的发送定时和所述第一参考信号的发送定时相同。
作为一个实施例,上述句子“第二同步参考被用于确定所述第一参考信号的发送定时”的意思包括:所述第二同步参考的发送定时所对应的子帧边界和所述第一参考信号的发送定时所对应的子帧边界相同。
作为一个实施例,上述句子“第二同步参考被用于确定所述第一参考信号的发送定时”的意思包括:所述第二同步参考的发送定时和所述第一参考信号的发送定时之间的时间偏差是固定的,且所述时间偏差与所述第一节点所在的位置无关。
作为一个实施例,所述第二同步参考是GNSS。
作为一个实施例,所述第二同步参考是基站。
作为一个实施例,所述第二同步参考是终端。
作为一个实施例,所述第一信令被用于指示所述第一同步参考和所述第二同步参考的关系。
作为一个实施例,所述第一同步参考和所述第二同步参考的关系包括所述第一同步参考和所述第二同步参考相同。
作为一个实施例,所述第一同步参考和所述第二同步参考的关系包括所述第一同步参考和所述第二同步参考不同。
作为一个实施例,所述第一同步参考和所述第二同步参考的关系包括所述第一同步参考和所述第二同步参考之间的定时偏差等于T2毫秒。
作为一个实施例,所述第一同步参考和所述第二同步参考的关系包括所述第一同步参考所对应的用于同步源指示的标识和所述第二同步参考所对应的用于同步源指示的标识相同。
作为一个实施例,所述第一同步参考和所述第二同步参考的关系包括所述第一同步参考所对应的用于同步源指示的标识和所述第二同步参考所对应的用于同步源指示的标识不同。
作为一个实施例,所述第一节点在发送所述第一参考信号之前进行信道感知以确定信道是空闲的。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-TermEvolution Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,以及一个UE 241,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201或UE241的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication ManagementField,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。UE201和UE241进行V2X通信。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201具有定位能力的终端。
作为一个实施例,所述UE201具有发送用于副链路定位的定位参考信号的能力。
作为一个实施例,所述UE241对应本申请中的所述第二节点。
作为一个实施例,所述UE241具有定位能力的终端。
作为一个实施例,所述UE241具有接收用于副链路定位的定位参考信号的能力。
作为一个实施例,所述UE241具有基于TOA(Time of Arrival,到达时间)进行定位的能力。
作为一个实施例,所述UE241具有基于TDOA(Time Difference of Arrival,到达时间差)进行定位的能力。
作为一个实施例,所述gNB203对应本申请中的所述第三节点。
作为一个实施例,所述gNB203支持V2X业务。
作为一个实施例,所述gNB203支持定位服务。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data ConvergenceProtocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(RadioResouce Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,本申请中的所述第一信息块生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信息块生成于所述RRC306。
作为一个实施例,本申请中的所述第一参考信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一参考信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一参考信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一参考信号生成于L3以上的应用层。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息块生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信息块生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信息块生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息块生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信息块生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信息块生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述目标信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述目标信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述目标信令生成于所述RRC306。
