CN114121656B - 一种基于硅衬底的新型hemt器件的制备方法及器件 - Google Patents

一种基于硅衬底的新型hemt器件的制备方法及器件 Download PDF

Info

Publication number
CN114121656B
CN114121656B CN202111397485.9A CN202111397485A CN114121656B CN 114121656 B CN114121656 B CN 114121656B CN 202111397485 A CN202111397485 A CN 202111397485A CN 114121656 B CN114121656 B CN 114121656B
Authority
CN
China
Prior art keywords
layer
gan
buffer layer
adopting
uid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111397485.9A
Other languages
English (en)
Other versions
CN114121656A (zh
Inventor
陈瑶
陈兴
王东
吴勇
黄永
李彦佐
林长志
邱慧嫣
谢雨峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Research Institute of Xidian University
Original Assignee
Wuhu Research Institute of Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Research Institute of Xidian University filed Critical Wuhu Research Institute of Xidian University
Priority to CN202111397485.9A priority Critical patent/CN114121656B/zh
Publication of CN114121656A publication Critical patent/CN114121656A/zh
Application granted granted Critical
Publication of CN114121656B publication Critical patent/CN114121656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种基于硅衬底的新型HEMT器件的制备方法,涉及半导体技术领域,通过上述方法获得了器件,该器件包括衬底、AlN成核层、超晶格缓冲层、UID‑GaN层、GaN缓冲层、掺硅的AlGaN背势垒层、GaN沟道层、第二AlGaN势垒层、GaN沟道层、第一AlGaN势垒层、栅介质层、漏电极、源电极、栅极以及Si3N4钝化层,GaN缓冲层由UID‑GaN、掺碳GaN和掺铁GaN薄层周期性循环生长而成,本发明在AlGaN/GaN异质结外延过程中采用超晶格作为底层缓冲层,可以减少GaN材料与Si衬底的晶格不匹配,此外,通过在超晶格缓冲层上刻蚀大于或等于6个凹孔并在凹孔内填充UID‑GaN,可以进一步减少GaN材料与Si衬底晶格不匹配产生的应力,同时又能减少Si衬底外延时的翘曲以及电流崩塌,从而提高AlGaN/GaN HEMT器件的横向击穿电压。

Description

一种基于硅衬底的新型HEMT器件的制备方法及器件
技术领域
本发明属于半导体技术领域,具体涉及一种基于硅衬底的新型HEMT器件的制备方法及利用该方法获得的器件。
背景技术
与传统的传统的硅基功率器件相比,GaN功率器件具有耐高温、耐高压、抗强辐射以及高功率等优势。同时,AlGaN/GaN等异质结界面处可以产生高浓度以及高迁移率的的二维电子气,不需要掺n型或p型杂质即可形成导电沟道,在未来具有极高的应用价值。
GaN功率器件经过理论研究具有相当高的击穿电压,但实际上由于工艺以及不同材料之间的失配,GaN功率器件现有击穿电压远达不到理论水平。主要原因有:
一、电场集中效应,栅极靠近漏极侧的电场强度达到最大有一个电场强度峰值,使器件提前击穿。
二、电流在缓冲区会有泄露,从源极流过的电子经过缓冲区流向漏极形成回路,使器件提前击穿。
为了解决上述问题,一般采用的方法有将缓冲层掺碳或铁杂质,这是由于MOCVD生长GaN不可避免地引入背景n型掺杂剂,例如氮空位和氧杂质和碳杂质,UID-GaN缓冲层具有不足的电阻率,这可能导致寄生泄漏路径,增加关态泄漏电流。掺碳GaN通过产生受主陷阱来降低背景载流子浓度,提高缓冲层的电阻率,从而提高击穿电压,但是这会降低结晶质量,它们也像陷阱一样充当受体,导致电流崩塌,击穿电压提高幅度有限。也可采用铁掺杂来俘获背景载流子,若采用单一铁掺杂,由于铁源存在记忆效应,在外延生长过程中会影响沟道和势垒生长。因此如何有效提升GaN材料结晶质量的同时有效降低背景载流子浓度是高质量高阻外延生长研究的关键。
发明内容
本发明的目的在于提供一种基于硅衬底的新型HEMT器件的制备方法及利用该方法获得的器件,以解决现有技术中导致的上述缺陷。
一种基于硅衬底的新型HEMT器件的制备方法,包括如下步骤:
(1)在衬底上生长AlN成核层,生长温度1000-1100℃,薄膜厚度10-300nm,生长压力为50-300mbar,用于为后续的GaN缓冲层生长提供成核节点,提高GaN薄膜结晶质量;
(2)在AlN成核层基础上,采用金属有机源化学气相沉积(MOCVD)或其他方法非故意掺杂生长形成的超晶格缓冲层,薄膜厚度范围为100nm-10um;
(3)在超晶格缓冲层生长一定厚度后从MOCVD中取出,通过光刻和湿法腐蚀的方法对已生长的超晶格缓冲层进行选区腐蚀,形成方块型凹孔,刻蚀深度为50nm-5um;
(4)采用金属有机源化学气相沉积方法在超晶格缓冲层凹孔里生长UID-GaN薄膜层,生长厚度为50nm-5um;
(5)在UID-GaN薄膜层生长结束后采用光刻自对准方法,干法刻蚀掉凹孔之外的UID-GaN薄膜层,凹孔之外的UID-GaN薄膜层被刻蚀后再送回MOCVD设备生长GaN缓冲层;
(6)在上一步骤形成的结构的基础上采用金属有机源化学气相沉积方法自下而上生长掺Si的AlGaN背势垒层、氮化镓沟道层、第二AlGaN势垒层、氮化镓沟道层以及第一AlGaN势垒层;
(7)采用金属有机源化学气相沉积方法在最上层的AlGaN势垒层上生长栅介质层,然后再栅介质层上形成栅电极;
(8)采用电子束蒸发钛、铝、镍、金来沉积用于源极/漏极欧姆接触的钛/铝/镍/金金属层,随后在N2环境中快速热退火,最终形成漏电极和源电极,钛/铝/镍/金金属层的厚度为10-20nm;
(9)在源电极与栅极之间、漏电极与栅极之间均形成有Si3N4钝化层。
进一步地,所述衬底采用Si材料,也可以采用其他材料,如金刚石。
进一步地,所述步骤(2)中所述超晶格缓冲层由大于等于5对两种不同Al摩尔分数的AlxGa1-xN和AlyGa1-yN周期性生长而成,0<=x,y<=1。
进一步地,所述步骤(3)中选区生长的区数大于等于6个。
进一步地,所述步骤(5)中GaN缓冲层采用金属有机源化学气相沉积方法获得,薄膜厚度范围为100nm-10um。
进一步地,所述步骤(5)中GaN缓冲层的生长过程依次按照以下三个步骤循环生长不小于6个周期:
a)采用金属有机源化学气相沉积方法生长UID-GaN薄膜层;
b)采用金属有机源化学气相沉积方法生长10-100nm掺碳GaN薄膜;
c)采用金属有机源化学气相沉积方法生长10-100nm掺铁GaN薄膜。
所述步骤(6)中的AlGaN势垒层采用AlxGa1-xN势垒层,其中0<=x<=1。
依据上述方法制备出的HEMT器件,该器件包括自下而上依次排布的衬底、AlN成核层、超晶格缓冲层、UID-GaN层、GaN缓冲层、AlGaN背势垒层、GaN沟道层、第二势垒层、GaN沟道层、第一势垒层、栅介质层,分布于两端的漏电极和源电极,设置于AlGaN势垒层三顶部的栅极以及源电极与栅极之间、漏电极与栅极之间的Si3N4钝化层。
本发明的优点在于:
(1)本发明的器件在AlGaN/GaN异质结外延过程中采用超晶格作为底层缓冲层,可以减少GaN材料与Si衬底的晶格不匹配,此外,通过在超晶格缓冲层上刻蚀大于或等于6个凹孔并在凹孔内填充UID-GaN,可以进一步减少GaN材料与Si衬底晶格不匹配产生的应力,同时又能减少Si衬底外延时的翘曲以及电流崩塌,从而提高AlGaN/GaN HEMT器件的横向击穿电压。
(2)在超晶格缓冲层之上生长了特制的GaN缓冲层,GaN缓冲层由UID-GaN、掺碳GaN和掺铁GaN薄层周期性循环生长而成,周期型掺杂可以提高GaN缓冲层的电阻率并减小电流崩塌,从而又进一步提高击穿电压;掺碳GaN缓冲层、掺铁GaN缓冲层结合UID-GaN缓冲层能补偿GaN缓冲层中背景电子同时它也比单一掺碳或者掺铁缓冲层的结晶质量高。
(3)AlGaN背势垒层由掺Si的AlGaN组成,其降低了栅极和漏极之间沿GaN沟道的电场,抑制了缓冲区中碳诱导的受主陷阱对沟道二维电子气的俘获,增加沟道中二维电子气密度,减少了电流崩塌。
(4)采用双沟道AlGaN/GaN异质结HEMT,横向击穿电压得以再次提高,适合应用于大功率器件。
附图说明
图1为本发明的结构示意图。
图2为形成超晶格缓冲层后的示意图。
图3为在超晶格缓冲层凹孔里生长UID-GaN薄膜层后的示意图。
图4为在UID-GaN薄膜层上生长GaN缓冲层的示意图。
图5为循环生长GaN缓冲层的示意图。
其中:101衬底,102AlN成核层,103超晶格缓冲层,104UID-GaN薄膜层,105GaN缓冲层,106第二AlGaN势垒层,107GaN沟道层,108第一AlGaN势垒层,109AlGaN势垒层,110栅介质层,111源极,112漏极,114Si3N4钝化层,113栅极。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例1
(1)在Si衬底101上生长AlN成核层102,生长温度1000℃,薄膜厚度10nm,生长压力为50mbar,用于为后续的GaN缓冲层105生长提供成核节点,提高GaN薄膜结晶质量;
(2)在AlN成核层102基础上,采用金属有机源化学气相沉积(MOCVD)或其他方法非故意掺杂生长形成的超晶格缓冲层103,如图2所示,薄膜厚度范围为100nm,所述超晶格缓冲层103由大于等于5对两种不同Al摩尔分数的AlxGa1-xN和AlyGa1-yN周期性生长而成,0<=x,y<=1;
(3) 在超晶格缓冲层103生长一定厚度后从MOCVD中取出,通过光刻和湿法腐蚀的方法对已生长的超晶格缓冲层103进行选区腐蚀,形成方块型凹孔,刻蚀深度为50nm;
(4) 采用金属有机源化学气相沉积方法在超晶格缓冲层103凹孔里生长UID-GaN薄膜层104,生长厚度为50nm;
(5) 在UID-GaN薄膜层104生长结束后采用光刻自对准方法,干法刻蚀掉凹孔之外的UID-GaN薄膜层104,如图3所示,凹孔之外的UID-GaN薄膜层104被刻蚀后再送回MOCVD设备生长GaN缓冲层105,如图4所示;
(6)在上一步骤形成的结构的基础上采用金属有机源化学气相沉积方法自下而上生长掺Si的AlGaN背势垒层106、氮化镓沟道层107、第二AlGaN势垒层108、氮化镓沟道层107以及第一AlGaN势垒层109,两个AlGaN势垒层采用均AlxGa1-xN势垒层,其中0<=x<=1。
(7) 采用金属有机源化学气相沉积方法在最上层的AlGaN势垒层上生长栅介质层110,然后再栅介质层110上形成栅电极;
(8) 采用电子束蒸发钛、铝、镍、金来沉积用于源极111/漏极112欧姆接触的钛/铝/镍/金金属层,随后在N2环境中快速热退火,最终形成漏电极和源电极,钛/铝/镍/金金属层的厚度为10nm;
(9)在源电极与栅极113之间、漏电极与栅极113之间均形成有Si3N4钝化层114。
进一步地,所述步骤(3)中选区生长的区数大于等于6个。
进一步地,所述步骤(5)中GaN缓冲层105采用金属有机源化学气相沉积方法获得,薄膜厚度范围为100nm,其生长过程依次按照以下三个步骤循环生长不小于6个周期,如图5所示:
a)采用金属有机源化学气相沉积方法生长UID-GaN薄膜层104;
b)采用金属有机源化学气相沉积方法生长10nm掺碳GaN薄膜;
c)采用金属有机源化学气相沉积方法生长10nm掺铁GaN薄膜。
实施例2
其余与实施例1相同,不同之处在于:AlN成核层102,生长温度1050℃,薄膜厚度205nm,生长压力为185mbar;超晶格缓冲层103,薄膜厚度范围为1um;步骤(3)中刻蚀深度为1um;步骤(4)中UID-GaN薄膜层104生长厚度为1um;钛/铝/镍/金金属层的厚度为15nm;步骤b)中采用金属有机源化学气相沉积方法生长50nm掺碳GaN薄膜;步骤c) 中采用金属有机源化学气相沉积方法生长50nm掺铁GaN薄膜。
实施例3
其余与实施例1相同,不同之处在于:AlN成核层102,生长温度1100℃,薄膜厚度300nm,生长压力为300mbar;超晶格缓冲层103,薄膜厚度范围为10um;步骤(3)中刻蚀深度为5um;步骤(4)中UID-GaN薄膜层104生长厚度为5um;钛/铝/镍/金金属层的厚度为20nm;步骤b)中采用金属有机源化学气相沉积方法生长100nm掺碳GaN薄膜;步骤c) 中采用金属有机源化学气相沉积方法生长100nm掺铁GaN薄膜。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (8)

1.一种基于硅衬底的新型HEMT器件的制备方法,其特征在于,包括如下步骤:
(1)在衬底(101)上生长AlN成核层(102),生长温度1000-1100℃,薄膜厚度10-300nm,生长压力为50-300mbar,用于为后续的GaN缓冲层(105)生长提供成核节点,提高GaN薄膜结晶质量;
(2)在AlN成核层(102)基础上,采用金属有机源化学气相沉积(MOCVD)或其他方法非故意掺杂生长形成的超晶格缓冲层(103),薄膜厚度范围为100nm-10um;
(3) 在超晶格缓冲层(103)生长一定厚度后从MOCVD中取出,通过光刻和湿法腐蚀的方法对已生长的超晶格缓冲层(103)进行选区腐蚀,形成方块型凹孔,刻蚀深度为50nm-5um;
(4) 采用金属有机源化学气相沉积方法在超晶格缓冲层(103)凹孔里生长UID-GaN薄膜层(104),生长厚度为50nm-5um;
(5) 在UID-GaN薄膜层(104)生长结束后采用光刻自对准方法,干法刻蚀掉凹孔之外的UID-GaN薄膜层(104),凹孔之外的UID-GaN薄膜层(104)被刻蚀后再送回MOCVD设备生长GaN缓冲层(105);
(6) 在上一步骤形成的结构的基础上采用金属有机源化学气相沉积方法自下而上生长掺Si的AlGaN背势垒层(106)、氮化镓沟道层(107)、第二AlGaN势垒层(108)、氮化镓沟道层(107)以及第一AlGaN势垒层(109);
(7) 采用金属有机源化学气相沉积方法在最上层的AlGaN势垒层上生长栅介质层(110),然后再栅介质层(110)上形成栅电极;
(8) 采用电子束蒸发钛、铝、镍、金来沉积用于源极(111)/漏极(112)欧姆接触的钛/铝/镍/金金属层,随后在N2环境中快速热退火,最终形成漏电极和源电极,钛/铝/镍/金金属层的厚度为10-20nm;
(9)在源电极与栅极(113)之间、漏电极与栅极(113)之间均形成有Si3N4钝化层。
2.根据权利要求1所述的一种基于硅衬底(101)的新型HEMT器件的制备方法,其特征在于,所述衬底(101)采用Si材料。
3.根据权利要求1所述的一种基于硅衬底(101)的新型HEMT器件的制备方法,其特征在于,所述步骤(2)中所述超晶格缓冲层(103)由大于等于5对两种不同Al摩尔分数的AlxGa1-xN和AlyGa1-yN周期性生长而成,0<=x,y<=1。
4.根据权利要求1所述的一种基于硅衬底(101)的新型HEMT器件的制备方法,其特征在于,所述步骤(3)中选区生长的区数大于等于6个。
5.根据权利要求1所述的一种基于硅衬底(101)的新型HEMT器件的制备方法,其特征在于,所述步骤(5)中GaN缓冲层(105)采用金属有机源化学气相沉积方法获得,薄膜厚度范围为100nm-10um。
6.根据权利要求1所述的一种基于硅衬底(101)的新型HEMT器件的制备方法,其特征在于,所述步骤(5)中GaN缓冲层(105)的生长过程依次按照以下三个步骤循环生长不小于6个周期:
a)采用金属有机源化学气相沉积方法生长UID-GaN薄膜层(104);
b)采用金属有机源化学气相沉积方法生长10-100nm掺碳GaN薄膜;
c)采用金属有机源化学气相沉积方法生长10-100nm掺铁GaN薄膜。
7.根据权利要求1所述的一种基于硅衬底(101)的新型HEMT器件的制备方法,其特征在于,所述步骤(6)中的AlGaN势垒层采用AlxGa1-xN势垒层,其中0<=x<=1。
8.根据权利要求1所述的方法制备出的HEMT器件,其特征在于,该器件包括自下而上依次排布的衬底(101)、AlN成核层(102)、超晶格缓冲层(103)、UID-GaN层(104)、GaN缓冲层(105)、AlGaN背势垒层(106)、GaN沟道层(107)、第二势垒层(108)、GaN沟道层(107)、第一势垒层(109)、栅介质层(110),分布于两端的漏电极和源电极,设置于第一势垒层(109)顶部的栅极(113)以及源电极与栅极(113)之间、漏电极与栅极(113)之间的Si3N4钝化层(114)。
CN202111397485.9A 2021-11-23 2021-11-23 一种基于硅衬底的新型hemt器件的制备方法及器件 Active CN114121656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111397485.9A CN114121656B (zh) 2021-11-23 2021-11-23 一种基于硅衬底的新型hemt器件的制备方法及器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111397485.9A CN114121656B (zh) 2021-11-23 2021-11-23 一种基于硅衬底的新型hemt器件的制备方法及器件

Publications (2)

Publication Number Publication Date
CN114121656A CN114121656A (zh) 2022-03-01
CN114121656B true CN114121656B (zh) 2023-08-25

Family

ID=80440591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111397485.9A Active CN114121656B (zh) 2021-11-23 2021-11-23 一种基于硅衬底的新型hemt器件的制备方法及器件

Country Status (1)

Country Link
CN (1) CN114121656B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799332B (zh) * 2023-02-13 2023-04-21 江西兆驰半导体有限公司 一种极性硅基高电子迁移率晶体管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119807A (ja) * 2002-09-27 2004-04-15 Nichia Chem Ind Ltd 窒化物半導体結晶の成長方法及びそれを用いた素子
KR20140147250A (ko) * 2013-06-19 2014-12-30 엘지이노텍 주식회사 반도체 기판, 발광 소자 및 전자 소자
CN111785610A (zh) * 2020-05-26 2020-10-16 西安电子科技大学 一种散热增强的金刚石基氮化镓材料结构及其制备方法
CN214043599U (zh) * 2020-12-02 2021-08-24 上海芯元基半导体科技有限公司 含Al氮化物半导体结构及器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795771B2 (ja) * 2001-06-13 2006-07-12 日本碍子株式会社 Elo用iii族窒化物半導体基板
US10622515B2 (en) * 2011-10-10 2020-04-14 Sensor Electronic Technology, Inc. Patterned layer design for group III nitride layer growth
US20130140525A1 (en) * 2011-12-01 2013-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Gallium nitride growth method on silicon substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119807A (ja) * 2002-09-27 2004-04-15 Nichia Chem Ind Ltd 窒化物半導体結晶の成長方法及びそれを用いた素子
KR20140147250A (ko) * 2013-06-19 2014-12-30 엘지이노텍 주식회사 반도체 기판, 발광 소자 및 전자 소자
CN111785610A (zh) * 2020-05-26 2020-10-16 西安电子科技大学 一种散热增强的金刚石基氮化镓材料结构及其制备方法
CN214043599U (zh) * 2020-12-02 2021-08-24 上海芯元基半导体科技有限公司 含Al氮化物半导体结构及器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Impact of the substrate and buffer design on the performance of GaN on Si power HEMTs;M.Borga et al;《Microelectronics Reliability》;第584-588页 *

Also Published As

Publication number Publication date
CN114121656A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US10580879B2 (en) Enhancement-mode GaN-based HEMT device on Si substrate and manufacturing method thereof
US8569800B2 (en) Field effect transistor
CN105789047B (zh) 一种增强型AlGaN/GaN高电子迁移率晶体管的制备方法
JP6035721B2 (ja) 半導体装置の製造方法
JP6896063B2 (ja) イオン注入を用いた高抵抗窒化物バッファ層の半導体材料成長
CN111223777B (zh) GaN基HEMT器件及其制作方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN111384171A (zh) 高沟道迁移率垂直型umosfet器件及其制备方法
CN110137244B (zh) GaN基自支撑衬底的垂直结构HEMT器件及制备方法
CN113555431B (zh) 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法
CN114121656B (zh) 一种基于硅衬底的新型hemt器件的制备方法及器件
CN105957881A (zh) 具有背势垒的AlGaN/GaN极化掺杂场效应晶体管及制造方法
CN110676167A (zh) 多沟道鳍式结构的AlInN/GaN高电子迁移率晶体管及制作方法
CN110838514B (zh) 一种半导体器件的外延结构及其制备方法、半导体器件
CN115910782B (zh) 常关型高电子迁移率晶体管的制造方法
CN111682064A (zh) 高性能MIS栅增强型GaN基高电子迁移率晶体管及其制备方法
KR20150000753A (ko) 질화물 반도체 소자 및 그 제조 방법
CN113394096B (zh) Hemt器件及其自隔离方法、制作方法
CN109300974A (zh) 一种非极性InAlN/GaN高电子迁移率晶体管及制备方法
JP2009246307A (ja) 半導体装置及びその製造方法
CN114530375B (zh) 一种基于硅衬底的新型非平面沟道氮化镓hemt的制备方法
CN210516745U (zh) 一种碳化硅衬底氮化镓基功率器件
CN114725022A (zh) 一种基于GaOx-GaN的CMOS反相器的制备方法
CN210837767U (zh) 一种GaN基HEMT器件
CN109830540B (zh) 一种基于空心阳极结构的肖特基二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 241000 building 7, science and Technology Industrial Park, high tech Industrial Development Zone, Yijiang District, Wuhu City, Anhui Province

Applicant after: Wuhu Research Institute of Xidian University

Address before: No. 8, Wen Jin Xi Road, Yijiang District, Wuhu, Anhui Province

Applicant before: Wuhu Research Institute of Xidian University

GR01 Patent grant
GR01 Patent grant