CN114167458A - 一种gnss航迹角降噪计算方法 - Google Patents

一种gnss航迹角降噪计算方法 Download PDF

Info

Publication number
CN114167458A
CN114167458A CN202111485070.7A CN202111485070A CN114167458A CN 114167458 A CN114167458 A CN 114167458A CN 202111485070 A CN202111485070 A CN 202111485070A CN 114167458 A CN114167458 A CN 114167458A
Authority
CN
China
Prior art keywords
angle
gnss
inertial navigation
attitude
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111485070.7A
Other languages
English (en)
Inventor
杨正
赵帅
张若维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
707th Research Institute of CSIC
Original Assignee
707th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 707th Research Institute of CSIC filed Critical 707th Research Institute of CSIC
Priority to CN202111485070.7A priority Critical patent/CN114167458A/zh
Publication of CN114167458A publication Critical patent/CN114167458A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Navigation (AREA)

Abstract

本发明涉及一种GNSS航迹角降噪计算方法,通过外部设备确定载体的初始参数并将初始参数装订至捷联惯导导航计算机中;捷联惯导导航计算机初始化;捷联惯导导航计算机根据陀螺和加速度计数据进行解算,实时计算姿态角;姿态角和GNSS输出的俯仰角和航向角作为去噪滤波器的输入,并经过去噪滤波器输出滤波后的姿态角。本发明通过组合导航算法,能提高组合导航***的航向角和俯仰角精度,与传统双天线定向或者惯性导航方案相比,克服了双天线定向姿态角输出精度和惯导长航时姿态角精度会降低的缺点,特别在空中或者水平无人机应用领域,能够实现导航***在短时间内迅速启动,并且能提高姿态角精度。

Description

一种GNSS航迹角降噪计算方法
技术领域
本发明属于GNSS定向技术领域,尤其是一种GNSS航迹角降噪计算方法。
背景技术
在水面或者空中无人机、弹用等使用环境中,基于体积、功耗和成本以及使用环境的限制的原因,其导航***一般采用GNSS双天线进行定位和定向辅以中、低精度惯性导航设备进行测姿。特别是在空中无人机、弹用的应用中,要求导航设备短时间内完成高精度的对准,
采用中、低精度惯导进行定向具有姿态角连续不会存在姿态角跳变,短时间内定向保持精度高、适用姿态角测量范围广等优点。但缺点是基于惯性导航算法短时间内无法完成对准,且对准精度较低甚至无法对准,其定向精度随着时间会发散。
而单独利用双天线GNSS定向方案能克服短时间内对准难题,但也存在缺点:由于天线变形、机身抖动和GNSS双天线定向技术本身的限制,定向精度噪声较大从而导致输出的定向信息精度实时精度较差,输出的定向精度存在较大的噪声,同时输出的姿态角值只有俯仰角和航行角,输出角度连续性受到硬件限制等缺点。
发明内容
本发明的目的在于克服现有技术的不足,提出一种GNSS航迹角降噪计算方法,通过组合导航算法,能提高组合导航***的航向角和俯仰角精度,与传统双天线定向或者惯性导航方案相比,克服了双天线定向姿态角输出精度和惯导长航时姿态角精度会降低的缺点,特别在空中或者水平无人机应用领域,能够实现导航***在短时间内迅速启动,并且能提高姿态角精度。
本发明解决其技术问题是采取以下技术方案实现的:
一种GNSS航迹角降噪计算方法,包括以下步骤:
步骤1、通过外部设备确定载体的初始参数并将初始参数装订至捷联惯导导航计算机中;
步骤2、捷联惯导导航计算机初始化;
步骤3、捷联惯导导航计算机根据陀螺和加速度计数据进行解算,实时计算姿态角;
步骤4、将步骤3中惯捷联惯导导航计算机解算的姿态角和GNSS输出的俯仰角和航向角作为去噪滤波器的输入,并经过去噪滤波器输出滤波后的姿态角。
而且,所述步骤2的具体实现方法为:将捷联惯导导航计算机中的导航参数和去噪滤波器参数初始化,并完成GNSS开机寻星。
而且,所述步骤4包括以下步骤:
步骤4.1、计算去噪滤波器输入姿态角;
步骤4.2、构建去噪滤波器输入姿态角;
而且,所述步骤4.1的具体实现方法为:将捷联惯导导航计算机计算的横滚角作为GNSS双天线定向的横滚角,得到GNSS输出的姿态角为:
Figure BDA0003396195120000011
其中,θINS为捷联惯导导航计算机输出的俯仰角,γGNSS为GNSS输出的横滚角,
Figure BDA0003396195120000021
为GNSS输出的航向角,将输出的姿态角转换成姿态矩阵
Figure BDA0003396195120000022
同时GNSS输出的姿态角与捷联惯导导航计算机输出姿态角之间的零位矩阵为
Figure BDA0003396195120000023
得到捷联惯导导航计算机输出姿态角对应的姿态矩阵为
Figure BDA0003396195120000024
而且,所述步骤4.2的具体实现方法为:姿态角观测方程为:
Figure BDA0003396195120000025
其中,
Δt是GNSS与惯导之间的时间延迟;
φm为GNSS定向的姿态误差;
Figure BDA0003396195120000026
为捷联惯导导航计算机的角速率;
λ为GNSS输出姿态角与捷联惯导导航计算机之间的安装角误差;
Figure BDA0003396195120000027
为输出的姿态角转换成的姿态矩阵;
Figure BDA0003396195120000028
为GNSS输出的姿态角与捷联惯导导航计算机输出姿态角之间的零位矩阵;
Figure BDA0003396195120000029
为捷联惯导导航计算机输出姿态角对应的姿态矩阵;
φs为捷联惯导导航计算机的姿态角误差,
I为3乘以3的单位矩阵;
Figure BDA00033961951200000210
中(t-Δt)代表的是t时刻的姿态矩阵;
将上式进行简化:
Figure BDA00033961951200000211
Figure BDA00033961951200000212
忽略时间延迟Δt,并且φm误差特性为符合正态分布的白噪声,忽略安装误差λ,得到:
Zdcm=I-(φs×)=Zφ
取姿态观测量:
x φy φz]T=[Zdcm(3,2) Zdcm(1,3) Zdcm(2,1)]T
其中Zdcm(i,j)中的(i,j)分别代表求得姿态矩阵中对应的行和列的的对应数值;得到组合导航***的状态方程为:
Figure BDA0003396195120000031
其中,
Figure BDA0003396195120000032
Figure BDA0003396195120000033
Figure BDA0003396195120000034
Figure BDA0003396195120000035
Figure BDA0003396195120000036
Figure BDA0003396195120000037
Figure BDA0003396195120000041
Figure BDA0003396195120000042
Figure BDA0003396195120000043
Figure BDA0003396195120000044
其中,
Figure BDA0003396195120000045
Figure BDA0003396195120000046
分别为陀螺漂移和加速度计偏置测量噪声;ωie为地球自转角速率,L为载体所在的纬度;建立的状态方程确定滤波器15纬状态变量为:
Figure BDA0003396195120000047
同时对***状态变量进行估计是,采用泰勒级数展开对捷联捷联惯导导航计算机状态方程进行离散化:
Figure BDA0003396195120000048
其中,为h滤波周期;
***状态方程中的噪声W(t)为三个陀螺和三个加速度计噪声,其协方差阵为Q(t),则输入噪声离散化的方差阵为:
Qq=G(t)Q(t)GT(t)
Figure BDA0003396195120000049
其中,Q(t)为设置的***噪声方差取:Q=diag[(0.01°/h)2 (1°/h)2 (1°/h)2(0.5mg)2 (0.5mg)2 (0.5mg)2],G(t)为噪声输入矩阵取:
Figure BDA00033961951200000410
使用卡尔曼滤波器状态量迭代,根据第k时刻的测量值来预测k+1时刻的输出:
Figure BDA0003396195120000051
Figure BDA0003396195120000052
Figure BDA0003396195120000053
Figure BDA0003396195120000054
本发明的优点和积极效果是:
本发明通过外部设备确定载体的初始参数并将初始参数装订至捷联惯导导航计算机中;捷联惯导导航计算机初始化;捷联惯导导航计算机根据陀螺和加速度计数据进行解算,实时计算姿态角;姿态角和GNSS输出的俯仰角和航向角作为去噪滤波器的输入,并经过去噪滤波器输出滤波后的姿态角。本发明通过组合导航算法,能提高组合导航***的航向角和俯仰角精度,与传统双天线定向或者惯性导航方案相比,克服了双天线定向姿态角输出精度和惯导长航时姿态角精度会降低的缺点,特别在空中或者水平无人机应用领域,能够实现导航***在短时间内迅速启动,并且能提高姿态角精度。
附图说明
图1为本发明的流程图;
图2为本发明去噪算法输出俯仰角
图3为本发明去噪算法输出航向角;
图4为本发明的原理图。
具体实施方式
以下结合附图对本发明做进一步详述。
如图4所示,本发明利用两个GNSS天线和接收机组成双天线定向***,惯导设备同GNSS安装在同一个平台上,两者之间固联,GNSS输出姿态信息与惯性导航设备输出信息通过融合算法进行融合。融合算法输出最终姿态信息,利用GNSS测速姿态信息。
一种GNSS航迹角降噪计算方法,如图1所示,包括以下步骤:
步骤1、通过外部设备确定载体的初始参数并将初始参数装订至捷联惯导导航计算机中。
步骤2、捷联惯导导航计算机初始化。将捷联惯导导航计算机中的导航参数和去噪滤波器参数初始化,并完成GNSS开机寻星。
步骤3、捷联惯导导航计算机根据陀螺和加速度计数据进行解算,实时计算姿态角。
步骤4、将步骤3中惯捷联惯导导航计算机解算的姿态角和GNSS输出的俯仰角和航向角作为去噪滤波器的输入,并经过去噪滤波器输出滤波后的姿态角。
步骤4.1、计算去噪滤波器输入姿态角。
GNSS双天线只能输出***的俯仰角和航向角,为了计算GNSS生成的***姿态矩阵从而计算捷联惯导误差方程φ模型下的姿态误差,将捷联惯导导航计算机计算的横滚角作为GNSS双天线定向的横滚角,得到GNSS输出的姿态角为:
Figure BDA0003396195120000055
其中,θINS为捷联惯导导航计算机输出的俯仰角,γGNSS为GNSS输出的横滚角,
Figure BDA0003396195120000061
为GNSS输出的航向角,将输出的姿态角转换成姿态矩阵
Figure BDA0003396195120000062
同时GNSS输出的姿态角与惯导输出姿态角之间的零位矩阵为
Figure BDA0003396195120000063
得到捷联惯导导航计算机输出姿态角对应的姿态矩阵为
Figure BDA0003396195120000064
步骤4.2、构建去噪滤波器输入姿态角。
姿态角观测方程为:
Figure BDA0003396195120000065
其中:
Δt是GNSS与惯导之间的时间延迟,
φm为GNSS定向的姿态误差;
Figure BDA0003396195120000066
为捷联惯导导航计算机的角速率;
λ为GNSS输出姿态角与捷联惯导导航计算机之间的安装角误差;
Figure BDA0003396195120000067
为输出的姿态角转换成的姿态矩阵;
Figure BDA0003396195120000068
为GNSS输出的姿态角与捷联惯导导航计算机输出姿态角之间的零位矩阵;
Figure BDA0003396195120000069
为捷联惯导导航计算机输出姿态角对应的姿态矩阵;
φs为捷联惯导导航计算机的姿态角误差;
I为3乘以3的单位矩阵;
Figure BDA00033961951200000610
中(t-Δt)代表的是t时刻的姿态矩阵;
捷联惯导导航计算机捷联惯导导航计算机捷联惯导导航计算机进行简化:
Figure BDA00033961951200000611
Figure BDA00033961951200000612
忽略时间延迟Δt,并且φm误差特性为符合正态分布的白噪声,忽略安装误差λ,得到:
Zdcm=I-(φs×)=Zφ
取姿态观测量:
x φy φz]T=[Zdcm(3,2) Zdcm(1,3) Zdcm(2,1)]T
其中Zdcm(i,j)中的(i,j)分别代表求得姿态矩阵中对应的行和列的的对应数值;得到***的状态方程为:
Figure BDA0003396195120000071
其中,
Figure BDA0003396195120000072
Figure BDA0003396195120000073
Figure BDA0003396195120000074
Figure BDA0003396195120000075
Figure BDA0003396195120000076
Figure BDA0003396195120000081
Figure BDA0003396195120000082
Figure BDA0003396195120000083
Figure BDA0003396195120000084
Figure BDA0003396195120000085
其中,
Figure BDA0003396195120000086
Figure BDA0003396195120000087
分别为陀螺漂移和加速度计偏置测量噪声;ωie为地球自转角速率,L为载体所在的纬度;建立的状态方程确定滤波器15纬状态变量为:
Figure BDA0003396195120000088
同时对***状态变量进行估计是,采用泰勒级数展开对捷联捷联惯导导航计算机状态方程进行离散化:
Figure BDA0003396195120000089
其中,为h滤波周期;
***状态方程中的噪声W(t)为三个陀螺和三个加速度计噪声,其协方差阵为Q(t),则输入噪声离散化的方差阵为:
Qq=G(t)Q(t)GT(t)
Figure BDA00033961951200000810
其中,Q(t)为设置的***噪声方差取:Q=diag[(0.01°/h)2 (1°/h)2 (1°/h)2(0.5mg)2 (0.5mg)2 (0.5mg)2],G(t)为噪声输入矩阵取:
Figure BDA0003396195120000091
使用卡尔曼滤波器状态量迭代,根据第k时刻的测量值来预测k+1时刻的输出:
Figure BDA0003396195120000092
Figure BDA0003396195120000093
Figure BDA0003396195120000094
Figure BDA0003396195120000095
根据上述一种GNSS航迹角降噪计算方法,利用某光纤捷联捷联惯导导航计算机和北斗双天线接收机进行静态测试,其中捷联惯导导航计算机的陀螺常值漂移为0.05°/h,加速度常值漂移为100ug,捷联惯导导航计算机和北斗接收机固联在同一个安装板上,分别记录惯导姿态角信息(100Hz)和北斗输出的角度信息(10Hz),用仿真软件进行事后处理验证,如图3和图4所示,给出降噪录波器输出的姿态角与北斗双天线输出姿态角对比,其数据如表1所示。
表1.姿态角噪声统计
Figure BDA0003396195120000096
可以看出本发明能有效的降低GNSS双天线定向输出的姿态角精度,同时输出的姿态角连续性也得到了保证。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (5)

1.一种GNSS航迹角降噪计算方法,其特征在于:包括以下步骤:
步骤1、通过外部设备确定载体的初始参数并将初始参数装订至捷联惯导导航计算机中;
步骤2、捷联惯导导航计算机初始化;
步骤3、捷联惯导导航计算机根据陀螺和加速度计数据进行解算,实时计算姿态角;
步骤4、将步骤3中惯捷联惯导导航计算机解算的姿态角和GNSS输出的俯仰角和航向角作为去噪滤波器的输入,并经过去噪滤波器输出滤波后的姿态角。
2.根据权利要求1所述的一种GNSS航迹角降噪计算方法,其特征在于:所述步骤2的具体实现方法为:将捷联惯导导航计算机中的导航参数和去噪滤波器参数初始化,并完成GNSS开机寻星。
3.根据权利要求1所述的一种GNSS航迹角降噪计算方法,其特征在于:所述步骤4包括以下步骤:
步骤4.1、计算去噪滤波器输入姿态角;
步骤4.2、构建去噪滤波器输入姿态角。
4.根据权利要求3所述的一种GNSS航迹角降噪计算方法,其特征在于:所述步骤4.1的具体实现方法为:将捷联惯导导航计算机计算的横滚角作为GNSS双天线定向的横滚角,得到GNSS输出的姿态角为:
Figure FDA0003396195110000011
其中,θINS为捷联惯导导航计算机输出的俯仰角,γGNSS为GNSS输出的横滚角,
Figure FDA0003396195110000012
为GNSS输出的航向角,将输出的姿态角转换成姿态矩阵
Figure FDA0003396195110000013
同时GNSS输出的姿态角与捷联惯导导航计算机输出姿态角之间的零位矩阵为
Figure FDA0003396195110000014
得到捷联惯导导航计算机输出姿态角对应的姿态矩阵为
Figure FDA0003396195110000015
5.根据权利要求3所述的一种GNSS航迹角降噪计算方法,其特征在于:所述步骤4.2的具体实现方法为:姿态角观测方程为:
Figure FDA0003396195110000016
其中,
Δt是GNSS与惯导之间的时间延迟;
φm为GNSS定向的姿态误差;
Figure FDA0003396195110000017
为捷联惯导导航计算机的角速率;
λ为GNSS输出姿态角与捷联惯导导航计算机之间的安装角误差;
Figure FDA0003396195110000018
为输出的姿态角转换成的姿态矩阵;
Figure FDA0003396195110000021
为GNSS输出的姿态角与捷联惯导导航计算机输出姿态角之间的零位矩阵;
Figure FDA0003396195110000022
为捷联惯导导航计算机输出姿态角对应的姿态矩阵;
φs为捷联惯导导航计算机的姿态角误差,
I为3乘以3的单位矩阵;
Figure FDA0003396195110000023
中(t-Δt)代表的是t时刻的姿态矩阵;
将上式进行简化:
Figure FDA0003396195110000024
Figure FDA0003396195110000025
忽略时间延迟Δt,并且φm误差特性为符合正态分布的白噪声,忽略安装误差λ,得到:
Zdcm=I-(φs×)=Zφ
取姿态观测量:
x φy φz]T=[Zdcm(3,2) Zdcm(1,3) Zdcm(2,1)]T
其中Zdcm(i,j)中的(i,j)分别代表求得姿态矩阵中对应的行和列的的对应数值;得到组合导航***的状态方程为:
Figure FDA0003396195110000026
其中,
Figure FDA0003396195110000027
Figure FDA0003396195110000028
Figure FDA0003396195110000031
Figure FDA0003396195110000032
Figure FDA0003396195110000033
Figure FDA0003396195110000034
Figure FDA0003396195110000035
Figure FDA0003396195110000036
Figure FDA0003396195110000037
Figure FDA0003396195110000038
其中,
Figure FDA0003396195110000039
Figure FDA00033961951100000310
分别为陀螺漂移和加速度计偏置测量噪声;ωie为地球自转角速率,L为载体所在的纬度;建立的状态方程确定滤波器15纬状态变量为:
Figure FDA0003396195110000041
同时对***状态变量进行估计是,采用泰勒级数展开对捷联捷联惯导导航计算机状态方程进行离散化:
Figure FDA0003396195110000042
其中,为h滤波周期;
***状态方程中的噪声W(t)为三个陀螺和三个加速度计噪声,其协方差阵为Q(t),则输入噪声离散化的方差阵为:
Qq=G(t)Q(t)GT(t)
Figure FDA0003396195110000043
其中,Q(t)为设置的***噪声方差取:Q=diag[(0.01°/h)2 (1°/h)2 (1°/h)2 (0.5mg)2(0.5mg)2 (0.5mg)2],G(t)为噪声输入矩阵取:
Figure FDA0003396195110000044
使用卡尔曼滤波器状态量迭代,根据第k时刻的测量值来预测k+1时刻的输出:
Figure FDA0003396195110000045
Figure FDA0003396195110000046
Figure FDA0003396195110000047
Figure FDA0003396195110000048
CN202111485070.7A 2021-12-07 2021-12-07 一种gnss航迹角降噪计算方法 Pending CN114167458A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111485070.7A CN114167458A (zh) 2021-12-07 2021-12-07 一种gnss航迹角降噪计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111485070.7A CN114167458A (zh) 2021-12-07 2021-12-07 一种gnss航迹角降噪计算方法

Publications (1)

Publication Number Publication Date
CN114167458A true CN114167458A (zh) 2022-03-11

Family

ID=80483886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111485070.7A Pending CN114167458A (zh) 2021-12-07 2021-12-07 一种gnss航迹角降噪计算方法

Country Status (1)

Country Link
CN (1) CN114167458A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525503A (zh) * 2017-08-23 2017-12-29 王伟 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法
CN108548535A (zh) * 2018-03-13 2018-09-18 杨勇 低速gnss/mems组合导航***的初始化方法
CN109443349A (zh) * 2018-11-14 2019-03-08 广州中海达定位技术有限公司 一种姿态航向测量***及其融合方法、存储介质
CN112378400A (zh) * 2020-10-30 2021-02-19 湖南航天机电设备与特种材料研究所 一种双天线gnss辅助的捷联惯导组合导航方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525503A (zh) * 2017-08-23 2017-12-29 王伟 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法
CN108548535A (zh) * 2018-03-13 2018-09-18 杨勇 低速gnss/mems组合导航***的初始化方法
CN109443349A (zh) * 2018-11-14 2019-03-08 广州中海达定位技术有限公司 一种姿态航向测量***及其融合方法、存储介质
CN112378400A (zh) * 2020-10-30 2021-02-19 湖南航天机电设备与特种材料研究所 一种双天线gnss辅助的捷联惯导组合导航方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
史耿: "基于IMU/GNSS的高精度组合测向算法研究与实现", pages 21 - 36 *
李娜: "基于GPS/INS组合测姿方法研究", pages 51 - 60 *
罗建军 等: "《组合导航原理与应用》", 30 April 2012, 西北工业大学出版社, pages: 66 *

Similar Documents

Publication Publication Date Title
CN110487301B (zh) 一种雷达辅助机载捷联惯性导航***初始对准方法
CN107525503B (zh) 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法
CN110780326A (zh) 一种车载组合导航***和定位方法
CN101413800B (zh) 导航/稳瞄一体化***的导航、稳瞄方法
CN106871928B (zh) 基于李群滤波的捷联惯性导航初始对准方法
CN104344837B (zh) 一种基于速度观测的冗余惯导***加速度计***级标定方法
CN110926468B (zh) 基于传递对准的动中通天线多平台航姿确定方法
CN103196448B (zh) 一种机载分布式惯性测姿***及其传递对准方法
CN100516775C (zh) 一种捷联惯性导航***初始姿态确定方法
CN103900565B (zh) 一种基于差分gps的惯导***姿态获取方法
CN105091907B (zh) Sins/dvl组合中dvl方位安装误差估计方法
CN101261130B (zh) 一种船用光纤捷联惯导***传递对准精度评估方法
CN102645223B (zh) 一种基于比力观测的捷联惯导真空滤波修正方法
CN105571578B (zh) 一种利用伪观测取代精密转台的原地旋转调制寻北方法
CN112611394B (zh) 一种在发射坐标系下的飞行器姿态对准方法及***
CN109556631A (zh) 一种基于最小二乘的ins/gnss/偏振/地磁组合导航***对准方法
CN103822633A (zh) 一种基于二阶量测更新的低成本姿态估计方法
CN104374388A (zh) 一种基于偏振光传感器的航姿测定方法
CN101793523A (zh) 一种组合导航和光电探测一体化***
CN104457748A (zh) 一种嵌入式瞄准吊舱测姿***及其传递对准方法
CN109931952A (zh) 未知纬度条件下捷联惯导直接解析式粗对准方法
CN103245357A (zh) 一种船用捷联惯导***二次快速对准方法
CN103076026A (zh) 一种捷联惯导***中确定多普勒计程仪测速误差的方法
CN108303120B (zh) 一种机载分布式pos的实时传递对准的方法及装置
CN114777812B (zh) 一种水下组合导航***行进间对准与姿态估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination