CN114107928B - 铜制齿轮淬火感应传感器陶瓷镀层及其制备方法 - Google Patents

铜制齿轮淬火感应传感器陶瓷镀层及其制备方法 Download PDF

Info

Publication number
CN114107928B
CN114107928B CN202111422482.6A CN202111422482A CN114107928B CN 114107928 B CN114107928 B CN 114107928B CN 202111422482 A CN202111422482 A CN 202111422482A CN 114107928 B CN114107928 B CN 114107928B
Authority
CN
China
Prior art keywords
target
film
sputtering
power
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111422482.6A
Other languages
English (en)
Other versions
CN114107928A (zh
Inventor
鞠洪博
汪然
喻利花
许俊华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202111422482.6A priority Critical patent/CN114107928B/zh
Publication of CN114107928A publication Critical patent/CN114107928A/zh
Application granted granted Critical
Publication of CN114107928B publication Critical patent/CN114107928B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种铜制齿轮淬火感应传感器陶瓷镀层,以薄膜热膨胀系数递减为顺序,依次沉积Cu‑Ti‑Zr薄膜、Ti‑Zr薄膜与(Ti,Zr)N+(Zr,Ti)N薄膜,形成纳米结构多层膜材料作为镀层,所述薄膜厚度为2.5μm‑10μm。同时公开了该多层膜结构镀层的制备方法。本发明解决目前工业应用过程中传感器和对向工件之间因碰撞而发生的打火问题,改善传感器表面耐磨性与绝缘性,提升淬火效率;利用多靶共聚焦非平衡磁控溅射技术,以热膨胀系数递减与层间冶金结合为原则设计涂层,提升膜基结合力,更具应用价值。

Description

铜制齿轮淬火感应传感器陶瓷镀层及其制备方法
技术领域
本发明涉及复合多层薄膜领域,尤其涉及一种铜制齿轮淬火感应传感器陶瓷镀层及其制备方法。
背景技术
近年来,感应淬火以其加热速度快、热损失小、热效率高等其他传统热处理工艺难以比拟的优点而在金属热加工工艺中占据重要地位,其中的双频感应加热淬火技术最为典型。与传统热处理相比,被加热工件表面氧化脱碳少,成品率高。但是由于因工件加工精度问题易使得传感器与对向工件之间发生碰撞,出现打火问题,损坏传感器。
因此如何利用表面技术,在铜制淬火传感器表面设计并制备一种绝缘薄膜材料以解决因工件精度导致传感器与对向工件发生碰撞从而造成的打火问题,提高双频感应加热淬火的效率和精度,具有十分重要的科学研究价值和工业应用意义。
发明内容
发明目的:针对现有技术的不足与缺陷,本发明提供一种铜制齿轮淬火感应传感器陶瓷镀层及其制备方法,解决目前工业应用过程中传感器和对向工件之间因碰撞而发生的打火问题,改善传感器表面耐磨性与绝缘性,提升淬火效率;利用多靶共聚焦非平衡磁控溅射技术,以热膨胀系数递减与层间冶金结合为原则设计涂层,提升膜基结合力,更具应用价值。
技术方案:本发明的铜制齿轮淬火感应传感器陶瓷镀层,其特征在于:以薄膜热膨胀系数递减为顺序,依次沉积Cu-Ti-Zr薄膜、Ti-Zr薄膜与(Ti,Zr)N+(Zr,Ti)N薄膜,形成纳米结构多层膜材料作为镀层,所述薄膜厚度为2.5μm-10μm。
其中,所述的Cu-Ti-Zr薄膜为复合膜结构,Cu-Ti-Zr复合膜包括fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu、Ti、Zr的原子百分含量依次为41.7%、41.2%与17.1%;所述Cu-Ti-Zr复合膜经600℃-700℃真空退火后诱发Cu-Ti-Zr层与衬底间的扩散,并在层内/间形成Cu4Ti3与Cu4Ti相。
其中,所述的Cu-Ti-Zr薄膜、Ti-Zr薄膜组成多层膜结构,Cu-Ti-Zr/Ti-Zr多层膜中包括fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu、Ti、Zr的原子百分含量依次为15.2%、60.6%与24.2%;所述Cu-Ti-Zr/Ti-Zr多层膜经700℃-800℃真空退火后诱发层内/间的扩散,并在层内/间形成Cu4Ti3、Cu4Ti、Cu3Ti、Cu10Zr7与ZrCu相。
其中,所述的Cu-Ti-Zr薄膜、Ti-Zr薄膜与(Ti,Zr)N+(Zr,Ti)N薄膜组成多层膜结构,Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层膜中包括fcc-Cu、hcp-Ti、hcp-Zr、fcc-TiN与fcc-ZrN五相结构,Cu、Ti、Zr、N的原子百分含量依次为16.1%、48.3%、18.3%与17.3%;所述Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层膜经800℃-900℃真空退火后诱发层内/间的扩散,并在层内/间形成Cu4Ti3、Cu4Ti、Cu3Ti、Cu10Zr7与ZrCu相。
其中,该镀层薄膜材料在经过高真空退火处理以后,薄膜的膜基结合力由退火之前的4.262N提升到了退火后的20N以上。
铜制齿轮淬火感应传感器陶瓷镀层的制备方法,其特征在于:包括下述步骤:
1)利用多靶共聚焦非平衡磁控溅射制备不同Cu含量的Cu-Ti-Zr复合薄膜,获得Cu-Ti-Zr薄膜材料与Cu靶的溅射功率;在Cu-Ti-Zr薄膜的基础上固定Ti靶与Zr靶的功率不变,关闭Cu靶挡板,控制第二层Ti-Zr薄膜的沉积时间,制备Cu-Ti-Zr/Ti-Zr多层膜;获得Cu-Ti-Zr/Ti-Zr多层薄膜材料与第二层Ti-Zr薄膜的沉积时间;固定Ti、Zr靶功率不变,在Cu-Ti-Zr/Ti-Zr多层膜上通入氮气,生成Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层膜材料;
2)将衬底Cu先后用水、丙酮、无水乙醇超声清洗5min-10min,吹干后固定在溅射室可旋转的基片台上,关闭样品挡板,将纯度为99.9%的Ti靶、Cu靶与Zr靶分别固定在磁控溅射仪的三个射频枪上;
3)将溅射室的气压抽至6.0×10-4Pa以下,通入纯度为99.999%的氩气,流量控制为10sccm,溅射室气压保持在0.25Pa;
4)关闭样品挡板,调节Ti靶、Cu靶与Zr靶功率均为50W,溅射5min-10min以清洗靶材表面杂质;
5)通入氩气使溅射室气压保持在0.3Pa,调节Ti靶功率为150W,Zr靶功率60W,打开样品挡板,样品旋转速度保持为6r/min,调节Cu靶功率为步骤(1)获得的溅射功率,沉积Cu-Ti-Zr复合膜,时间为2h;沉积结束后,固定Ti靶与Zr靶功率不变,关闭Cu靶挡板,控制第二层Ti-Zr薄膜的沉积时间,在Cu-Ti-Zr薄膜上继续沉积Ti-Zr薄膜,沉积时间分别为1h、2h、3h、4h、5h;沉积结束后,固定Ti、Zr靶功率不变,关闭样品挡板,通入纯度为99.999%的氮气,流量控制分别为0.1sccm、15min;0.5sccm、20min;1sccm、25min;2sccm、30min;3sccm、40min,溅射室气压保持在0.3Pa,氩氮比为10:3,打开样品挡板,在Cu-Ti-Zr/Ti-Zr多层膜上继续沉积(Ti,Zr)N+(Zr,Ti)N薄膜,时间为2h10min;获得Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层膜材料镀层。
技术原理:利用多靶共聚焦非平衡磁控溅射方法,以添加中间过渡层来缩短表层陶瓷涂层与Cu衬底之间的热膨胀系数差异为设计准则,在真空退火处理后,使得调制层内或调制层界面之间发生化学反应或扩散,金属间化合物的出现不仅有金属键还有共价键,共价键的出现使得原子间的结合力增强,化学键趋于稳定,赋予材料高熔点、高硬度以及较高结合力的特性,以此来提高纳米多层膜材料的结合力,最终获得具有高膜基结合力的Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N纳米多层薄膜材料。
退火工艺:本底真空度6.0×10-4Pa、升温速率10℃/min;600℃退火时,在300℃保温30min,600℃保温60min后随炉冷却至室温;700℃退火时,在350℃保温30min,700℃保温60min后随炉冷却至室温;800℃退火时,在400℃保温30min,800℃保温60min后随炉冷却至室温。
该薄膜材料在经过高真空退火处理以后,单一调制层内以及调制层界面之间发生化学反应产生金属间化合物以及扩散,金属间化合物的出现不仅有金属键还有共价键,共价键的出现使得原子间的结合力增强,化学键趋于稳定,赋予材料高熔点、高硬度以及较高结合力的特性。
有益效果:与现有技术相比,本发明具有以下显著优点:本发明改善传感器表面耐磨性与绝缘性,提升淬火效率;利用多靶共聚焦非平衡磁控溅射技术,以热膨胀系数递减与层间冶金结合为原则设计涂层,提升膜基结合力,更具应用价值。
本发明具有高膜基结合力;制备方法简单,生产效率高;该薄膜材料可应用于双频感应淬火装备的终端,极大的推动了感应淬火技术在重载齿轮表面强化领域的工业化应用,加速了高性能机械动力装备的发展。
附图说明
图1为室温下,Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N纳米多层薄膜材料的膜基结合力图;
图2为600℃-700℃真空退火后,Cu-Ti-Zr纳米复合膜材料的膜基结合力图;
图3为700℃-800℃真空退火后,Cu-Ti-Zr/Ti-Zr纳米多层膜材料的膜基结合力图;
图4为800℃-900℃真空退火后,Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N纳米多层膜材料的膜基结合力图;
图5为800℃-900℃真空退火后,Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N纳米多层膜材料的XRD图;
图6为Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N纳米多层膜材料的结构示意图。
具体实施方式
下面结合附图及具体实施方式对本发明的技术方案做进一步的描述。
本发明首先利用多靶共聚焦非平衡磁控溅射制备不同Cu功率的Cu-Ti-Zr复合薄膜,并确定具有最高膜基结合力的Cu-Ti-Zr薄膜材料中Cu靶的功率,具体如下:
采用纯度均为99.9%的Cu靶、Ti靶与Zr靶为源材料,通入纯度为99.999%的氩气,流量为10sccm,真空度低于6.0×10-4Pa时溅射,溅射时间2h,工作气压为0.3Pa,Ti靶的溅射功率为150W,Zr靶溅射功率为60W,调节Cu靶溅射功率采用双靶共焦射频反应磁控溅射法溅射在Cu衬底上制备得到Cu-Ti-Zr薄膜材料。
调节Cu靶功率为30W时,薄膜中Cu、Ti与Zr元素的原子百分含量依次为12.5%、62.3%与25.2%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr薄膜的膜基结合力为1.362N;
调节Cu靶功率为50W时,薄膜中Cu、Ti与Zr元素的原子百分含量依次为19.3%、57.2%与23.5%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr薄膜的膜基结合力为2.858N;
调节Cu靶功率为100W时,薄膜中Cu、Ti与Zr元素的原子百分含量依次为32.3%、48.1%与19.6%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr薄膜的膜基结合力为7.505N;
调节Cu靶功率为150W时,薄膜中Cu、Ti与Zr元素的原子百分含量依次为41.7%、41.2%与17.1%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr薄膜的膜基结合力为14.100N;
调节Cu靶功率为200W时,薄膜中Cu、Ti与Zr元素的原子百分含量依次为48.8%、36.5%与14.7%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr薄膜的膜基结合力为3.539N;
根据以上实验,确定Cu靶的最佳溅射功率为150W,并进行600℃-700℃的真空退火处理。
下面固定Ti靶与Zr靶的功率不变,关闭Cu靶挡板,控制沉积时间,制备Cu-Ti-Zr/Ti-Zr多层薄膜材料。
首先,固定Ti靶功率为150W,Zr靶为60W,利用多靶共聚焦非平衡磁控溅射制备具有最高膜基结合力的Cu-Ti-Zr复合薄膜,然后关闭Cu靶挡板,在Cu-Ti-Zr薄膜上制备不同沉积时间的Ti-Zr薄膜,并获得具有最高膜基结合力的Cu-Ti-Zr/Ti-Zr多层薄膜材料,为使薄膜生长环境不发生改变,Ti-Zr层的Ti靶与Zr靶功率与上述相同,具体如下:
采用纯度均为99.9%的Ti靶、Cu靶与Zr靶为源材料,通入纯度为99.999%的氩气,流量为10sccm,真空度低于6.0×10-4Pa时溅射,工作气压为0.3Pa,Cu靶溅射功率为150W,Ti靶溅射功率为150W,Zr靶溅射功率为60W,采用双靶共焦射频反应磁控溅射法溅射在Cu衬底上制备得到Cu-Ti-Zr薄膜材料,时间为2h。溅射结束后关闭Cu靶,在Cu-Ti-Zr薄膜上继续制备不同沉积时间的Ti-Zr薄膜,得到Cu-Ti-Zr/Ti-Zr多层薄膜材料。
沉积时间1h,薄膜中Cu、Ti与Zr元素的原子百分含量依次为26.3%、52.6%与21.1%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr/Ti-Zr多层膜的膜基结合力为2.032N;
沉积时间2h,薄膜中Cu、Ti与Zr元素的原子百分含量依次为19.2、%57.7%与23.1%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr/Ti-Zr多层膜的膜基结合力为3.375N;
沉积时间3h,薄膜中Cu、Ti与Zr元素的原子百分含量依次为15.2%、60.6%与24.2%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr/Ti-Zr多层膜的膜基结合力为6.543N;
沉积时间4h,薄膜中Cu、Ti与Zr元素的原子百分含量依次为12.5%、62.5%与25%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr/Ti-Zr多层膜的膜基结合力为4.264N;
沉积时间5h,薄膜中Cu、Ti与Zr元素的原子百分含量依次为10.6%、63.8%与25.6%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr/Ti-Zr多层膜的膜基结合力为3.107N;