作为一个实施例,本申请中的所述目标信令生成于L3以上的应用层。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第三节点是一个基站。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信号,以及发送第一信令和第一参考信号;所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信号,以及发送第一信令和第一参考信号;所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:接收第一信令和第一参考信号;所述第一信令被用于确定第一同步参考和第二同步参考的关系;第一接收定时被关联到所述第一同步参考,所述第二同步参考被用于确定所述第一参考信号的发送定时;所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一信令的发送者通过接收的第一信号确定所述第一接收定时;所述第一信号的发送者和所述第二节点是非共址的;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令和第一参考信号;所述第一信令被用于确定第一同步参考和第二同步参考的关系;第一接收定时被关联到所述第一同步参考,所述第二同步参考被用于确定所述第一参考信号的发送定时;所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一信令的发送者通过接收的第一信号确定所述第一接收定时;所述第一信号的发送者和所述第二节点是非共址的;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信号;所述第一信号通过空中接口传输,所述第一信号的接收者包括第一节点,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信号;所述第一信号通过空中接口传输,所述第一信号的接收者包括第一节点,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个终端。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个定位服务器。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第一信令和第一参考信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第一信令和第一参考信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第一信息块;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第一信息块。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第二信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第二信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收目标信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送目标信令。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送目标同步信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收目标同步信号。
实施例5
实施例5示例了一个第一信号的流程图,如附图5所示。在附图5中,第一节点U1、第二节点U2与第三节点N3之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序;其中,方框F0中的步骤是可选的。
对于第一节点U1,在步骤S10中接收目标信令,在步骤S11中在接收第一信号,在步骤S12中发送目标同步信号,在步骤S13中发送第一信令和第一参考信号,在步骤S14中发送第二信号。
对于第二节点U2,在步骤S20中接收目标同步信号,在步骤S21中接收第一信令和第一参考信号,在步骤S22中接收第二信号。
对于第三节点N3,在步骤S30中发送目标信令,在步骤S31中发送第一信号。
实施例5中,所述第一信号通过空中接口传输,所述第一信号被所述第一节点U1用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令;所述第二信号的发送定时和所述第一信令的发送定时相同,所述第二信号占用目标时频资源集合,所述第一信令被用于指示所述目标时频资源集合;所述目标信令被用于触发所述第一参考信号的发送;所述第一接收定时和所述第一时间偏移值被共同用于确定所述目标同步信号的发送定时;所述目标同步信号被用于确定所述第二信号的接收定时。
作为一个实施例,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第一域,所述第一域被用于指示第二时间偏移值,所述第一信令的发送定时和所述第一参考信号的发送定时之间的时间差等于所述第二时间偏移值。
作为该实施例的一个子实施例,所述第二时间偏移值的单位是毫秒。
作为该实施例的一个子实施例,所述第二时间偏移值的单位是微秒。
作为该实施例的一个子实施例,所述第二时间偏移值的单位是纳秒。
作为该实施例的一个子实施例,所述第二时间偏移值等于整数个TC,所述TC参考TS38.211。
作为该实施例的一个子实施例,所述第二时间偏移值是正值。
作为该实施例的一个子实施例,所述第二时间偏移值是负值。
作为该实施例的一个子实施例,所述第二时间偏移值等于所述第一同步参考的定时和所述第二同步参考定时之间的时间差。
作为该实施例的一个子实施例,所述第一域是SCI中的一个域(Field)。
作为一个实施例,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第二域,第一时频资源集合被预留用于所述第一参考信号的传输,所述第一参考信号在第二时频资源集合中被传输,所述第一时频资源集合在时域偏移K1个多载波符号后确定所述第二时频资源集合,所述第二域被用于指示所述K1,所述K1是整数。
作为一个实施例,所述K1个多载波符号是K1个连续的OFDM符号。
作为该实施例的一个子实施例,所述第二域是SCI中的一个域(Field)。
作为该实施例的一个子实施例,所述第一时频资源集合占用正整数个RE。
作为该实施例的一个子实施例,所述第一时频资源集合对应一个给定参考信号资源。
作为该实施例的一个子实施例,所述第一时频资源集合对应一个给定参考信号资源标识。
作为该实施例的一个子实施例,所述第一时频资源集合对应一个给定参考信号资源集合。
作为该实施例的一个子实施例,所述第一时频资源集合对应一个给定参考信号资源集合标识。
作为该实施例的一个子实施例,所述第二时频资源集合对应一个给定参考信号资源。
作为该实施例的一个子实施例,所述第二时频资源集合对应一个给定参考信号资源标识。
作为该实施例的一个子实施例,所述第二时频资源集合对应一个给定参考信号资源集合。
作为该实施例的一个子实施例,所述第二时频资源集合对应一个给定参考信号资源集合标识。
作为该实施例的一个子实施例,本申请中的所述给定参考信号是PRS。
作为该实施例的一个子实施例,本申请中的所述给定参考信号是副链路上的PRS。
作为该实施例的一个子实施例,本申请中的所述给定参考信号用于终端与终端之间的定位。
作为该实施例的一个子实施例,本申请中的所述给定参考信号用于定位。
作为该实施例的一个子实施例,所述K1是正数。
作为该实施例的一个子实施例,所述K1是负数。
作为该实施例的一个子实施例,所述K1是0。
作为该实施例的一个子实施例,所述K1的绝对值小于14。
作为一个实施例,所述第一时频资源集合是M1个候选时频资源集合中的一个候选时频资源集合,所述第一信令被用于从所述M1个候选时频资源集合中指示所述第一时频资源集合。
作为该实施例的一个子实施例,所述M1个候选时频资源集合中的任意候选时频资源集合占用正整数个RE。
作为该实施例的一个子实施例,所述M1个候选时频资源集合中的任意候选时频资源集合对应一个给定参考信号资源。
作为该实施例的一个子实施例,所述M1个候选时频资源集合中的任意候选时频资源集合对应一个给定参考信号资源标识。
作为该实施例的一个子实施例,所述M1个候选时频资源集合中的任意候选时频资源集合对应一个给定参考信号资源集合。
作为该实施例的一个子实施例,所述M1个候选时频资源集合中的任意候选时频资源集合对应一个给定参考信号资源集合标识。
作为一个实施例,所述第二信号所占用的物理层信道包括PSSCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PSCCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PSFCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PSDCH。
作为一个实施例,所述第一参考信号的接收者和所述第二信号的接收者是非共址的。
作为一个实施例,所述第一参考信号的接收者和所述第二信号的接收者不同。
作为一个实施例,所述第一参考信号的接收者和所述第二信号的接收者相同。
作为一个实施例,所述第一信令被用于调度所述第二信号。
作为一个实施例,所述目标信令是物理层信令。
作为一个实施例,所述目标信令是RRC信令。
作为一个实施例,所述目标信令是MAC CE。
作为一个实施例,所述目标信令的发送者发送所述第一信号。
作为一个实施例,所述目标信令的发送者接收所述第一参考信号。
作为一个实施例,所述目标信令被用于指示所述第二同步参考。
作为一个实施例,所述目标信令被用于指示本申请中的所述第二标识。
作为一个实施例,所述目标同步信号包括PSSS。
作为一个实施例,所述目标同步信号包括SSSS。
作为一个实施例,所述目标同步信号包括PSBCH。
实施例6
实施例6示例了一个第一信息块的流程图,如附图6所示。在附图6中,第一节点U4与第二节点U5之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U4,在步骤S40中发送第一信息块。
对于第二节点U5,在步骤S50中接收第一信息块。
实施例6中,所述第一同步参考和所述第二同步参考分别对应第一标识和第二标识,所述第一信息块包括所述第一标识和所述第二标识,所述第一信息块指示第二时间偏移值,所述第一同步参考所对应的定时和所述第二同步参考所对应的定时之间的时间差等于所述第二时间偏移值。
作为一个实施例,所述第一标识是非负整数。
作为一个实施例,所述第二标识是非负整数。
作为一个实施例,所述第一标识被用于指示GNSS,基站或终端中的之一。
作为一个实施例,所述第二标识被用于指示GNSS,基站或终端中的之一。
作为一个实施例,所述第一信息块是RRC信令。
作为一个实施例,所述第一信息块被用于副链路。
作为一个实施例,所述第一信息块被用于PC5接口。
作为一个实施例,所述第一信息块包括TS 38.331中的LocationMeasurementInfoIE中的部分或者全部域。
作为一个实施例,所述第一信息块包括TS 38.331中的LocationMeasurementInfoIE中的measPRS-offset域。
作为一个实施例,所述第一信息块包括TS 38.331中的PosSystemInformation IE中的部分或者全部域。
作为一个实施例,所述第一信息块包括TS 38.331中的PosSI-SchedulingInfoList IE中的部分或者全部域。
作为一个实施例,所述第一信息块包括TS 38.331中的SIBpos IE中的部分或者全部域。
作为一个实施例,所述第一信息块包括TS 38.331中的DL-PRS-Info中的部分或者全部域。
作为一个实施例,所述第一信息块包括TS 38.331中的SL-TypeTxSync中的部分或者全部域。
作为一个实施例,所述第一信息块包括更高层参数DL-PRS-ResourceSymbolOffset。
作为一个实施例,所述第一信息块包括更高层参数DL-PRS-NumSymbols。
作为一个实施例,所述第一信息块包括更高层参数transmissionComb。
作为一个实施例,所述第一信息块包括更高层参数combOffset。
作为一个实施例,所述第一信息块包括更高层参数DL-PRS-PointA。
作为一个实施例,承载所述第一信息块的RRC信令的名字中包括PRS。
作为一个实施例,承载所述第一信息块的RRC信令的名字中包括Positioning。
作为一个实施例,承载所述第一信息块的RRC信令的名字中包括Offset。
作为一个实施例,承载所述第一信息块的RRC信令的名字中包括Sync。
作为一个实施例,承载所述第一信息块的RRC信令的名字中包括Type。
实施例7
实施例7示例了一个目标信令的流程图,如附图7所示。在附图7中,第一节点U6与第二节点U7之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U6,在步骤S60中接收目标信令。
对于第二节点U7,在步骤S70中发送目标信令。
实施例7中,所述目标信令被用于触发所述第一参考信号的发送。
作为一个实施例,所述目标信令是物理层信令。
作为一个实施例,所述目标信令是RRC信令。
作为一个实施例,所述目标信令是MAC CE。
作为一个实施例,所述目标信令被用于指示所述第二同步参考。
作为一个实施例,所述目标信令被用于指示本申请中的所述第二标识。
实施例8
实施例8示例了一个第一节点,第二节点和第三节点的示意图,如附图8所示。在附图8中,所述第三节点是所述第一节点的同步参考,所述第二节点根据接收来自所述第一节点发送的所述第一参考信号进行定位,同时所述第二节点还接收来自第四节点的参考信号进行定位,所述第四节点的是本申请中的第二同步参考,第三节点是本申请中的第一同步参考;图中所示的所述第一参考信号和参考信号的同步参考都是第四节点。
作为一个实施例,图中所示的第一节点是一个终端。
作为一个实施例,图中所示的第二节点是一个终端。
作为一个实施例,图中所示的第三节点是一个终端。
作为一个实施例,图中所示的第四节点是一个终端。
作为一个实施例,图中所示的第一节点是一个交通工具。
作为一个实施例,图中所示的第二节点是一个交通工具。
作为一个实施例,图中所示的第三节点是一个交通工具。
作为一个实施例,图中所示的第四节点是一个交通工具。
作为一个实施例,图中所示的第一节点是一辆汽车。
作为一个实施例,图中所示的第二节点是一辆汽车。
作为一个实施例,图中所示的第三节点是一个基站。
作为一个实施例,图中所示的第四节点是一个基站。
作为一个实施例,图中所示的第四节点是GNSS。
作为一个实施例,图中所示的第三节点是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,图中所示的第三节点是一个终端组的组头(Group Head),且所述第一节点、所述第二节点和所述第三节点属于一个终端组。
作为一个实施例,图中所示的第四节点是一个RSU。
作为一个实施例,图中所示的第四节点是一个终端组的组头(Group Head),且所述第一节点、所述第二节点、所述第三节点和所述第四节点都属于一个终端组。
作为一个实施例,本申请中的所述第一标识被用于指示所述第三节点的同步参考,本申请中的所述第二标识被用于指示所述第四节点的同步参考。
实施例9
实施例9示例了一个第一时间偏移值的示意图,如附图9所示。在附图9中,一个矩形框表示一个时隙,图中的第一定时是第三节点的发送定时,第一参考信号被配置在时隙#3中发送,第二信号在时隙#5中发送;图中的第二定时是第一节点接收来自第三节点的无线信号的接收定时,图中的Td表示所述第三节点到所述第一节点的传输延迟;图中的第三定时是第一节点发送第二信号的发送定时,所述第三定时相较所述第二定时提前了Td,图中标识粗实线框的部分是所述第一节点发送所述第一参考信号所位于的目标时隙,所述目标时隙的边界相较参照所述第三定时中的时隙#3提前了一个Te;图中标示粗虚线框的部分是所述第一节点发送所述第二信号所位于的时隙。
作为一个实施例,所述第一参考信号在所述第一节点的发送时刻和所述第三节点配置的所述第一参考信号所占用的时域资源的起始时刻对齐。
作为一个实施例,本申请中的所述第一时间偏移值等于Td。
作为一个实施例,本申请中的所述第二时间偏移值等于Te。
实施例10
实施例10示例了一个第二时间偏移值的示意图,如附图10所示。在附图10中,一个矩形框表示一个时隙,所述第二时间偏移值是第一同步参考和第二同步参考之间的定时偏差。
作为一个实施例,所述第一同步参考所对应的第N***帧的第M个时隙的起始时刻的绝对时间是Tm毫秒,所述第二同步参考所对应的第N***帧的第M个时隙的起始时刻的绝对时间是Tn毫秒,所述第二时间偏移值等于Tm与Tn的差。
作为一个实施例,所述绝对时间是格林威治时间。
作为一个实施例,所述绝对时间是北京时间。
作为一个实施例,所述绝对时间是通过GNSS确定的。
作为一个实施例,所述绝对时间是通过原子钟确定的。
实施例11
实施例11示例了一个第一时频资源集合和第二时频资源集合在一个RB(ResourceBlock,资源块)中的示意图,如附图11所示。在附图11中,所述第一时频资源集合是按照所述第一信号的发送定时确定的被预留用于所述第一参考信号的RE集合,所述第二时频资源集合是按照所述第二同步参考确定的实际用于发送所述第一参考信号的RE集合;所述第一时频资源集合在时域偏移K1个多载波符号后确定所述第二时频资源集合。
作为一个实施例,所述K1的值与所述第二时间偏移值有关。
作为一个实施例,所述第二时间偏移值被用于确定所述K1的值。
作为一个实施例,所述第二时间偏移值等于K1与一个OFDM符号在时域的持续时间的乘积。
作为一个实施例,所述第二时间偏移值除以所述一个OFDM符号在时域的持续时候后得到的商等于Q,所述K1是不小于所述Q的绝对值的最小整数。
实施例12
实施例12示例了一个第一节点中的结构框图,如附图12所示。附图12中,第一节点1200包括第一接收机1201和第一收发机1202。
第一接收机1201,接收第一信号;
第一收发机1202,发送第一信令和第一参考信号;
实施例12中,所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第一域,所述第一域被用于指示第二时间偏移值,所述第一信令的发送定时和所述第一参考信号的发送定时之间的时间差等于所述第二时间偏移值。
作为一个实施例,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第二域,第一时频资源集合被预留用于所述第一参考信号的传输,所述第一参考信号在第二时频资源集合中被传输,所述第一时频资源集合在时域偏移K1个多载波符号后确定所述第二时频资源集合,所述第二域被用于指示所述K1,所述K1是整数。
作为一个实施例,所述第一收发机1202发送第一信息块;所述第一同步参考和所述第二同步参考分别对应第一标识和第二标识,所述第一信息块包括所述第一标识和所述第二标识,所述第一信息块指示第二时间偏移值,所述第一同步参考所对应的定时和所述第二同步参考所对应的定时之间的时间差等于所述第二时间偏移值。
作为一个实施例,所述第一时频资源集合是M1个候选时频资源集合中的一个候选时频资源集合,所述第一信令被用于从所述M1个候选时频资源集合中指示所述第一时频资源集合。
作为一个实施例,所述第一收发机1202发送第二信号;所述第二信号的发送定时和所述第一信令的发送定时相同,所述第二信号占用目标时频资源集合,所述第一信令被用于指示所述目标时频资源集合。
作为一个实施例,所述第一接收机1201接收目标信令;所述目标信令被用于触发所述第一参考信号的发送。
作为一个实施例,所述第一收发机1202发送目标同步信号,所述第一接收定时和所述第一时间偏移值被共同用于确定所述目标同步信号的发送定时;所述目标同步信号被用于确定所述第二信号的接收定时。
作为一个实施例,所述第一接收机1201包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一收发机1202包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、多天线发射处理器457、接收处理器456、发射处理器468、控制器/处理器459中的至少前6者。
实施例13
实施例13示例了一个第二节点中的结构框图,如附图13所示。附图13中,第二节点1300包括第二收发机1301。
第二收发机1301,接收第一信令和第一参考信号;
实施例13中,所述第一信令被用于确定第一同步参考和第二同步参考的关系;第一接收定时被关联到所述第一同步参考,所述第二同步参考被用于确定所述第一参考信号的发送定时;所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一信令的发送者通过接收的第一信号确定所述第一接收定时;所述第一信号的发送者和所述第二节点是非共址的;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第一域,所述第一域被用于指示第二时间偏移值,所述第一信令的发送定时和所述第一参考信号的发送定时之间的时间差等于所述第二时间偏移值。
作为一个实施例,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第二域,第一时频资源集合被预留用于所述第一参考信号的传输,所述第一参考信号在第二时频资源集合中被传输,所述第一时频资源集合在时域偏移K1个多载波符号后确定所述第二时频资源集合,所述第二域被用于指示所述K1,所述K1是整数。
作为一个实施例,所述第二收发机1301接收第一信息块;所述第一同步参考和所述第二同步参考分别对应第一标识和第二标识,所述第一信息块包括所述第一标识和所述第二标识,所述第一信息块指示第二时间偏移值,所述第一同步参考所对应的定时和所述第二同步参考所对应的定时之间的时间差等于所述第二时间偏移值。
作为一个实施例,所述第一时频资源集合是M1个候选时频资源集合中的一个候选时频资源集合,所述第一信令被用于从所述M1个候选时频资源集合中指示所述第一时频资源集合。
作为一个实施例,所述第二收发机1301接收第二信号;所述第二信号的发送定时和所述第一信令的发送定时相同,所述第二信号占用目标时频资源集合,所述第一信令被用于指示所述目标时频资源集合。
作为一个实施例,所述第二收发机1301发送目标信令;所述目标信令被用于触发所述第一参考信号的发送。
作为一个实施例,所述第二收发机1301接收目标同步信号;所述第一接收定时和所述第一时间偏移值被共同用于确定所述目标同步信号的发送定时;所述目标同步信号被用于确定所述第二信号的接收定时。
作为一个实施例,所述第二收发机1301包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前6者。
实施例14
实施例14示例了一个第三节点中的结构框图,如附图14所示。附图14中,第三节点1400包括第一发射机1401。
第一发射机1401,发送第一信号;
实施例14中,所述第一信号通过空中接口传输,所述第一信号的接收者包括第一节点,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
作为一个实施例,所述第一发射机1401发送目标信令;所述目标信令被用于触发所述第一节点发送所述第一参考信号。
作为一个实施例,所述第一发射机1401包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器416、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点和第二节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种用于无线通信中的第一节点,其特征在于包括:
第一接收机,接收第一信号;
第一收发机,发送第一信令和第一参考信号;
其中,所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
2.根据权利要求1所述的第一节点,其特征在于,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第一域,所述第一域被用于指示第二时间偏移值,所述第一信令的发送定时和所述第一参考信号的发送定时之间的时间差等于所述第二时间偏移值。
3.根据权利要求1所述的第一节点,其特征在于,所述第一信令被用于指示所述第一同步参考和所述第二同步参考不同,所述第一信令包括第二域,第一时频资源集合被预留用于所述第一参考信号的传输,所述第一参考信号在第二时频资源集合中被传输,所述第一时频资源集合在时域偏移K1个多载波符号后确定所述第二时频资源集合,所述第二域被用于指示所述K1,所述K1是整数。
4.根据权利要求1或3所述的第一节点,其特征在于,所述第一收发机发送第一信息块;所述第一同步参考和所述第二同步参考分别对应第一标识和第二标识,所述第一信息块包括所述第一标识和所述第二标识,所述第一信息块指示第二时间偏移值,所述第一同步参考所对应的定时和所述第二同步参考所对应的定时之间的时间差等于所述第二时间偏移值。
5.根据权利要求3或4所述的第一节点,其特征在于,所述第一时频资源集合是M1个候选时频资源集合中的一个候选时频资源集合,所述第一信令被用于从所述M1个候选时频资源集合中指示所述第一时频资源集合。
6.根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一收发机发送第二信号;所述第二信号的发送定时和所述第一信令的发送定时相同,所述第二信号占用目标时频资源集合,所述第一信令被用于指示所述目标时频资源集合。
7.根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收目标信令;所述目标信令被用于触发所述第一参考信号的发送。
8.一种用于无线通信中的第二节点,其特征在于包括:
第二收发机,接收第一信令和第一参考信号;
其中,所述第一信令被用于确定第一同步参考和第二同步参考的关系;第一接收定时被关联到所述第一同步参考,所述第二同步参考被用于确定所述第一参考信号的发送定时;所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一信令的发送者通过接收的第一信号确定所述第一接收定时;所述第一信号的发送者和所述第二节点是非共址的;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
9.一种用于无线通信中的第一节点中的方法,其特征在于包括:
接收第一信号;
发送第一信令和第一参考信号;
其中,所述第一信号通过空中接口传输,所述第一信号被所述第一节点用于确定第一接收定时,所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一接收定时被关联到第一同步参考;第二同步参考被用于确定所述第一参考信号的发送定时;所述第一信令被用于确定所述第一同步参考和所述第二同步参考的关系;所述第一参考信号被用于定位;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
10.一种用于无线通信中的第二节点中的方法,其特征在于包括:
接收第一信令和第一参考信号;
其中,所述第一信令被用于确定第一同步参考和第二同步参考的关系;第一接收定时被关联到所述第一同步参考,所述第二同步参考被用于确定所述第一参考信号的发送定时;所述第一接收定时和第一时间偏移值被共同用于确定所述第一信令的发送定时;所述第一信令的发送者通过接收的第一信号确定所述第一接收定时;所述第一信号的发送者和所述第二节点是非共址的;所述第一信令和所述第一参考信号都在副链路上传输;所述第一信令是物理层动态信令。
CN202010960614.XA 2020-09-14 2020-09-14 一种被用于无线通信的节点中的方法和装置 Pending CN114189881A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010960614.XA CN114189881A (zh) 2020-09-14 2020-09-14 一种被用于无线通信的节点中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010960614.XA CN114189881A (zh) 2020-09-14 2020-09-14 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
CN114189881A true CN114189881A (zh) 2022-03-15

Family

ID=80601247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010960614.XA Pending CN114189881A (zh) 2020-09-14 2020-09-14 一种被用于无线通信的节点中的方法和装置

Country Status (1)

Country Link
CN (1) CN114189881A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193223A1 (en) * 2022-04-08 2023-10-12 Zte Corporation Sidelink positioning schemes in wireless communications
WO2023216896A1 (zh) * 2022-05-11 2023-11-16 上海朗帛通信技术有限公司 用于定位的方法和装置
WO2024051623A1 (zh) * 2022-09-08 2024-03-14 上海朗帛通信技术有限公司 一种用于无线通信的方法和装置
WO2024065563A1 (en) * 2022-09-29 2024-04-04 Zte Corporation Methods and systems for resource configuration of sidelink positioning reference signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281587A1 (en) * 2018-05-10 2019-09-12 Yushu Zhang User equipment (ue) downlink transmission configuration indication (tci)-state selection
CN110679173A (zh) * 2017-05-02 2020-01-10 Oppo广东移动通信有限公司 用于无线通信***之间的无线资源测量的方法和装置
CN111492700A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 无线通信的时间同步

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110679173A (zh) * 2017-05-02 2020-01-10 Oppo广东移动通信有限公司 用于无线通信***之间的无线资源测量的方法和装置
CN111492700A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 无线通信的时间同步
US20190281587A1 (en) * 2018-05-10 2019-09-12 Yushu Zhang User equipment (ue) downlink transmission configuration indication (tci)-state selection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193223A1 (en) * 2022-04-08 2023-10-12 Zte Corporation Sidelink positioning schemes in wireless communications
WO2023216896A1 (zh) * 2022-05-11 2023-11-16 上海朗帛通信技术有限公司 用于定位的方法和装置
WO2024051623A1 (zh) * 2022-09-08 2024-03-14 上海朗帛通信技术有限公司 一种用于无线通信的方法和装置
WO2024065563A1 (en) * 2022-09-29 2024-04-04 Zte Corporation Methods and systems for resource configuration of sidelink positioning reference signal

Similar Documents

Publication Publication Date Title
CN114205735A (zh) 一种被用于无线通信的节点中的方法和装置
CN110838898B (zh) 一种被用于无线通信节点中的方法和装置
CN114189881A (zh) 一种被用于无线通信的节点中的方法和装置
CN113114437B (zh) 一种被用于无线通信的节点中的方法和装置
CN115348664A (zh) 一种被用于无线通信的节点中的方法和装置
CN112911697B (zh) 一种被用于无线通信的节点中的方法和装置
CN115767739A (zh) 一种被用于无线通信节点中的方法和装置
CN112135270B (zh) 一种被用于无线通信的节点中的方法和装置
CN111225343B (zh) 一种无线通信中的方法和装置
CN114979966A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113133124A (zh) 一种被用于无线通信的节点中的方法和装置
CN113709911A (zh) 一种被用于无线通信的节点中的方法和装置
CN112312484A (zh) 一种被用于无线通信的节点中的方法和装置
CN113038585B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046154A1 (zh) 一种用于无线通信的方法和装置
CN113676989B (zh) 一种被用于无线通信的节点中的方法和装置
CN112825497B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023216896A1 (zh) 用于定位的方法和装置
CN113079580B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051623A1 (zh) 一种用于无线通信的方法和装置
WO2024037414A1 (zh) 一种被用于定位的方法和装置
WO2023226926A1 (zh) 一种被用于定位的方法和装置
US20230275720A1 (en) Method and device in nodes used for wireless communication
CN118118996A (zh) 一种被用于定位的方法和装置
CN118055486A (zh) 一种被用于定位的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination