CN114160195A - 一种水溶性贵金属团簇催化剂的制备方法及其应用 - Google Patents

一种水溶性贵金属团簇催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN114160195A
CN114160195A CN202111602755.5A CN202111602755A CN114160195A CN 114160195 A CN114160195 A CN 114160195A CN 202111602755 A CN202111602755 A CN 202111602755A CN 114160195 A CN114160195 A CN 114160195A
Authority
CN
China
Prior art keywords
cage
water
catalyst
noble metal
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111602755.5A
Other languages
English (en)
Inventor
董正平
宋强
寇金芳
赵华成
杨黄若茵
刘闯
高武
马科星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202111602755.5A priority Critical patent/CN114160195A/zh
Publication of CN114160195A publication Critical patent/CN114160195A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0254Nitrogen containing compounds on mineral substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/006Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenation of aromatic hydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/06Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/646Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of aromatic or heteroaromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明的水溶性贵金属团簇催化剂的制备方法,是针对现有贵金属团簇负载型催化剂中团簇颗粒极易团聚为较大粒径的纳米颗粒,致使催化反应活性降低的缺陷,提供的一种将贵金属团簇颗粒稳定负载于水溶性单分子笼Cage‑NH2腔体内部的方法,即首先合成水溶性单分子笼Cage‑NH2作为催化剂载体,然后使贵金属离子吸附、配位、富集于Cage‑NH2笼腔体内部,通过NaBH4还原,即制得M@Cage‑NH2催化剂(M:Pd、Pt、Ru等)。由于单分子笼Cage‑NH2良好的水溶性,使得M@Cage‑NH2催化剂也具有良好水溶性,从而可实现水相体系中高效的均相催化转化反应。更重要的是,向M@Cage‑NH2催化剂的水相均相体系中加入丙酮后,M@Cage‑NH2催化剂可聚沉出,并通过过滤或离心的方式收集,实现M@Cage‑NH2催化剂的水相均相催化反应及液固相分离回收。

Description

一种水溶性贵金属团簇催化剂的制备方法及其应用
技术领域
本发明属于贵金属团簇负载型催化剂的制备方法技术领域,具体涉及一种水溶性有机笼材料限域负载贵金属团簇,进而制备水溶性贵金属团簇催化剂的方法。
背景技术
贵金属团簇颗粒,通常由几个至几十个贵金属原子构成,其粒径小于2nm;相对于贵金属纳米颗粒(粒径>2nm),贵金属团簇的表面金属原子所占比例更高,因此,贵金属团簇负载型催化剂在催化反应中可以提供更丰富的催化活性位点,进而具有更高的催化活性。然而,由于超细贵金属团簇颗粒表面能很高,从而导致贵金属团簇极易团聚为较大粒径的纳米颗粒,致使催化反应活性降低。因此,构建稳定性高、催化活性优异的贵金属团簇负载型催化剂具有重要的工业催化应用。
目前,贵金属团簇催化剂的制备方法主要有如下两种:(1)、使用有机稳定剂保护于贵金属团簇表面,以防止其团聚;例如,文献曾报道利用含巯基的谷胱甘肽分子来稳定Au团簇(J.Am.Chem.Soc.2005,127,5261-5270)、利用三苯基膦分子来稳定Ag团簇(Nat.Commun.2018,9,744);然而,该方法需要使用过量的有机稳定剂,有机稳定剂覆盖于贵金属团簇表面,使其活性位点难以裸露,从而导致催化剂催化活性降低。(2)、使用具有高比表面积载体材料来锚定分散贵金属团簇;例如:共价有机框架材料(ACS Central Sci.,2020,6,869-879)、杂原子掺杂碳材料(ACS Appl.Mater.Interf.,2019,11,24018-24026)等都曾被用于制备贵金属团簇负载型催化剂;但该方法由于金属与载体的相互作用力通常较弱,不可避免地导致贵金属团簇团聚为粒径较大的纳米颗粒。
此外,在贵金属团簇或纳米颗粒负载型催化剂的应用方面,该类催化剂主要应用于气固相、液固相等非均相催化反应;众所周知,相对于催化剂可离心或过滤分离的非均相催化反应体系,均相催化反应由于反应物与催化剂处于同相态反应体系中,反应物与催化剂之间相当于分子级别的混合与接触,催化反应效率更高。因此,设计构建可溶性贵金属团簇催化剂,并应用于均相体系中的催化反应,具有重要的应用价值。
发明内容
本发明所要解决的技术问题是针对现有贵金属团簇催化剂制备技术及使用过程中的缺点而提供一种可使贵金属团簇高分散、高稳定性负载,并可均匀溶解于水相体系的贵金属团簇催化剂制备方法。
本发明的另一目的是利用所制备的水溶性Ru团簇催化剂、Pd团簇催化剂、Pt团簇催化剂等,分别实现重要精细有机化学品十氢喹啉、环己酮、肉桂醇等的高选择性催化加氢合成。
为解决本发明的技术问题采用如下技术方案:
一种水溶性贵金属团簇催化剂的制备方法,具体方法如下:
步骤一:将1mol间苯三酚、2mol三聚氯氰、1molN,N-二异丙基乙胺溶于1L四氢呋喃中,0℃下搅拌反应2小时;随后自然升温至室温,并向上述溶液中滴加溶有1mol间苯三酚的丙酮溶液500mL,室温下搅拌反应72小时;然后,向上述体系中加入28wt%的氨水500mL,室温下搅拌反应12小时,过滤,并分别用水、丙酮洗涤白色固体3次,真空干燥箱中室温下干燥12小时,即制得Cage-NH2载体材料;
步骤二:将Cage-NH2材料溶于去离子水中,滴加贵金属盐(三氯化钌、或氯钯酸、或氯铂酸)溶液,使贵金属离子配位、富集于Cage-NH2笼腔体内部,然后滴加NaBH4溶液,使贵金属离子充分被还原为单质态并被限制于Cage-NH2笼腔体内部,即制得M@Cage-NH2催化剂。
所述步骤一中间苯三酚、三聚氯氰、N,N-二异丙基乙胺在四氢呋喃中的反应温度为0℃。
所述步骤一中向反应体系中加入28wt%的氨水后,反应温度为室温,搅拌速率为200-500转/分钟。
所述步骤一中采用水和丙酮交替洗涤过滤、并室温真空干燥的方式获得Cage-NH2载体材料。
所述步骤一中Cage-NH2载体材料可溶于水中,但在Cage-NH2的水溶液中加入与水体积比为10-30%的丙酮后,Cage-NH2载体材料可聚沉,并通过过滤或离心的方式收集。
所述步骤一中单分子笼Cage-NH2载体材料的笼腔体尺寸约为0.5-0.6nm。
所述步骤二中贵金属组分可以是Pd、Pt、Ru等,贵金属负载量与Cage-NH2载体质量比为1-30%。
所述步骤二中M@Cage-NH2催化剂中贵金属团簇的尺寸约为0.5-0.6nm。
所述步骤二中M@Cage-NH2催化剂可均匀溶解于水相体系,当向M@Cage-NH2催化剂的水溶液体系中加入与水体积比为10-30%的丙酮后,M@Cage-NH2催化剂可聚沉,并通过过滤或离心的方式收集,实现所制备M@Cage-NH2催化剂的水相均相催化反应及液固相分离回收。
上述水溶性贵金属团簇催化剂的制备方法得到的Ru@Cage-NH2催化剂在催化喹啉加氢合成十氢喹啉中的应用,具体方法如下:将1g Ru@Cage-NH2催化剂溶于500mL水中,并加入含有40g喹啉的1L高压反应釜中,用H2置换3次,并充入2-3MPa的氢气,90℃,搅拌下进行反应,用气相色谱跟踪检测反应的转化率及选择性;Pd@Cage-NH2催化剂在催化苯酚加氢合成环己酮中的应用,具体方法如下:将1gPd@Cage-NH2催化剂溶于500mL水中,并加入含有30g苯酚的1L高压反应釜中,搅拌下连续充入常压氢气,60-80℃下进行反应,用气相色谱跟踪检测反应的转化率及选择性;Pt@Cage-NH2催化剂在催化肉桂醛选择性催化加氢合成肉桂醇中的应用,具体方法如下:将1g Pt@Cage-NH2催化剂溶于500mL水中,并加入含有50g肉桂醛的1L高压反应釜中,用H2置换3次,并充入1.5MPa的氢气,搅拌下进行反应,用气相色谱跟踪检测反应的转化率及选择性。在上述反应结束后,搅拌下向反应体系中加入50-150mL的丙酮,使溶解的M@Cage-NH2催化剂聚沉出,并通过过滤或离心的方式回收M@Cage-NH2催化剂。
本发明的水溶性贵金属团簇催化剂的制备方法,针对现有技术中的贵金属团簇颗粒极易团聚为较大粒径的纳米颗粒,致使催化反应活性降低的缺陷,提供了一种可将贵金属团簇颗粒稳定负载于水溶性单分子笼Cage-NH2内部的方法,即首先合成水溶性单分子笼Cage-NH2载体材料,然后使贵金属离子吸附、配位、富集于Cage-NH2笼腔体内部,通过NaBH4还原,即制得M@Cage-NH2催化剂(M:Pd、Pt、Ru等)。所制得的M@Cage-NH2催化剂可以单分子笼形态溶于水中,同时Cage-NH2分子笼具有较大的分子窗口,有利于反应物分子与M@Cage-NH2催化剂中的贵金属团簇活性位点接触,从而实现高效的催化转化反应。更重要的是,这类水溶性M@Cage-NH2催化剂,在水溶性体系中加入丙酮后,可聚沉出,并通过过滤或离心的方式收集,实现所制备M@Cage-NH2催化剂的水相均相催化反应及液固相分离回收。
本发明的优点:
1、本发明所制备的水溶性M@Cage-NH2催化剂,由于贵金属团簇被限制于Cage-NH2分子笼的腔体内部,可有效防止贵金属团簇团聚为粒径较大的纳米颗粒,从而提高贵金属团簇催化剂的稳定性。
2、M@Cage-NH2催化剂可均匀溶解于水相体系,从而可以均相催化剂的形式高效催化水相体系中的相关催化加氢等反应,提高催化反应性能。
3、水溶性M@Cage-NH2催化剂,在水相体系中加入丙酮后即可聚沉出,从而可通过过滤或离心的方式收集,实现所制备M@Cage-NH2催化剂的水相均相催化反应及液固相分离回收催化剂;催化剂经10次套用,仍能保持稳定的催化活性。
附图说明
图1为本发明实施例1-4制备的水溶性M@Cage-NH2催化剂的制备流程图;
图2为本发明实施例1-4制备的M@Cage-NH2在水相体系中的均相溶解图以及引入丙酮后的聚沉图;
图3为本发明实施例1-4制备的Ru@Cage-NH2、Pd@Cage-NH2、Pt@Cage-NH2催化剂的透射电镜图。
具体实施方式
实施例1
一种水溶性贵金属团簇催化剂的制备方法,具体方法如下:将1mol间苯三酚、2mol三聚氯氰、1molN,N-二异丙基乙胺溶于1L四氢呋喃中,0℃下搅拌反应2小时;随后自然升温至室温,并向上述溶液中滴加溶有1mol间苯三酚的丙酮溶液500mL,室温下搅拌反应72小时;然后,向上述体系中加入28wt%的氨水500mL,室温下搅拌反应12小时,过滤,并分别用水、丙酮洗涤白色固体3次,真空干燥箱中室温下干燥12小时,即制得Cage-NH2载体材料。
实施例2
一种水溶性贵金属团簇催化剂的制备方法,具体方法如下:将实施例1中的Cage-NH2材料5g溶于100mL去离子水中,200-500转/分钟的搅拌速度下,滴加钌金属含量为1g的三氯化钌的水溶液30mL,使钌离子配位、富集于Cage-NH2笼腔体内部,然后滴加NaBH4溶液,使钌离子充分被还原为单质态并被限制于Cage-NH2笼腔体内部,搅拌反应6h后,向上述溶液体系中加入20mL的丙酮,使Ru@Cage-NH2聚沉出,经过滤收集,并于室温真空干燥过夜,即可制得Ru@Cage-NH2催化剂。
实施例3
一种水溶性贵金属团簇催化剂的制备方法,具体方法如下:将实施例1中的Cage-NH2材料5g溶于100mL去离子水中,200-500转/分钟的搅拌速度下,滴加钯金属含量为1g的氯钯酸的水溶液20mL,使钯离子配位、富集于Cage-NH2笼腔体内部,然后滴加NaBH4溶液,使钯离子充分被还原为单质态并被限制于Cage-NH2笼腔体内部,搅拌反应6h后,向上述溶液体系中加入30mL的丙酮,使Pd@Cage-NH2聚沉出,经过滤收集,并于室温真空干燥过夜,即可制得Pd@Cage-NH2催化剂。
实施例4
一种水溶性贵金属团簇催化剂的制备方法,具体方法如下:将实施例1中的Cage-NH2材料5g溶于100mL去离子水中,200-500转/分钟的搅拌速度下,滴加铂金属含量为1g的氯铂酸的水溶液20mL,使铂离子配位、富集于Cage-NH2笼腔体内部,然后滴加NaBH4溶液,使铂离子充分被还原为单质态并被限制于Cage-NH2笼腔体内部,搅拌反应6h后,向上述溶液体系中加入25mL的丙酮,使Pt@Cage-NH2聚沉出,经过滤收集,并于室温真空干燥过夜,即可制得Pt@Cage-NH2催化剂。
实施例5
实施例2中的水溶性Ru@Cage-NH2催化剂在催化喹啉加氢合成十氢喹啉中的应用,具体方法如下:将1g Ru@Cage-NH2催化剂溶于500mL水中,并加入含有40g喹啉的1L高压反应釜中,用H2置换3次,并充入2-3MPa的氢气,90℃,搅拌下进行反应,用气相色谱跟踪检测反应的转化率及选择性;反应12h后,反应物喹啉转化率为100%,产物十氢喹啉选择性为99%。反应结束后,搅拌下向反应体系中加入100mL丙酮,使溶解的Ru@Cage-NH2催化剂聚沉出,并通过过滤的方式回收Ru@Cage-NH2催化剂。Ru@Cage-NH2催化剂经过10次套用,喹啉转化率仍高于98%,产物十氢喹啉选择性高于99%。表明本发明所提供的Ru团簇负载型水溶性催化剂Ru@Cage-NH2具有优异的催化性能及催化稳定性。
实施例6
实施例3中的水溶性Pd@Cage-NH2催化剂在催化苯酚加氢合成环己酮中的应用,具体方法如下:将1g Pd@Cage-NH2催化剂溶于500mL水中,并加入含有30g苯酚的1L高压反应釜中,搅拌下连续充入常压氢气,60-80℃下进行反应,用气相色谱跟踪检测反应的转化率及选择性;反应10h后,反应物苯酚转化率为100%,产物环己酮选择性为98%。反应结束后,搅拌下向反应体系中加入100mL丙酮,使溶解的Pd@Cage-NH2催化剂聚沉出,并通过过滤的方式回收Pd@Cage-NH2催化剂。Pd@Cage-NH2催化剂经过10次套用,苯酚转化率仍高于96%,产物环己酮选择性高于98%。表明本发明所提供的Pd团簇负载型水溶性催化剂Pd@Cage-NH2具有优异的催化活性及催化稳定性。
实施例7
实施例4中的水溶性Pt@Cage-NH2催化剂在催化肉桂醛选择性催化加氢合成肉桂醇中的应用,具体方法如下:将1g Pt@Cage-NH2催化剂溶于500mL水中,并加入含有50g肉桂醛的1L高压反应釜中,用H2置换3次,并充入1.5MPa的氢气,搅拌下进行反应,用气相色谱跟踪检测反应的转化率及选择性;反应15h后,反应物肉桂醛转化率为98%,产物肉桂醇选择性为96%。反应结束后,搅拌下向反应体系中加入80mL丙酮,使溶解的Pt@Cage-NH2催化剂聚沉出,并通过过滤的方式回收Pt@Cage-NH2催化剂。Pt@Cage-NH2催化剂经过10次套用,肉桂醛转化率仍高于96%,产物肉桂醇选择性高于96%。表明本发明所提供的Pt团簇负载型水溶性催化剂Pt@Cage-NH2具有优异的催化活性及催化稳定性。

Claims (9)

1.一种水溶性贵金属团簇催化剂的制备方法,其特征在于具体方法如下:
步骤一:利用间苯三酚、三聚氯氰和氨水为原料,合成结构中含有丰富N、O原子及氨基基团的水溶性单分子笼Cage-NH2载体材料;
步骤二:将Cage-NH2材料溶于去离子水中,滴加贵金属盐溶液,使贵金属离子配位、富集于Cage-NH2笼腔体内部,然后滴加NaBH4溶液,使贵金属离子充分被还原为单质态并被限制于Cage-NH2笼腔体内部,即制得M@Cage-NH2催化剂(M代表Pd、Pt、Ru等);
步骤三:M@Cage-NH2催化剂在水相中呈溶解状态,通过向溶液中滴加与水体积比为10-30%的丙酮,使M@Cage-NH2催化剂从水溶液中聚沉,经过过滤、室温下真空干燥,即可得到粉末状M@Cage-NH2催化剂。
2.根据权利要求1所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:所用的催化剂载体为单分子笼Cage-NH2;步骤一中单分子笼Cage-NH2的制备方法为,首先将1mol间苯三酚、2mol三聚氯氰、1mol N,N-二异丙基乙胺溶于1L四氢呋喃中,0℃下搅拌反应2小时;随后自然升温至室温,并向上述溶液中滴加溶有1mol间苯三酚的丙酮溶液500mL,室温下搅拌反应72小时;然后,向上述体系中加入28wt%的氨水500mL,室温下搅拌反应12小时,过滤,并分别用水、丙酮洗涤白色固体3次,真空干燥箱中室温下干燥12小时,即制得Cage-NH2载体材料。
3.根据权利要求1和2所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:Cage-NH2载体材料可溶于水中,但在Cage-NH2的水溶液中加入与水体积比为10-30%的丙酮后,Cage-NH2载体材料可聚沉,并通过过滤或离心的方式收集。
4.根据权利要求1和2所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:单分子笼Cage-NH2载体材料的笼腔体尺寸约为0.5-0.6nm。
5.根据权利要求1所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:所述步骤二中,M@Cage-NH2催化剂中的贵金属M组分可以是Pd、Pt、Ru等,贵金属的负载量与Cage-NH2载体质量比为1-30%,贵金属团簇的尺寸约为0.5-0.6nm。
6.根据权利要求1所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:所述步骤二和步骤三中所制得的M@Cage-NH2催化剂,可均匀溶解于水相体系,当向M@Cage-NH2催化剂的水溶性体系中加入与水体积比为10-30%的丙酮后,M@Cage-NH2催化剂可聚沉,并通过过滤或离心的方式收集。
7.根据权利要求1和6所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:所制得的Ru@Cage-NH2团簇负载型催化剂在水相均相体系中,2-3MPa的氢气氛围下,催化喹啉类化合物加氢合成十氢喹啉类化合物,其反应转化率和选择性均高于99%。
8.根据权利要求1和6所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:所制得的Pd@Cage-NH2团簇负载型催化剂在水相均相体系中,常压氢气氛围下、60-80℃条件下,催化苯酚加氢合成环己酮,其反应转化率高达100%,环己酮选择性高于98%。
9.根据权利要求1和6所述的一种水溶性贵金属团簇催化剂的制备方法,其特征在于:所制得的Pt@Cage-NH2团簇负载型催化剂在水相均相体系中,1.5MPa氢气氛围下,催化肉桂醛选择性加氢合成肉桂醇,其反应转化率高达98%,肉桂醇选择性高于96%。
CN202111602755.5A 2021-12-24 2021-12-24 一种水溶性贵金属团簇催化剂的制备方法及其应用 Pending CN114160195A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111602755.5A CN114160195A (zh) 2021-12-24 2021-12-24 一种水溶性贵金属团簇催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111602755.5A CN114160195A (zh) 2021-12-24 2021-12-24 一种水溶性贵金属团簇催化剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN114160195A true CN114160195A (zh) 2022-03-11

Family

ID=80488115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111602755.5A Pending CN114160195A (zh) 2021-12-24 2021-12-24 一种水溶性贵金属团簇催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114160195A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710376A1 (de) * 1997-03-13 1998-09-17 Clariant Gmbh Katalysator zur hydrierenden Enthalogenierung von alpha-halogenierten Carbonsäuren sowie ein Verfahren zu seiner Herstellung
US20050261125A1 (en) * 2004-05-24 2005-11-24 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
US20080033146A1 (en) * 2006-08-01 2008-02-07 Headwaters Nanokinetix, Inc. Methods for manufacturing aryl-aryl coupled polymers
US20080268159A1 (en) * 2005-09-29 2008-10-30 Hirohito Hirata Production Method of Precious Metal Catalyst
WO2020252536A1 (en) * 2019-06-19 2020-12-24 The University Of Adelaide Hydrogen-bonded organic framework systems
CN112280053A (zh) * 2020-09-30 2021-01-29 中南大学 基于笼状分子砌块的二维COFs纳米片及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710376A1 (de) * 1997-03-13 1998-09-17 Clariant Gmbh Katalysator zur hydrierenden Enthalogenierung von alpha-halogenierten Carbonsäuren sowie ein Verfahren zu seiner Herstellung
US20050261125A1 (en) * 2004-05-24 2005-11-24 Tanaka Kikinzoku Kogyo K.K. Catalyst and process for preparing the same
US20080268159A1 (en) * 2005-09-29 2008-10-30 Hirohito Hirata Production Method of Precious Metal Catalyst
US20080033146A1 (en) * 2006-08-01 2008-02-07 Headwaters Nanokinetix, Inc. Methods for manufacturing aryl-aryl coupled polymers
WO2020252536A1 (en) * 2019-06-19 2020-12-24 The University Of Adelaide Hydrogen-bonded organic framework systems
CN112280053A (zh) * 2020-09-30 2021-01-29 中南大学 基于笼状分子砌块的二维COFs纳米片及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIN HAN 等: "Postsynthetic Metalation of a Robust Hydrogen-Bonded Organic Framework for Heterogeneous Catalysis" *
DE-XIAN WANG 等: "Versatile Anion–p Interactions between Halides and a Conformationally Rigid Bis(tetraoxacalix[2]arene[2]triazine) Cage and Their Directing Effect on Molecular Assembly" *
QIANG SONG 等: "Ru clusters confined in Hydrogen-bonded organic frameworks for homogeneous catalytic hydrogenation of N-heterocyclic compounds with heterogeneous recyclability" *

Similar Documents

Publication Publication Date Title
Sun et al. Heterogeneous catalysts for CO 2 hydrogenation to formic acid/formate: from nanoscale to single atom
Chen et al. The function of metal–organic frameworks in the application of MOF-based composites
Li et al. Origin of the activity of Co–N–C catalysts for chemoselective hydrogenation of nitroarenes
Li et al. Engineering noble metal nanomaterials for environmental applications
Lu et al. Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation
CN102553579B (zh) 一种高分散负载型纳米金属催化剂的制备方法
CN112871198B (zh) 一种二氧化碳加氢合成甲酸催化剂及其制备方法和应用
CN105312087A (zh) 纳米复合催化剂及其制备方法与应用
CN114160196B (zh) 一种钯团簇催化剂的制备方法及其应用
US9109293B2 (en) Electrocatalyst for electrochemical conversion of carbon dioxide
US20140336036A1 (en) Electrocatalyst for electrochemical conversion of carbon dioxide
CN112371173B (zh) 一种应用于间硝基苯磺酸加氢的铂炭催化剂及其制备方法
CN100364663C (zh) 负载型纳米金催化剂及制备方法
Wang et al. Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction
CN112138696A (zh) 一种过渡金属负载氮修饰有序介孔纳米碳球的制备方法
Noël et al. Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: A review
CN111269086A (zh) 一种原子级分散钌催化剂在催化加氢上的应用方法
CN112007637B (zh) 一种双金属合金-埃洛石复合催化剂及其制备方法和应用
Liu et al. Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel for reusable catalysis
Dutta et al. Metal–organic framework based catalytic nanoreactors: synthetic challenges and applications
CN109438153B (zh) 一种香茅醛选择脱羰基化反应制备2,6-二甲基-2-庚烯的方法
CN114618551A (zh) 一种负载型纳米合金催化剂及普适性制备方法
WO2008009742A1 (en) Anodic catalysts consisting of noble metals spontaneously deposited onto nanostructured catalysts composed of transition metals, their synthesis and use in fuel cells
CN111545239B (zh) 一种用于甘油氧化的固体催化剂及其制备方法
CN110935481A (zh) 一种用于芳香醚键选择性氢解催化剂及制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220311