根据以上实验,确定Ti-Zr层薄膜的最佳沉积时间为3h,并进行700℃-800℃的真空退火处理。
下面制备Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层薄膜材料。
Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层薄膜材料均采用纯度为99.9%的Ti靶、Cu靶与Zr靶为源材料,通入纯度为99.999%的反应氮气,氩氮气体流量比随着氮气流量的逐渐增大而变化,最终氩氮气体流量比为10sccm:3sccm,真空度低于6.0×10-4Pa时溅射,工作气压为0.3Pa,在室温下采用三靶共焦射频反应磁控溅射法交替溅射在基体上制备得到。
具体包含以下步骤:
(1)将Cu衬底先后用水、丙酮、无水乙醇超声清洗5min-10min,吹干后固定在溅射室可旋转的基片台上,关闭样品挡板;
(2)将纯度为99.9%的Ti靶、Cu靶与Zr靶分别固定在三个射频枪上;
(3)将溅射室的气压抽至6.0×10-4Pa以下;
(4)通入纯度为99.999%的氩气,流量控制为10sccm、溅射室气压保持在0.25Pa;
(5)调节Ti靶、Cu靶与Zr靶功率均为50W,溅射5min-10min以清洗靶材表面各种杂质;
(6)通入氩气使溅射室气压保持在0.3Pa,调节Cu靶功率为150W、Ti靶功率为150W,Zr靶功率为60W,打开样品挡板,样品旋转速度保持为6r/min,沉积Cu-Ti-Zr复合膜,时间为2h;沉积结束后,固定Ti靶与Zr靶功率不变,关闭Cu靶挡板,在Cu-Ti-Zr薄膜上继续沉积Ti-Zr薄膜,时间为3h;沉积结束后,固定Ti、Zr靶功率不变,关闭样品挡板,通入纯度为99.999%的氮气,流量控制分别为0.1sccm、15min;0.5sccm、20min;1sccm、25min;2sccm、30min;3sccm、40min,溅射室气压保持在0.3Pa,打开样品挡板,在Cu-Ti-Zr/Ti-Zr多层膜上继续沉积(Ti,Zr)N+(Zr,Ti)N薄膜,时间为2h10min,制备Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层薄膜材料,并进行800℃-900℃的真空退火处理。
下面对纳米多层薄膜材料进行不同温度的退火处理:
(1)室温下,Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N纳米多层膜中Cu、Ti、Zr与N元素的原子百分含量依次为16.3%、49.5%、19.8%与14.4%,为fcc-Cu、hcp-Zr、hcp-Ti、fcc-TiN及fcc-ZrN五相结构,Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层膜的膜基结合力为4.262N;
(2)对Cu-Ti-Zr复合膜进行600℃-700℃的真空退火处理以诱发Cu-Ti-Zr层与衬底间的扩散,并在层内/间形成Cu4Ti3与Cu4Ti相,Cu-Ti-Zr复合膜的膜基结合力大于20N,金属间化合物的出现伴随着金属键与共价键的形成,共价键的出现使得原子间的结合力增强,化学键趋于稳定,赋予材料高熔点、高硬度和高结合力的特性;
(3)对Cu-Ti-Zr/Ti-Zr多层膜进行700℃-800℃的真空退火处理以诱发层内/间的扩散,并在层内/间形成Cu4Ti3、Cu4Ti、Cu3Ti、Cu10Zr7、ZrCu相,Cu-Ti-Zr/Ti-Zr多层膜的膜基结合力大于20N,金属间化合物的出现伴随着金属键与共价键的形成,共价键的出现使得原子间的结合力增强,化学键趋于稳定,赋予材料高熔点、高硬度和高结合力的特性;
(4)对Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层膜进行800℃-900℃的真空退火处理以诱发层内/间的扩散,并在层内/间形成Cu4Ti3、Cu4Ti、Cu3Ti、Cu10Zr7、ZrCu相,Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层膜的膜基结合力大于20N,金属间化合物的出现伴随着金属键与共价键的形成,共价键的出现使得原子间的结合力增强,化学键趋于稳定,赋予材料高熔点、高硬度和高结合力的特性。

Claims (2)

1.铜制齿轮淬火感应传感器陶瓷镀层的制备方法,其特征在于:包括下述步骤:
1)利用多靶共聚焦非平衡磁控溅射制备不同Cu功率的Cu-Ti-Zr复合薄膜,并确定具有最高膜基结合力的Cu-Ti-Zr薄膜材料中Cu靶的功率:
采用纯度均为99.9%的Cu靶、Ti靶与Zr靶为源材料,通入纯度为99.999%的氩气,流量为10sccm,真空度低于6.0×10-4Pa时溅射,溅射时间2h,工作气压为0.3Pa,Ti靶的溅射功率为150W,Zr靶溅射功率为60W,调节Cu靶溅射功率采用双靶共焦射频反应磁控溅射法溅射在Cu衬底上制备得到Cu-Ti-Zr薄膜材料;
调节Cu靶功率为150W时,薄膜中Cu、Ti与Zr元素的原子百分含量依次为41.7%、41.2%与17.1%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr薄膜的膜基结合力为14.100N;确定Cu靶的最佳溅射功率为150W,并进行600℃-700℃的真空退火处理;
2)固定Ti靶与Zr靶的功率不变,关闭Cu靶挡板,控制沉积时间,制备Cu-Ti-Zr/Ti-Zr多层薄膜材料:固定Ti靶功率为150W,Zr靶为60W,利用多靶共聚焦非平衡磁控溅射制备具有最高膜基结合力的Cu-Ti-Zr复合薄膜,然后关闭Cu靶挡板,在Cu-Ti-Zr薄膜上制备不同沉积时间的Ti-Zr薄膜,并获得具有最高膜基结合力的Cu-Ti-Zr/Ti-Zr多层薄膜材料,为使薄膜生长环境不发生改变,Ti-Zr层的Ti靶与Zr靶功率与上述相同:
采用纯度均为99.9%的Ti靶、Cu靶与Zr靶为源材料,通入纯度为99.999%的氩气,流量为10sccm,真空度低于6.0×10-4Pa时溅射,工作气压为0.3Pa,Cu靶溅射功率为150W,Ti靶溅射功率为150W,Zr靶溅射功率为60W,采用双靶共焦射频反应磁控溅射法溅射在Cu衬底上制备得到Cu-Ti-Zr薄膜材料,时间为2h;溅射结束后关闭Cu靶,在Cu-Ti-Zr薄膜上继续制备不同沉积时间的Ti-Zr薄膜,得到Cu-Ti-Zr/Ti-Zr多层薄膜材料;
沉积时间3h,薄膜中Cu、Ti与Zr元素的原子百分含量依次为15.2%、60.6%与24.2%,为fcc-Cu、hcp-Ti及hcp-Zr三相结构,Cu-Ti-Zr/Ti-Zr多层膜的膜基结合力为6.543N;确定Ti-Zr层薄膜的最佳沉积时间为3h,并进行700℃-800℃的真空退火处理;
3)制备Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层薄膜材料:Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层薄膜材料均采用纯度为99.9%的Ti靶、Cu靶与Zr靶为源材料,通入纯度为99.999%的反应氮气,氩氮气体流量比随着氮气流量的逐渐增大而变化,最终氩氮气体流量比为10sccm:3sccm,真空度低于6.0×10-4Pa时溅射,工作气压为0.3Pa,在室温下采用三靶共焦射频反应磁控溅射法交替溅射在基体上制备得到。
2.根据权利要求1所述的铜制齿轮淬火感应传感器陶瓷镀层的制备方法,其特征在于:所述的步骤3)包括下述步骤:
(1)将Cu衬底先后用水、丙酮、无水乙醇超声清洗5min-10min,吹干后固定在溅射室可旋转的基片台上,关闭样品挡板;
(2)将纯度为99.9%的Ti靶、Cu靶与Zr靶分别固定在三个射频枪上;
(3)将溅射室的气压抽至6.0×10-4Pa以下;
(4)通入纯度为99.999%的氩气,流量控制为10sccm、溅射室气压保持在0.25Pa;
(5)调节Ti靶、Cu靶与Zr靶功率均为50W,溅射5min-10min以清洗靶材表面各种杂质;
(6)通入氩气使溅射室气压保持在0.3Pa,调节Cu靶功率为150W、Ti靶功率为150W,Zr靶功率为60W,打开样品挡板,样品旋转速度保持为6r/min,沉积Cu-Ti-Zr复合膜,时间为2h;沉积结束后,固定Ti靶与Zr靶功率不变,关闭Cu靶挡板,在Cu-Ti-Zr薄膜上继续沉积Ti-Zr薄膜,时间为3h;沉积结束后,固定Ti、Zr靶功率不变,关闭样品挡板,通入纯度为99.999%的氮气,流量控制分别为0.1sccm、15min;0.5sccm、20min;1sccm、25min;2sccm、30min;3sccm、40min,溅射室气压保持在0.3Pa,打开样品挡板,在Cu-Ti-Zr/Ti-Zr多层膜上继续沉积(Ti,Zr)N+(Zr,Ti)N薄膜,时间为2h10min,制备Cu-Ti-Zr/Ti-Zr/(Ti,Zr)N+(Zr,Ti)N多层薄膜材料,并进行800℃-900℃的真空退火处理。
CN202111422482.6A 2021-11-26 2021-11-26 铜制齿轮淬火感应传感器陶瓷镀层及其制备方法 Active CN114107928B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111422482.6A CN114107928B (zh) 2021-11-26 2021-11-26 铜制齿轮淬火感应传感器陶瓷镀层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111422482.6A CN114107928B (zh) 2021-11-26 2021-11-26 铜制齿轮淬火感应传感器陶瓷镀层及其制备方法

Publications (2)

Publication Number Publication Date
CN114107928A CN114107928A (zh) 2022-03-01
CN114107928B true CN114107928B (zh) 2023-06-20

Family

ID=80370183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111422482.6A Active CN114107928B (zh) 2021-11-26 2021-11-26 铜制齿轮淬火感应传感器陶瓷镀层及其制备方法

Country Status (1)

Country Link
CN (1) CN114107928B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273730A (ja) * 2003-03-07 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成方法
JP2005311061A (ja) * 2004-04-21 2005-11-04 Nippon Telegr & Teleph Corp <Ntt> 絶縁層及びその製造方法
CN103334080A (zh) * 2013-06-04 2013-10-02 上海大学 AlN膜表面金属化层制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826935B1 (ko) * 2001-05-01 2008-05-02 허니웰 인터내셔날 인코포레이티드 티탄 및 지르코늄으로 구성된 장벽층 및 이를 포함하는반도체 구조물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273730A (ja) * 2003-03-07 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> 薄膜形成方法
JP2005311061A (ja) * 2004-04-21 2005-11-04 Nippon Telegr & Teleph Corp <Ntt> 絶縁層及びその製造方法
CN103334080A (zh) * 2013-06-04 2013-10-02 上海大学 AlN膜表面金属化层制备方法

Also Published As

Publication number Publication date
CN114107928A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN111074223A (zh) 成分均匀可控的高熵合金薄膜的物理气相沉积制备方法
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN114086122B (zh) 基于铜衬底上高膜基结合力的陶瓷基梯度镀层及制备方法
CN111455333B (zh) 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法
CN111254398B (zh) 一种晶粒高定向取向的铂溅射靶材及其制备方法
CN115295684A (zh) 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法
CN114107928B (zh) 铜制齿轮淬火感应传感器陶瓷镀层及其制备方法
CN104726826A (zh) 一种超高硬度Ti-Ni形状记忆合金薄膜的制备方法
CN113981392A (zh) 一种Ti-Al-C MAX相涂层及其低温成相制备方法
CN110129732B (zh) 一种高电阻率高熵合金薄膜及其制备方法
CN114250444A (zh) 一种等离子体辅助化学气相沉积高纯钨溅射靶材的方法
CN109666887B (zh) 一种TiAlN硬质涂层及其制备方法和应用
CN113637942B (zh) 金属W/非晶NiTiNbFe纳米多层膜及制备方法
CN114645254B (zh) 一种TiAlMoNbW高熵合金氮化物薄膜及其制备工艺
CN112553580B (zh) 一种二硼化物复合涂层及其制备方法和应用
CN109023278B (zh) 一种制备高强度铜铝合金的方法
CN114959613A (zh) 一种增强中熵合金CoCrNi薄膜耐腐蚀性的方法
CN113913758A (zh) 一种纳米复合结构的高熵氮化物硬质涂层及其制备方法和应用
CN113151793B (zh) 一种高强度高塑性铜铝纳米金属多层膜的制备方法
CN112323032A (zh) 一种含有界面层的高硬度Cu基材料及其制备方法
CN111235536B (zh) 一种晶粒高定向取向的铱溅射靶材及其制备方法
CN113293353B (zh) 一种金属掺杂的二硼化锆薄膜及其制备方法
CN115595543B (zh) 一种具有MAB相结构的MoAlB陶瓷薄膜及其制备方法
CN111270210B (zh) 一种晶粒高定向取向的钌溅射靶材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant