CN114114508B - 一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法 - Google Patents

一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法 Download PDF

Info

Publication number
CN114114508B
CN114114508B CN202111010690.5A CN202111010690A CN114114508B CN 114114508 B CN114114508 B CN 114114508B CN 202111010690 A CN202111010690 A CN 202111010690A CN 114114508 B CN114114508 B CN 114114508B
Authority
CN
China
Prior art keywords
polarization
layer
preserving
film
maintaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111010690.5A
Other languages
English (en)
Other versions
CN114114508A (zh
Inventor
余洋
夏寅
赵国林
付坤
陈建文
李刚
唐海江
张彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Exciton Technology Co Ltd
Original Assignee
Ningbo Exciton Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Exciton Technology Co Ltd filed Critical Ningbo Exciton Technology Co Ltd
Publication of CN114114508A publication Critical patent/CN114114508A/zh
Application granted granted Critical
Publication of CN114114508B publication Critical patent/CN114114508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)

Abstract

本发明涉及一种保偏光学膜、一种保偏微透镜膜,尤其涉及一种应用于LCD线偏振背光源的一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法。为了解决传统背光中光学膜在偏振光源增效方案中会产生退偏的问题,本发明提供一种抗吸附保偏微透镜膜及其制备方法。所述抗吸附保偏微透镜膜包括保偏基体层、第一结构层和第二结构层,第一结构层为非等高微透镜阵列层,位于基体层上表面,第二结构层不存在或为雾化层,位于基体层下表面。所述非等高微透镜阵列层中,微透镜大小相同,排列规整,但微透镜的高度在一定范围内随机变化。当LCD背光中的线偏振光通过该抗吸附保偏微透镜膜时可以保留较高入射光偏振度。

Description

一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法
技术领域
本发明涉及一种保偏微透镜膜,尤其涉及一种应用于LCD线偏振背光源的一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法。
背景技术
在传统的液晶显示领域(LCD),液晶面板的显示需要背光模组为其提供光源,通过背光模组中各类光学薄膜、导光板可以将LED点光源转化成均匀的平面光源。然而,该平面光源的光能对于液晶面板而言,实际上利用率非常低。
其中一个原因是液晶面板的下偏光片(13)的透过率仅为40%(如表1所示)。由于点光源到面光源的转化效率因背光设计(直下式or侧入式)不同而差异较大,本文以面光源为100%基准来探讨传统液晶显示面板对背光源的光能衰减过程。可以看到,通过滤光片时损失最多(约70%),这是因为白光被滤掉其他两色产生RGB单色光,其次就是最初通过下偏光片时损失比较严重(约60%),这是因为普通光源形成线偏光需要经历PVA层的二向色吸收过程,仅保留偏振方向与偏光片透光轴平行的线偏振光(22),垂直方向(23)的均被吸收,如图1所示,背光模组(14)发出的光为部分偏振光(21),部分偏振光(21)经过下偏光片(13)后,平行方向的线偏振光(22)顺利透过,垂直方向的线偏振光(23)被下偏光片(13)吸收,平行方向的线偏振光通过液晶面板(12)时被液晶扭转并改变偏振方向,转变为垂直方向的线偏振光(23)并从上偏光片(11)顺利透过,出射光最终为垂直方向的线偏振光(23)。
表1传统液晶显示面板对背光源的光能衰减过程
考察顺序 衰减位置 衰减原因 透过率 光能剩余
6 盖板 表面反射 90% 9.2%
5 上偏光片 表面反射 90% 10.3%
4 滤光片 波长截止、吸收 30% 11.4%
3 液晶层 偏振光透过 95% 38%
2 下偏光片 表面反射、起偏 40% 40%
1 面光源 背光材料光分布转化 / 100%
0 点光源 / / /
如果能使背光面光源在进入下偏光前起偏,已经转化为与其平行的线偏振光,那么就大大提高了下偏光对其的透过率,整体液晶面板对面光源的利用率将大幅提升,有助于显示器亮度提升,省电节能。
传统增效方案是在后端起偏,即在原始背光架构上增加一张采用多层膜系设计的反射型偏光片(RP)(15):这种反射型偏光片(15)能使完全偏振的P光透过、S光反射;而S光在背光***中会发射退偏振,重新形成部分偏振光;部分偏振光反复从RP透过,以产生更多的P光;经过多次循环,直至能量耗尽;而最终增加的P光可让光能利用率相比原始架构提升20~30%。如图2所示,背光模组(14)发出的光为部分偏振光(21),部分偏振光(21)进入反射型偏光片(15),反射型偏光片(15)能使平行方向的线偏振光(22)透过、垂直方向的线偏振光(23)反射;而垂直方向的线偏振光(23)在背光***中会发生退偏振,重新形成部分偏振光(21);平行方向的线偏振光(22)经过下偏光片(13)后,平行方向的线偏振光(22)顺利透过,此时没有垂直方向的线偏振光(23)被吸收,平行方向的线偏振光通过液晶面板(12)时被液晶扭转并改变偏振方向,转变为垂直方向的线偏振光(23)并从上偏光片(11)顺利透过,出射光最终为垂直方向的线偏振光(23)。
然而,反射型偏光片因其设备、工艺复杂,且供应资源少,价格非常昂贵。因此,有必要提出新的增效方案。
另一种比较可行的方案是前端起偏,即让背光模组采用线偏点光源,从最开始就发出线偏振光,并使偏振光的方向与下偏光片(13)的透光轴保持一致。如图3所示,背光模组(14)发出的光为平行方向的线偏振光(22),该线偏振光(22)经过下偏光片(13)后,平行方向的线偏振光(22)顺利透过,该线偏振光通过液晶面板(12)时被液晶扭转并改变偏振方向,转变为垂直方向的线偏振光(23)并从上偏光片(11)顺利透过,出射光最终为垂直方向的线偏振光(23)。然而,这种线偏点光源在转化成面光源的过程中,因传统光学膜具有光学各向异性,保偏度很低(完全偏振光入射,经过光学膜会发生或多或少的退偏振,导致出射光偏振度下降,产生部分偏振光,该出射光与入射光的偏振度之比即保偏度,由于入射光的偏振度为1,因此保偏度也可以用出射光的偏振度来表示),一般在50~70%之间,最终面光源的偏振度急剧下降,产生明显的退偏现象,而这种部分偏振光仍会被下偏光片滤掉很大一部分,达不到增效预期,如图4所示,平行方向的线偏振光(22)经过传统光学膜(3)后,出射光线为部分偏振光(21),部分偏振光(21)经过下偏光片(13)后,平行方向的线偏振光(22)顺利透过,垂直方向的线偏振光(23)被下偏光片(13)吸收,平行方向的线偏振光通过液晶面板(12)时被液晶扭转并改变偏振方向,转变为垂直方向的线偏振光(23)并从上偏光片(11)顺利透过,出射光最终为垂直方向的线偏振光(23)。
发明内容
为了解决传统背光中光学膜在偏振光源增效方案中会产生严重退偏现象的问题,本发明提供一种保偏光学膜及其制备方法。本发明提供的保偏光学膜对入射线偏振光具有较高保偏度,减轻了退偏现象。
为了解决上述技术问题,本发明采用下述技术方案:
本发明提供一种保偏光学膜,所述保偏光学膜包括保偏基体层、第一结构层和/或第二结构层,第一结构层位于保偏基体层上表面,第二结构层位于保偏基体层下表面。
当线偏振光通过该保偏光学膜时,该保偏光学膜对入射线偏振光的保偏度大于或等于80%。
进一步的,当LCD背光中的线偏振光通过该保偏光学膜时,偏振入射光可以保留较高偏振度,保偏度大于或等于80%。从而确保最终对LCD下偏光片的高度透过,大大提高背光源的利用率。
传统背光中的光学膜指现有的扩散膜、微透镜膜、棱镜膜、或逆棱镜膜。
所述保偏光学膜为保偏扩散膜、保偏微透镜膜、保偏棱镜膜、保偏逆棱镜膜中的一种。
本发明提供的保偏光学膜是对现有光学膜的改进,将现有光学膜的基体层(也称支撑层)的材质改为对线偏振光具有高保偏度的材质。
所述保偏基体层的保偏度大于99%。
所述保偏基体层的材质为光学各向同性的透明聚合物。
所述保偏基体层的厚度T为25~250μm。
所述保偏基体层的材质选自聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、三醋酸纤维素(TAC)、环烯烃聚合物(COP)中的一种或至少两种的组合。
所述保偏扩散膜的雾度为60~98%。
所述保偏扩散膜的第一结构层为雾化层,第二结构层不存在或同为雾化层,雾化层选自无粒子涂层或有粒子涂层。
所述第一雾化层/第二雾化层的雾度为5~98%。
所述保偏扩散膜的无粒子涂层由透明聚合物树脂构成。所述有粒子涂层由透明聚合物树脂和透明聚合物粒子构成;透明聚合物粒子的粒径为1~20μm。
所述保偏微透镜膜的雾度为60~98%。
所述保偏微透镜膜的第一结构层为微透镜阵列层;在所述微透镜阵列层中,相邻的三个微透镜的主光轴的坐标相连形成正三角形,或者,相邻的四个微透镜的主光轴的坐标相连形成正方形;所述微透镜阵列中的微透镜紧密排列。
所述微透镜阵列层的雾度为60~98%。
在所述微透镜阵列层中,相邻微透镜的主光轴的间距D为10~50μm,微透镜的宽度为W(W=D),微透镜的高度为H,高宽比H/W为0.05~0.5。
所述保偏棱镜膜的第一结构层为棱镜层,第二结构层不存在或为雾化层;所述棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形,三角形的底边为10~100μm,顶角为75~105°;所述雾化层的雾度为0~30%。
所述保偏逆棱镜膜的第二结构层为逆棱镜层,第一结构层不存在或为雾化层;所述逆棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形或普通三角形,三角形的底边宽度L为10~100μm,顶角θ选自40~80°,优选为60°,其中一个较大的底角α为90°-0.5θ+γ,γ为0~10°,当γ为0°时,横截面为等腰三角形,当γ大于0°时,横截面为普通三角形。所述雾化层的雾度为0~60%。
所述雾化层的材质选自AR(Acrylic resin,丙烯酸树脂或改性丙烯酸树脂)、PMMA、PC或聚氨酯(PU)中的一种。AR优选为光固化制程,PMMA、PC优选为热压制程,PU优选为热固化制程。
当雾化层为有粒子涂层时,所述透明聚合物树脂的折射率na选自1.4~1.65。当雾化层为无粒子涂层时,所述透明聚合物树脂的折射率nb选自1.4~1.65。
所述透明聚合物粒子选自PMMA、PBMA(聚甲基丙烯酸丁酯)、PS(聚苯乙烯)、PU(聚氨酯)和有机硅中的一种或至少两种的组合。
所述微透镜阵列层由透明聚合物树脂形成,所述透明聚合物树脂的材质选自AR、PMMA或PC中的一种。AR优选为光固化制程,PMMA、PC优选为热压制程。所述微透镜阵列层的透明聚合物树脂的折射率nc选自1.4~1.65。
所述棱镜层由透明聚合物树脂构成,所述透明聚合物树脂的材质选自AR、PMMA或PC中的一种。AR优选为光固化制程,PMMA、PC优选为热压制程。所述透明聚合物树脂的折射率nd选自1.5~1.65。
所述逆棱镜层由透明聚合物树脂构成,所述透明聚合物树脂的材质选自AR、PMMA或PC中的一种。AR优选为光固化制程,PMMA、PC优选为热压制程。所述棱镜层的透明聚合物树脂的折射率ne选自1.5~1.65。
进一步的,本发明提供的保偏扩散膜,所述第一结构层为雾化层DL(Diffusionlayer),所述第二结构层不存在。所述基体层的厚度T为50-250μm,所述保偏基体层的材质选自PC、TAC、PMMA、或COP,光学各向同性,保偏度>99%,所述保偏扩散膜的雾度为98%。所述第一雾化层的雾度为98%,所述雾化层种类为有粒子涂层,透明聚合物树脂选自PU或AR,透明聚合物粒子为PMMA、PS、有机硅、或PU,粒径d为5~15μm或8-20μm,所述透明聚合物树脂的折射率na为1.4、1.5或1.65。所述保偏扩散膜的保偏度为81-83%(例如81%、82%或83%)。
本发明提供的保偏扩散膜,所述第一结构层为雾化层DL(Diffusion layer),所述第二结构层不存在。所述基体层的厚度T为250μm,所述保偏基体层的材质为PC,光学各向同性,保偏度>99%,所述保偏扩散膜的雾度为98%。所述第一雾化层的雾度为98%,所述雾化层种类为无粒子涂层,透明聚合物树脂为PC,所述透明聚合物树脂的折射率na为1.5。所述保偏扩散膜的保偏度为83%。
本发明提供的保偏扩散膜,所述第一结构层为雾化层,所述第二结构层为雾化层。所述基体层的厚度T为50-250μm(例如25μm,50μm,100μm,125μm,250μm),所述保偏基体层的材质选自PC或PMMA,光学各向同性,保偏度>99%,所述保偏扩散膜的雾度为60-98%(例如60%、80%、90%、95%或98%)。所述第一雾化层的雾度为98%,所述雾化层种类为有粒子涂层,透明聚合物树脂为PU或AR,透明聚合物粒子为PMMA,粒径d为5~15μm,所述透明聚合物树脂的折射率na为1.5或1.65。所述第二雾化层的雾度为5%,所述第二雾化层种类为有粒子涂层,透明聚合物树脂为AR,透明聚合物粒子为PMMA,粒径d为1~3μm,或5~15μm,所述透明聚合物树脂的折射率na为1.5。
本发明提供的保偏扩散膜,所述第一结构层为雾化层,所述第二结构层为雾化层。所述基体层的厚度T为250μm,所述保偏基体层的材质为PC,光学各向同性,保偏度>99%,所述保偏扩散膜的雾度为98%。所述第一雾化层的雾度为98%,所述雾化层种类为有粒子涂层,透明聚合物树脂为PU或AR,透明聚合物粒子为PMMA,粒径d为5~15μm,所述透明聚合物树脂的折射率na为1.5或1.65。所述第二雾化层的雾度为5%,所述雾化层种类为无粒子涂层,由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nb为1.5或1.6。所述保偏扩散膜的保偏度为80%。
进一步的,本发明提供一种保偏微透镜膜,所述第一结构层为微透镜阵列层ML(Microlens layer),所述第二结构层不存在。所述基体层的厚度T为25μm-250μm(例如25μm,50μm,100μm,125μm,250μm),所述保偏基体层的材质选自PC或PMMA,光学各向同性,保偏度>99%,所述保偏微透镜膜的雾度为60%-98%(例如60%、70%、85%、92%、96%、98%)。所述微透镜阵列层的雾度为98%,所述微透镜阵列层由透明聚合物树脂AR或PC形成,所述透明聚合物树脂的折射率nc为1.4-1.65(例如1.4、1.5、1.65)。所述微透镜阵列层中,相邻微透镜的主光轴的间距D为10μm-50μm(例如10μm、20μm、35μm、50μm),微透镜的宽度为W(W=D),微透镜的高度为H,高宽比H/W为0.05-0.5(例如0.05、0.1、0.2、0.5);所述保偏微透镜的保偏度为80%-97%(例如80%、85%、88%、90%、95%、97%)。
本发明提供一种保偏微透镜膜,所述第一结构层为微透镜阵列层,所述第二结构层为雾化层。所述基体层的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述保偏微透镜膜的雾度为96%。所述微透镜阵列层的雾度为98%,所述微透镜阵列层由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nc为1.5。所述微透镜阵列层中,相邻微透镜的主光轴的间距D为50μm,微透镜的宽度为W(W=D),微透镜的高度为H,高宽比H/W为0.5。所述雾化层的雾度为5%,所述雾化层种类为无粒子涂层,由透明聚合物AR构成,所述透明聚合物树脂的折射率nb为1.5。所述保偏微透镜膜保偏度为85%。
本发明提供一种保偏微透镜膜,所述第一结构层为微透镜阵列层,所述第二结构层为雾化层。所述基体层的厚度T为100μm,所述保偏基体层的材质选自TAC、PMMA或COP,光学各向同性,保偏度>99%,所述保偏微透镜膜的雾度为96%。所述微透镜阵列层的雾度为98%,所述微透镜阵列层由透明聚合物树脂AR或PMMA形成,所述透明聚合物树脂的折射率nc为1.5。所述微透镜阵列层中,相邻微透镜的主光轴的间距D为50μm,微透镜的宽度为W(W=D),微透镜的高度为H,高宽比H/W为0.5。所述雾化层的雾度为5%,所述雾化层种类为有粒子涂层,由透明聚合物树脂AR和透明聚合物树脂粒子PMMA构成,所述透明聚合物树脂的折射率nb为1.5,所述聚合物树脂粒子PMMA的粒径为3-5μm。所述保偏微透镜膜保偏度为85%。
进一步的,本发明提供一种保偏棱镜膜,所述第一结构层为棱镜层PL(Prismlayer),所述第二结构层不存在。所述基体层的厚度T为25μm-250μm(例如25μm,50μm,100μm,125μm,250μm),所述保偏基体层的材质选自PC、TAC、PMMA、或COP,光学各向同性,保偏度>99%,所述棱镜层由透明聚合物树脂AR、PMMA或PC形成,所述透明聚合物树脂的折射率nd为1.5-1.65(例如1.5、1.55或1.65)。所述棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形,三角形的底边为10μm-100μm(例如10μm、20μm、50μm、100μm),顶角为75°-105°(例如75°、90°、105°)。所述保偏棱镜膜的保偏度为98%。
本发明提供一种保偏棱镜膜,所述第一结构层为棱镜层PL(Prism layer),所述第二结构层为雾化层。所述基体层的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述棱镜层由透明聚合物树脂AR构成,所述透明聚合物树的折射率nd为1.55。所述棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形,三角形的底边为50μm,顶角为90°。所述雾化层的雾度为5%-30%,所述雾化层种类为无粒子涂层,由透明聚合物AR构成,所述透明聚合物树脂的折射率nb为1.5。所述保偏棱镜膜的保偏度为95%-97%。
进一步的,本发明提供一种保偏逆棱镜膜,所述第一结构层不存在,所述第二结构层为逆棱镜层RL(Rverse-prism layer)。所述基体层的厚度T为25μm-250μm,所述保偏基体层的材质选自PC、TAC、PMMA、或COP,光学各向同性,保偏度>99%,所述逆棱镜层由透明聚合物树脂AR、PC或PMMA形成,所述透明聚合物树的折射率nd为1.5-1.65(例如1.5、1.55或1.65)。所述逆棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形或普通三角形,三角形的底边宽度L为10μm-100μm(例如10μm、20μm、50μm、100μm),顶角θ选自40°-90°(例如40°、60°、80°、或90°),其中一个较大的底角α为90°-0.5θ+γ,偏角γ为0°-10°。所述保偏逆棱镜膜的保偏度为98%。
本发明提供一种保偏逆棱镜膜,所述第一结构层为雾化层,所述第二结构层为逆棱镜层RL(Rverse-prism layer)。所述基体层的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述逆棱镜层由透明聚合物树脂AR构成,所述透明聚合物树的折射率nd为1.55。所述逆棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形,三角形的底边宽度L为50μm,顶角θ选自60°,其中一个较大的底角α为90°-0.5θ+γ,偏角γ为0°。所述雾化层的雾度为30%-60%,所述雾化层种类为无粒子涂层,由透明聚合物AR构成,所述透明聚合物树脂的折射率nb为1.5。所述保偏棱镜膜的保偏度为90%-95%。
本发明还提供所述保偏光学膜的制备方法,在保偏基体层正面/背面依次利用涂布、微复制或热压成型过程,将树脂或含有粒子的树脂配方分别制备出第一结构层或第二结构层;其中,涂布适用于保偏扩散膜的雾化层制备,微复制和热压成型适用于保偏扩散膜、保偏微透镜膜、保偏棱镜膜、保偏逆棱镜膜的雾化层、微透镜层、棱镜层的制备。
进一步的,所述保偏光学膜的制备方法包括下述步骤:
(1)将保偏基体层作为支撑层,在正面涂布第一结构层,得到含有第一结构层的保偏光学膜;
进一步的,所述保偏光学膜的制备方法包括下述步骤:
(1)制备第一结构层的模具辊(辊1);
(2)将保偏基体层作为支撑层,利用辊1在正面微复制或热压成型出第一结构层(凸),得到含有第一结构层的保偏光学膜;
进一步的,所述保偏光学膜的制备方法包括下述步骤:
(1)将保偏基体层作为支撑层,在背面涂布第二结构层,得到含有第二结构层的保偏光学膜;
进一步的,所述保偏光学膜的制备方法包括下述步骤:
(1)制备第二结构层的模具辊(辊2);
(2)将保偏基体层作为支撑层,利用辊2在背面微复制或热压成型出第二结构层,得到含有第二结构层的保偏光学膜;;
进一步的,所述保偏光学膜的制备方法包括下述步骤:
(1)将保偏基体层作为支撑层,在正面涂布第一结构层,得到含有第一结构层的半成品;
(2)将步骤(1)制得的半成品背面涂布第二结构层,得到同时含有第一结构层和第二结构层的保偏光学膜;
进一步的,所述保偏光学膜的制备方法包括下述步骤:
(1)制备第一结构层的模具辊(辊1);
(2)利用模具辊在保偏基体层正面微复制或热压成型出第一结构层,得到含有第一结构层的半成品;
(3)制备第二结构层的模具辊(辊2);
(4)利用辊2在保偏基体层背面微复制或热压成型出第二结构层,得到同时含有第一结构层和第二结构层的保偏光学膜;
应当注意,第一结构层和第二结构层的加工方式应根据结构层种类和材质种类进行选择,本发明不做优选;
应当注意,本发明提供的保偏光学膜制备方法,适用于片材的生产,也适用于卷材的生产。
该保偏光学膜可以作为光学功能材料用于需保偏的光学***中。特别适用于LCD线偏振背光源中,当背光中的线偏振光通过该保偏光学膜时可以保留较高偏振度,确保最终对LCD下偏光片的高度透过,大大提高背光源的利用率。
与现有技术相比,本发明提供的保偏光学膜,可以与线偏点光源搭配设计,方便产生线偏振背光源,无需工艺复杂、价格昂贵的反射型偏光片,便可确保对LCD下偏光片的高度透过,提高背光源的利用率,增效方案性价比更高,优势明显。
为了进一步提高多张膜片堆叠的复杂背光架构的保偏性能,需尽可能提高每一张保偏光学膜的保偏性能,否则组成复杂背光架构后的保偏性能会明显降低。对此,本发明针对保偏光学膜在不损失原有光学功能的前提下,提出了进一步的优化方案,用以提高单张膜片的保偏性能,以适应复杂背光架构。
研究发现,虽然微透镜膜普遍雾度较高,具有类似扩散的匀光效果,将其置于棱镜上方有助于解除棱镜与面板的干涉,然而传统微透镜膜的微透镜阵列中,每颗微透镜均为相同高度设计,因此导致透镜顶部会形成一个等高面,与面板接触面积较大,易产生吸附。特别是在保偏微透镜膜的应用场景中,为了保障保偏性能,微透镜的形状较为扁平(高宽比优选在较低水平),因而等高结构导致的接触面积就更大,更易产生吸附问题。
因此,为了解决微透镜膜的吸附问题,需要开发一种抗吸附微透镜膜,将等高设计改为非等高设计。同时,为了平衡保偏微透镜膜的匀光效果以及保偏性能,对高宽比需要进一步限定。
本发明提供一种抗吸附保偏微透镜膜,所述抗吸附保偏微透镜膜包括保偏基体层、第一结构层和第二结构层;第一结构层为非等高微透镜阵列层,位于基体层上表面;第二结构层不存在或为雾化层,位于基体层下表面。
在所述非等高微透镜阵列层中,微透镜的宽度相同,排列规整,但微透镜的高度在一定范围内随机变化。
所述非等高微透镜阵列层中,相邻微透镜的主光轴间距D为定值。
所述非等高微透镜阵列层中,微透镜的宽度W(口径)为定值。
所述非等高微透镜阵列层中,相邻微透镜的主光轴间距D与微透镜的宽度W相同,微透镜规整排列。
所述非等高微透镜阵列层中,微透镜的高宽比B(B=H/W)在一定范围内随机变化。
所述非等高微透镜阵列层的雾度为87~90%。
在所述非等高微透镜阵列层中,相邻微透镜的主光轴间距为定值,选自10~50μm,微透镜的宽度为定值,选自10~50μm,微透镜的高宽比随机变化,变化范围为Bmin~Bmax,0.1≤Bmin<Bmax≤0.3。
在所述非等高微透镜阵列层中,相邻微透镜的主光轴间距为定值,选自30-50μm,微透镜的宽度为定值,选自30-50μm,微透镜的高宽比随机变化,变化范围为0.1-0.3。进一步的,所述非等高微透镜阵列层的雾度为90%。前述技术方案包括实施例67-68和实施例70-76。
所述非等高微透镜阵列层中,由于微透镜的宽度相同,高宽比随机变化,因此高度也随机变化。
所述抗吸附保偏微透镜膜的雾度为87~90%。
所述非等高微透镜阵列层由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nc为1.5~1.6。
所述雾化层种类为无粒子涂层,由透明聚合物AR构成,所述透明聚合物树脂的折射率nb为1.5。
所述雾化层的雾度为5%。
进一步的,所述基体层材质选自PC、TAC、PMMA、或COP中的一种,厚度T25-250μm,例如厚度为250、125、100、50、或25μm。
当线偏振光通过该抗吸附保偏微透镜膜时,该抗吸附保偏微透镜膜对入射线偏振光的保偏度大于或等于90%。
进一步的,当LCD背光中的线偏振光通过该抗吸附保偏微透镜膜时,偏振入射光可以保留较高偏振度,保偏度大于或等于92%。从而确保最终对LCD下偏光片的高度透过,大大提高背光源的利用率。
所述抗吸附保偏微透镜膜的制备方法包括下述步骤:
(1)制备非等高微透镜阵列层的模具辊
(2)将保偏基体层作为支撑层,在正面利用模具辊通过UV转印制备微透镜阵列层,得到仅含正面微透镜阵列层的解干涉保偏微透镜膜;
进一步的,所述抗吸附保偏微透镜膜的制备方法包括下述步骤:
(1)将保偏基体层作为支撑层,在背面涂布雾化层,得到含有雾化层的保偏背涂半成品;
(2)制备非等高微透镜阵列层的模具辊;
(3)在保偏背涂半成品正面(即保偏基体层正面)利用模具辊通过UV转印制备非等高微透镜阵列层,得到同时含有背面雾化层和正面微透镜阵列层的解干涉保偏微透镜膜。
附图说明
图1为LCD光能利用率低的原因;
图2为LCD传统增效方案示意图;
图3为LCD新型增效方案示意图;
图4为新型增效光路中传统光学膜的退偏结果示意图;
图5为本发明提供的保偏光学膜的保偏效果示意图;
图6为保偏度的测试方法示意图;
图7为保偏光学膜的基本结构示意图;
图8a为本发明提供的抗吸附保偏微透镜膜的基本结构示意图(非等高微透镜阵列层,无背面雾化层);
图8b为本发明提供的抗吸附保偏微透镜膜的基本结构示意图(非等高微透镜阵列层,含背面雾化层);
图9为本发明的普通保偏微透镜膜的规整微透镜阵列层的三维示意图;
图10为本发明提供的抗吸附保偏微透镜膜的非等高微透镜阵列层的三维示意图。
其中:
11:上偏光片;12:液晶面板(含玻璃基板、滤光片、液晶层、薄膜晶体管等);13:下偏光片;14:背光模组;15:反射型偏光片;
21:部分偏振光;22:平行方向的线偏振光(相对于下偏光片透光轴或纸面);23:垂直方向的线偏振光(相对于下偏光片透光轴或纸面);
3:传统光学膜;
4:保偏光学膜;
50:保偏基体层;51:第一结构层;52:第二结构层;
54:无粒子雾化层;56:规整微透镜阵列层;57:非等高微透镜阵列层
60:待测膜片;61:起偏器;62:平行检偏器(与起偏器平行,用于检测Imax);63:垂直检偏器(与起偏器垂直,检测Imin)。
具体实施方式
为了更易理解本发明的结构及所能达成的功能特征和优点,下文将本发明的较佳的实施例,并配合图式做详细说明如下。
本发明提供一种保偏光学膜(4),该保偏光学膜(4)用来替代图4中的传统光学膜(3),如图5所示,水平方向的线偏振光(22)经过本发明提供的保偏光学膜(4)后,出射光保持为水平方向的线偏振光(22)。
按照下述方式评价本发明提供的保偏光学膜的性能。
(A)保偏度
如图6所示,把待测膜片(60)置于起偏器(偏光片)(61)的上方,平行检偏器(偏光片)62或垂直检偏器(偏光片)63的下方,测量出射光的光强。当检偏器角度与线偏光平行时,检偏器称为平行检偏器,光强记为Imax,当检偏器角度与线偏光垂直时,检偏器称为垂直检偏器,光强记为Imin,通过膜片后光的偏振度P=(Imax-Imin)/(Imax+Imin),P可同样被视为膜片的对该线偏光的保偏度。
如图7所示,本发明提供一种保偏光学膜,所述保偏光学膜包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于保偏基体层50上表面,第二结构层位于保偏基体层50下表面。
实施例1
本发明提供一种保偏光学膜,如图7所示,所述保偏光学膜为保偏扩散膜,所述第一结构层51为雾化层DL(Diffusion layer),所述第二结构层52不存在。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述保偏扩散膜的雾度为98%。所述第一雾化层的雾度为98%,所述雾化层种类为有粒子涂层,由透明聚合物树脂PU和透明聚合物粒子PMMA构成,粒径d为5~15μm,所述透明聚合物树脂的折射率na为1.5。所述保偏扩散膜的保偏度为82%。
实施例2
如图7所示,本发明提供的保偏光学膜,包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于基体层50上表面,第二结构层位于基体层50下表面,所述保偏光学膜为保偏扩散膜,所述第一结构层51为雾化层,所述第二结构层52为雾化层。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述保偏扩散膜的雾度为98%。所述第一雾化层的雾度为98%,所述雾化层种类为有粒子涂层,由透明聚合物树脂PU和透明聚合物粒子PMMA构成,粒径d为5~15μm,所述透明聚合物树脂的折射率na为1.5。所述第二雾化层的雾度为5%,所述雾化层种类为无粒子涂层,由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nb为1.5。所述保偏扩散膜的保偏度为80%。
实施例3-20
如实施例1提供的保偏扩散膜,所述其他各项参数如表1所列。
表1实施例1~20提供的保偏扩散膜的设计参数和光学性能
Figure SMS_1
/>
Figure SMS_2
注1:T为保偏基体层厚度。
如表1所示,为不同材质和设计参数搭配的保偏扩散膜的实施例。可以发现,当基体层的材质为所述保偏基体如PC、PMMA、TAC、COP时,所制得的保偏扩散膜的保偏度均大于80%,厚度T影响不大。当雾化层的雾度降低时,保偏度会提高,而雾化层的种类,树脂、粒子材质对其影响不大。当第二结构层为低雾度的雾化层时,可以起到防粘、抗刮的效果,对光学影响不大。
实施例21
如图7所示为本发明提供的保偏光学膜,包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于基体层50上表面,第二结构层位于基体层50下表面,所述保偏光学膜为保偏微透镜膜,所述第一结构层51为微透镜阵列层ML(Microlens layer),所述第二结构层52不存在。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述保偏微透镜膜的雾度为96%。所述微透镜阵列层的雾度为96%,所述微透镜阵列层由透明聚合物树脂AR形成,所述透明聚合物树脂的折射率nc为1.5。所述微透镜阵列层中,相邻微透镜的主光轴的间距D为50μm,微透镜的宽度为W(W=D),微透镜的高度为H,高宽比H/W为0.5,此时,微透镜为半球状;所述保偏微透镜的保偏度为85%。
实施例22
如图7所示为本发明提供的保偏光学膜,包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于基体层50上表面,第二结构层位于基体层50下表面,所述保偏光学膜为保偏微透镜膜,所述第一结构层51为微透镜阵列层,所述第二结构层52为雾化层。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述保偏微透镜膜的雾度为96%。所述微透镜阵列层的雾度为96%,所述微透镜阵列层由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nc为1.5。所述雾化层的雾度为5%,所述雾化层种类为无粒子涂层,由透明聚合物AR构成,所述透明聚合物树脂的折射率nb为1.5。所述保偏微透镜膜保偏度为85%。
实施例23-36
如实施例21提供的保偏微透镜膜,所述其他各项参数如表2所列。
表2实施例21~36的设计参数和光学性能
Figure SMS_3
Figure SMS_4
/>
注1:T为基体层厚度;D为相邻微透镜的主光轴的间距;W为微透镜的宽度,H为微透镜的高度,H/W为高宽比。
如表2所示,为不同材质和设计参数搭配的保偏微透镜膜的实施例。可以发现,当基体层的材质为所述保偏基体如PC、PMMA、TAC、COP时,所制得得保偏微透镜膜的保偏度均大于80%,厚度T影响不大。当微透镜层的雾度降低时,保偏度会提高,而透明聚合物的折射率降低,或高宽比降低时,雾度也会降低,保偏度也会提高,而树脂种类影响不大。当第二结构层为低雾度的雾化层时,可以起到防粘、抗刮的效果,对光学影响不大。
实施例37
如图7所示为本发明提供的保偏光学膜,包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于基体层50上表面,第二结构层位于基体层50下表面,所述保偏光学膜为保偏棱镜膜,所述第一结构层51为棱镜层PL(Prism layer),所述第二结构层52不存在。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述棱镜层由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nd为1.55。所述棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形,三角形的底边为50μm,顶角为90°。所述保偏棱镜膜的保偏度为98%。
实施例38
如图7所示为本发明提供的保偏光学膜,包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于基体层50上表面,第二结构层位于基体层50下表面,所述保偏光学膜为保偏棱镜膜,所述第一结构层51为棱镜层PL(Prism layer),所述第二结构层52为雾化层。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述棱镜层由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nd为1.55。所述棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形,三角形的底边为50μm,顶角为90°。所述雾化层的雾度为5%,所述雾化层种类为无粒子涂层,由透明聚合物AR构成,所述透明聚合物树脂的折射率nb为1.5。所述保偏棱镜膜的保偏度为97%。
实施例39-50
如实施例37提供的保偏棱镜膜,所述其他各项参数如表3所列。
表3实施例37~50的设计参数和光学性能
Figure SMS_5
注1:T为基体层厚度。
如表3所示,为不同材质和设计参数搭配的保偏棱镜膜的实施例。可以发现,当基体层的材质为所述保偏基体如PC、PMMA、TAC、COP时,所制得得保偏棱镜膜的保偏度均大于80%,厚度T影响不大。当棱镜层的材质、折射率、底边、顶角改变时,保偏度基本不影响。当第二结构层为雾化层时,可以起到防粘、抗刮的效果,雾度增加时,保偏度略有下降。
实施例51
如图7所示为本发明提供的保偏光学膜,包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于基体层50上表面,第二结构层位于基体层50下表面,所述保偏光学膜为保偏逆棱镜膜,所述第一结构层51不存在,所述第二结构层52为逆棱镜层RL(Rverse-prism layer)。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述逆棱镜层由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nd为1.55。所述逆棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形或普通三角形,三角形的底边宽度L为50μm,顶角θ选自60°,其中一个较大的底角α为90°-0.5θ+γ,偏角γ为0°。所述保偏逆棱镜膜的保偏度为98%。
实施例52
如图7所示为本发明提供的保偏光学膜,包括第一结构层51、保偏基体层50和第二结构层52,第一结构层位于基体层50上表面,第二结构层位于基体层50下表面,所述保偏光学膜为保偏逆棱镜膜,所述第一结构层51为雾化层,所述第二结构层52为逆棱镜层RL(Rverse-prism layer)。所述基体层50的厚度T为250μm,所述保偏基体层的材质选自PC,光学各向同性,保偏度>99%,所述逆棱镜层由透明聚合物树脂AR构成,所述透明聚合物树脂的折射率nd为1.55。所述逆棱镜层由三棱镜肋平铺而成,所述三棱镜肋的横截面为等腰三角形,三角形的底边宽度L为50μm,顶角θ选自60°,其中一个较大的底角α为90°-0.5θ+γ,偏角γ为0°。所述雾化层的雾度为30%,所述雾化层种类为无粒子涂层,由透明聚合物AR构成,所述透明聚合物树脂的折射率nb为1.5。所述保偏棱镜膜的保偏度为95%。
实施例53-64
如实施例51提供的保偏逆棱镜膜,所述其他各项参数如表4所列。
表4实施例51~64的设计参数和光学性能
Figure SMS_6
Figure SMS_7
注1:T为基体层厚度。
如表4所示,为不同材质和设计参数搭配的保偏逆棱镜膜的实施例。可以发现,当基体层的材质为所述保偏基体如PC、PMMA、TAC、COP时,所制得得保偏逆棱镜膜的保偏度均大于80%,厚度T影响不大。当逆棱镜层的材质、折射率、底边、顶角改变时,保偏度基本不影响。当第一结构层为雾化层时,可以起到防粘、抗刮的效果,雾度增加时,保偏度略有下降。
实施例65-70
如实施例21,对比例1~4、实施例65~70提供的抗吸附保偏微透镜膜,基体层材质为PC,厚度T为250μm,微透镜阵列层材质为AR,折射率为1.5。其中,对比例1~4、实施例65~69无背面雾化层(如图8a所示),实施例70背面含雾化层(如图8b所示),雾化层为无粒子涂层,雾度5%,无粒子涂层树脂材质为AR,折射率为1.5。对比例1~4抗吸附效果差,保偏度为85~97%,实施例65、66、69抗吸附效果良,保偏度为90~94%,实施例67、68、70抗吸附效果优,保偏度为92%。对比例1~4、65~70所述其他各项抗吸附保偏微透镜膜结构设计参数如表5所列。
实施例71-76
如实施例21,实施例71~76提供的抗吸附保偏微透镜膜,基体层材质为PC、TAC、PMMA、或COP中的一种,厚度T为125、100、50、或25μm中的一种,非等高微透镜阵列层材质为AR,折射率为1.5。实施例71~76无背面雾化层(如图8a所示),实施例71~76抗吸附效果优,保偏度为92%。实施例71~76所述其他各项抗吸附保偏微透镜膜结构设计参数如表5所列。
表5实施例65~76和对比例1~4提供的保偏微透镜膜的设计参数和性能
Figure SMS_8
Figure SMS_9
注1:T为基体层厚度;D为相邻微透镜的主光轴的间距;W为微透镜的宽度;Bmin/Bmax分别为微透镜的高宽比随机变化的取值范围下限/上限;
注2:Hmin/Hmax分别为微透镜的高度随机变化的下限/上限,本发明不直接限定,H通过B、W约束,表中只为着重区分等高对比例与非等高实施例。
如表5所示,为不同材质和设计参数搭配的保偏微透镜膜的实施例和对比例,其中对比例1~4为普通保偏微透镜膜,采用规整等高结构,D与W相同,高宽比为定值,高宽比越大雾度越高,保偏度越低,由于是等高结构,抗吸附能力差。实施例65~76为不同设计参数搭配的抗吸附保偏微透镜膜,可以发现当B的随机变化范围越大时,非等高结构越混乱,高低差越明显,抗吸附能力越好(如实施例65~67对比)。另外,B为相同随机变化范围,结构相似,雾度和保偏性能相当,但由于D与W变化,单位面积微透镜数量及其接触面积差异较大,D与W越大,抗吸附能力越好(如实施例67~69对比)。此外,对比实施例67、70可以发现,低雾的背涂层对性能影响不大,对比实施例67、71~76可以发现,基体层的材质与厚度对性能影响也不大。
应当注意,以上所述,仅为本发明的几种典型的实施例而已,并非用于限定本发明的保护范围。凡是根据本发明内容所做的均等变化与修饰,均涵盖在本发明的专利范围内。

Claims (3)

1.一种抗吸附保偏微透镜膜,其特征在于,所述抗吸附保偏微透镜膜包括保偏基体层、第一结构层和第二结构层;第一结构层为非等高微透镜阵列层,位于基体层上表面;第二结构层不存在或为雾化层,位于基体层下表面;在所述非等高微透镜阵列层中,相邻微透镜的主光轴间距为定值,选自30-50μm,微透镜的宽度为定值,选自30-50μm,微透镜的高宽比随机变化,变化范围为0.1-0.3。
2.根据权利要求1所述的抗吸附保偏微透镜膜,其特征在于,所述非等高微透镜阵列层的雾度为90%。
3.根据权利要求1或2所述的抗吸附保偏微透镜膜,其特征在于,所述雾化层的雾度为5%。
CN202111010690.5A 2020-08-31 2021-08-31 一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法 Active CN114114508B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2020108971983 2020-08-31
CN202010897198 2020-08-31
CN202110869402 2021-07-30
CN2021108694025 2021-07-30

Publications (2)

Publication Number Publication Date
CN114114508A CN114114508A (zh) 2022-03-01
CN114114508B true CN114114508B (zh) 2023-06-02

Family

ID=80441053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111010690.5A Active CN114114508B (zh) 2020-08-31 2021-08-31 一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法

Country Status (1)

Country Link
CN (1) CN114114508B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0304223D0 (en) * 2003-02-25 2003-03-26 Univ Sheffield Random micro-lens array
JP2004296653A (ja) * 2003-03-26 2004-10-21 Canon Inc 光起電力素子形成方法
CN111443516A (zh) * 2019-09-25 2020-07-24 宁波激智科技股份有限公司 一种光学复合膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163402A (en) * 1998-06-11 2000-12-19 3M Innovative Properties Company Rear projection screen
CN105511010A (zh) * 2013-05-29 2016-04-20 友辉光电股份有限公司 光学膜及包含该光学膜的光学元件
CN114114507B (zh) * 2020-08-31 2023-07-25 宁波激智科技股份有限公司 一种保偏光学膜、一种解干涉保偏微透镜膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0304223D0 (en) * 2003-02-25 2003-03-26 Univ Sheffield Random micro-lens array
JP2004296653A (ja) * 2003-03-26 2004-10-21 Canon Inc 光起電力素子形成方法
CN111443516A (zh) * 2019-09-25 2020-07-24 宁波激智科技股份有限公司 一种光学复合膜及其制备方法

Also Published As

Publication number Publication date
CN114114508A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
TWI408405B (zh) 光學膜複合物
US8128257B2 (en) Curved compact collimating reflectors
CN101738649B (zh) 多层涂布复合型光学膜结构
CN114114507B (zh) 一种保偏光学膜、一种解干涉保偏微透镜膜及其制备方法
CN102830539A (zh) 液晶显示装置
CN114114498B (zh) 一种保偏光学膜及一种保偏扩散膜
KR101640719B1 (ko) 액정표시장치용 모듈 및 이를 포함하는 액정표시장치
CN114114499B (zh) 一种保偏光学膜、一种保偏扩散膜及一种双面雾保偏扩散膜
CN114114504B (zh) 一种保偏光学膜及一种解干涉保偏复合棱镜膜
CN114114500A (zh) 一种保偏光学膜、一种保偏扩散膜及双面雾保偏扩散膜
US20100026934A1 (en) Light uniforming polarization recycling film
CN103389531A (zh) 一种反射膜的制作方法以及一种背光模组
CN101435884A (zh) 扩散板及采用该扩散板的背光模组
KR101813753B1 (ko) 액정표시장치
TW201015159A (en) Structure for multi-layer coating composite optical film
CN114114509B (zh) 一种保偏光学膜、一种解干涉保偏微透镜膜及其制备方法
KR20120036293A (ko) 백라이트 도광판 및 그의 제조 방법
CN111065962B (zh) 背光单元及液晶显示装置
CN101430457A (zh) 液晶显示装置
CN114114508B (zh) 一种保偏光学膜、一种抗吸附保偏微透镜膜及其制备方法
CN114217372A (zh) 一种保偏光学膜及一种保偏棱镜膜
CN114114496B (zh) 一种保偏光学膜及其制备方法
CN201859228U (zh) 一种光扩散板
CN114114501A (zh) 一种保偏光学膜及一种保偏棱镜膜
CN114114497A (zh) 一种保偏光学膜及一种保偏棱镜膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant