CN114105672B - 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法 - Google Patents

一种锆钽复合稀土基多孔高熵陶瓷及其制备方法 Download PDF

Info

Publication number
CN114105672B
CN114105672B CN202010898654.6A CN202010898654A CN114105672B CN 114105672 B CN114105672 B CN 114105672B CN 202010898654 A CN202010898654 A CN 202010898654A CN 114105672 B CN114105672 B CN 114105672B
Authority
CN
China
Prior art keywords
rare earth
powder
entropy ceramic
zirconium
based porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010898654.6A
Other languages
English (en)
Other versions
CN114105672A (zh
Inventor
张雪松
杨帆
薛丽燕
邵志恒
张�浩
江正明
林婉晴
杜畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Institute of Rare Earth Materials
Original Assignee
Xiamen Institute of Rare Earth Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Institute of Rare Earth Materials filed Critical Xiamen Institute of Rare Earth Materials
Priority to CN202010898654.6A priority Critical patent/CN114105672B/zh
Publication of CN114105672A publication Critical patent/CN114105672A/zh
Application granted granted Critical
Publication of CN114105672B publication Critical patent/CN114105672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明公开了一种锆钽复合稀土基多孔高熵陶瓷及其制备方法。锆钽复合稀土基多孔高熵陶瓷具有化学通式:[Mz(REz/Thz)]2(ZrxTay)2O7,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的至少三种;RE选自Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的一种且不与M相同;x≥0.5,y≤0.5,z=0.25,x+y=1,M、RE/Th与Zr、Ta物质的量之比为1:1。本发明采用稀土元素掺杂,充分结合了锆酸稀土基陶瓷的保温性能和钽酸稀土基陶瓷的屏蔽性能,采用固相合成法合成的粉体晶粒小且分布均匀,利用纤维素造孔形成多孔陶瓷,进一步降低了材料的导热系数,制备工艺简单,纯度高,具有大规模工业生产的潜力。

Description

一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
技术领域
本发明属于高熵陶瓷材料技术领域,具体而言,涉及一种锆钽复合稀土基多孔高熵陶瓷及其制备方法。
背景技术
近年来,高熵陶瓷((High-entropy ceramics,HECs)作为一种含有三种或三种以上主成分的等摩尔比或接近等摩尔比的单组分化合物的固溶体,因其导热系数低、硬度高、耐环境性强等特性越来越受到人们的关注。高熵陶瓷通常指由五种或五种以上陶瓷组元形成的固溶体,因其独特的“高熵效应”及优越的性能,近年来已成为陶瓷领域的热点。熵是热力学中表征物质混乱程度的参量,其概念由克劳修斯(T.Clausius)于1854年提出。熵越低,***越稳定有序;熵越高,***越混乱。高熵陶瓷的研究最早可追溯到2015年,随后越来越多的高熵陶瓷,包括萤石结构、钙钛矿结构、尖晶石结构的高熵氧化物陶瓷以及硼化物、碳化物、氮化物、硅化物等非氧化物高熵陶瓷如雨后春笋般涌现出来,逐渐成为研究热点。高熵陶瓷的特点可以概括为四点:(1)热力学的高熵效应;(2)结构的晶格畸变效应;(3)动力学的迟滞扩散效应;(4)性能上的“鸡尾酒”效应。高熵材料的核心效应之一是缓慢扩散,其中由于固溶体引起的晶格畸变和多元素的协同扩散,阻碍了原子的运动和原子的有效扩散,因此,当高温下使用高熵材料时,可以保持细小的晶粒,并期望晶粒生长速度缓慢,这种慢扩散效应为TBC材料即晶粒细小、生长速度慢的高熵固溶体的设计开辟了一个新的窗口。
鉴于高熵陶瓷具有此优异的性能,因此,围绕高熵陶瓷的掺杂等研究成为目前研究的热点。
发明内容
本发明旨在提供一种锆钽复合稀土基多孔高熵陶瓷及其制备方法,满足了材料在更苛刻环境下的屏蔽性能和隔热保温性能。
为了实现上述目的,根据本发明的一个方面,提供了一种锆钽复合稀土基多孔高熵陶瓷,其特征在于,具有以下化学通式:[Mz(REz/Thz)]2(ZrxTay)2O7,其中,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的至少三种;RE选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的一种且不与稀土元素M相同;x≥0.5,y≤0.5,z=0.25,x+y=1,稀土元素M、RE/Th的物质的量与Zr、Ta两种元素的物质的量之比为1:1。
根据本发明,[Mz(REz/Thz)]2(ZrxTay)2O7,其中,M选自稀土元素Sm、Eu、Ce、Gd、Er和Tm中的至少三种;RE选自稀土元素Sm、Eu、Ce、Gd、Er和Tm中的一种且不与稀土元素M相同;x:y=(0.6~0.9):(0.4~0.1),z=0.25,x+y=1,稀土元素M、RE/Th的物质的量与Zr、Ta两种元素的物质的量之比为1:1。
根据本发明,M选自三种稀土元素Sm、Eu和Gd的组合。优选地,锆钽复合稀土基多孔高熵陶瓷的化学通式为[Sm0.25Eu0.25Gd0.25(RE/Th0.25)]2(ZrxTay)2O7;RE选自稀土元素Ce、Er和Tm中的一种。
根据本发明,锆钽复合稀土基多孔高熵陶瓷的结构式为(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7、(Sm0.25Eu0.25Gd0.25Th0.25)2(Zr0.8 Ta0.2)2O7、(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7、(La0.25Eu0.25Gd0.25Th0.25)2(Zr0.8 Ta0.2)2O7、(La0.25Eu0.25Gd0.25Yb0.25)2(Zr0.7Ta0.3)2O7、(La0.25Gd0.25Er0.25Yb0.25)2(Zr0.6 Ta0.4)2O7、(Gd0.25Er0.25Tm0.25Yb0.25)2(Zr0.5Ta0.5)2O7、(Sm0.25Eu0.25Gd0.25Tm0.25)2(Zr0.9 Ta0.1)2O7
根据本发明,锆钽复合稀土基多孔高熵陶瓷的孔径为0.1~30μm;优选为0.5~5μm;更优选为0.5~1μm;例如可以为0.6μm。
根据本发明的另一方面,还提供了一种锆钽复合稀土基多孔高熵陶瓷的制备方法,包括以下步骤:
S1、称取原料ZrO2粉、Ta2O5粉、稀土氧化物M2O3、RE2O3粉混合,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的至少三种;RE选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的一种且不与M相同;或者称取原料ZrO2粉、Ta2O5粉、稀土氧化物M2O3粉、ThO2粉混合,M选自稀土元素Sm、Eu、Ce、Gd、Er、Tm,Re和La中的至少三种;将上述原料加入水后进行高能球磨,得到第一混合粉末;稀土元素M、RE/Th的物质的量之和与Zr、Ta两种元素的物质的量之和的比值为1:1;
S2、将第一混合粉末进行干燥处理,过筛,压块,得到第一致密胚体,将所述第一致密胚体烧结,得到高熵陶瓷,破碎后得到高熵陶瓷粉体;
S3、向高熵陶瓷粉体中加入成孔剂纤维素和水,高能球磨,得到第二混合粉末,经干燥,过筛,压块,得到第二致密胚体,将所述第二致密胚体烧结,得到多孔高熵陶瓷。
根据本发明,步骤S1中将原料放入氧化锆球磨罐中,加入ZrO2球磨球研磨至均匀;所述球磨球与原料的质量比为2:1~20:1,优选为2:1~10:1。优选地,ZrO2球磨球中大球、中球和小球的质量比为1:2:1。优选地,球磨转速为200-500rpm,球磨时间为6-24小时,球磨方式为每球磨2分钟后停止4分钟,正转反转依次轮换。
根据本发明,将第一混合粉末在60-90℃下干燥12-24小时,之后过100-200目筛子。优选地,所述步骤S2中压块的压力为200-400kN。优选地,步骤S2中将第一致密胚体以速率2-5℃/分钟升温至1200-1700℃,烧结2-24小时。优选地,所述步骤S2中使用碳化钨震动磨样机进行破碎,所述破碎的时间为5-30秒。
根据本发明,步骤S3中加入的成孔剂纤维素与所述高熵陶瓷粉体的质量比为0.1-0.5:1。优选地,步骤S3中将第二混合粉末在60-90℃下干燥12-24小时后,过50-200目筛。优选地,步骤S3中压块的压力为5-15Mpa。优选地,将第二致密胚体在1200-1700℃下烧结2-24小时。
根据本发明,成孔剂为纤维素纳米纤维、纤维素纳米晶和纤维素粉中的一种或多种。优选地,纤维素纳米纤维的直径为4-10nm,长为1-3μm;优选直径为4-8nm,长为1.5-2μm。优选地,纤维素纳米晶的直径为5-20nm,长为50-200nm。优选地,纤维素粉粒径≤25μm。
本发明的有益效果:
本发明采用稀土元素进行掺杂,糅合了锆酸稀土基陶瓷和钽酸稀土基陶瓷的优点,充分结合了锆酸稀土基陶瓷的保温性能和钽酸稀土基陶瓷的屏蔽性能。采用固相合成法,合成的粉体晶粒小且分布均匀,利用纤维素造孔形成多孔陶瓷,进一步降低了材料的导热系数。本发明的制备工艺简单,纯度高,具有发展成大规模工业生产的潜力。
附图说明
图1为本发明制备锆钽复合稀土基多孔高熵陶瓷的技术路线图。
图2为实施例1和实施例3中合成的(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7、(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7高熵陶瓷粉体的XRD图谱。
图3为实施例1中合成的(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7高熵陶瓷的EDS能谱元素分布图。
图4为实施例1中合成的(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7高熵陶瓷的SEM图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合本附图及实施例,对本发明做进一步的详细说明。需要强调,此处描述的具体实施例仅用于更好的阐述本发明,为本发明部分实施例,而非全部实施例,所以并不用作限定本发明。此外,下面描述的本发明实施例中涉及的技术特征,只要彼此间未构成冲突,即可以相互组合。
本发明提供了一种锆钽复合稀土基多孔高熵陶瓷,具有以下化学通式:[Mz(REz/Thz)]2(ZrxTay)2O7,其中,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的至少三种;RE选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的一种且不与稀土元素M相同;x≥0.5,y≤0.5,z=0.25,x+y=1,稀土元素M、RE/Th的物质的量与Zr、Ta两种元素的物质的量之比为1:1。优选地,x:y=(0.6~0.9):(0.4~0.1)。
根据本发明,M优选三种稀土元素Sm、Eu和Gd的组合。其中Sm、Eu、Gd三种元素仅为最佳组合,其他组合同样适用。本发明创造性地发现,稀土元素的热中子俘获截面积较大,尤其是钐、铕、钆三种元素的截面积最大,并且包含钐、铕、钆元素的多孔陶瓷在屏蔽性能方面表现优异,其他稀土元素明显热中子截面积要小些,但在屏蔽性能方面相比其他非稀土元素依然有很大的优势。当稀土元素掺杂锆酸盐后具有较低的导热率,高温下具有优异的稳定性和良好的耐烧结性,可作为保温材料使用。当稀土元素掺杂钽酸盐后具有非常好的热物理性能和机械性能,极低的高温热导率,同时,采用稀土元素如铈、钆、铥、铒四种具有优异屏蔽性能的稀土元素后,稀土锆酸盐和稀土钽酸盐具有非常好的耐辐照性能。稀土元素的K层吸收边随着原子序数的增加而增大,基本覆盖了Pb的“弱吸收区”,因此,本发明选用稀土元素弥补传统Pb材料的短板,并且稀土元素具有价电子覆盖空间大的优势,可通过增强康普顿效应的方式屏蔽中能γ射线。
优选地,锆钽复合稀土基多孔高熵陶瓷的化学通式为[Mz(REz/Thz)]2(ZrxTay)2O7,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的至少三种;RE选自Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的一种且不与M相同;x≥0.5,y≤0.5,z=0.25,x+y=1,M、RE/Th与Zr、Ta物质的量之比为1:1。例如(Ce0.25Gd0.25Er0.25Tm0.25)2(ZrxTay)2O7,(La0.25Eu0.25Gd0.25Th0.25)2(ZrxTay)2O7。具体地,锆钽复合稀土基多孔高熵陶瓷结构式可以为(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7、(Sm0.25Eu0.25Gd0.25Th0.25)2(Zr0.8Ta0.2)2O7、(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7、(La0.25Eu0.25Gd0.25Th0.25)2(Zr0.8Ta0.2)2O7、(La0.25Eu0.25Gd0.25Yb0.25)2(Zr0.7 Ta0.3)2O7、(La0.25Gd0.25Er0.25Yb0.25)2(Zr0.6 Ta0.4)2O7、(Gd0.25Er0.25Tm0.25Yb0.25)2(Zr0.5Ta0.5)2O7、(Sm0.25Eu0.25Gd0.25Tm0.25)2(Zr0.9 Ta0.1)2O7
本发明中的RE/Th是指RE元素或Th元素,两者是择一的关系。
优选地,锆钽复合稀土基多孔高熵陶瓷的孔径为0.1~30μm;优选为0.5~5μm;更优选为0.5~1μm;例如可以为0.6μm。
根据本发明的另一方面,还提供了一种锆钽复合稀土基多孔高熵陶瓷的制备方法,包括以下步骤:S1、称取原料ZrO2粉、Ta2O5粉、稀土氧化物M2O3、RE2O3粉混合,M选自稀土元素Sm、Eu、Ce、Gd、Er、Tm,Re或La中的至少三种;RE选自稀土元素Sm、Eu、Ce、Gd、Er、Tm,Re或La中的一种且不与M相同;或者称取原料ZrO2粉、Ta2O5粉、稀土氧化物M2O3粉、ThO2粉混合,M选自稀土元素Sm、Eu、Ce、Gd、Er、Tm,Re和La中的至少三种。其中,稀土元素M、RE/Th的物质的量之和与Zr、Ta两种元素的物质的量之和的比值为1:1。
将上述原料加入水后放入氧化锆球磨罐中,加入ZrO2球磨球进行高能球磨,直至研磨均匀,得到第一混合粉末。优选地,球磨球与原料的质量比为2:1~20:1,更优选为2:1~10:1。ZrO2球磨球中大球、中球和小球的质量比为1:2:1。
S2、将上述得到的第一混合粉末进行干燥处理,过筛,压块,得到第一致密胚体,将第一致密胚体烧结,得到高熵陶瓷,破碎后得到高熵陶瓷粉体。其中,将第一混合粉末在60-90℃下干燥12-24小时,之后过100-200目筛子。优选地,此步骤中压块的压力为200-400kN。将第一致密胚体以速率2-5℃/分钟升温至1200-1700℃,烧结2-24小时,得到高熵陶瓷。之后使用碳化钨震动磨样机对高熵陶瓷破碎,破碎时间为5-30秒,得到高熵陶瓷粉体。
S3、向上述得到的高熵陶瓷粉体中加入成孔剂纤维素和水,优选成孔剂纤维素与高熵陶瓷粉体的质量比为0.1-0.5:1,之后转速200-500rpm下高能球磨6-24小时,球磨方式为每球磨2分钟后停止4分钟,正转反转依次轮换,球磨后得到第二混合粉末。将第二混合粉末在60-90℃下干燥12-24小时,过50-200目筛。过筛后优选在5-15Mpa下压块,得到第二致密胚体,将第二致密胚体在1200-1700℃下烧结2-24小时,之后干燥,得到多孔高熵陶瓷。
优选地,成孔剂为纤维素纳米纤维、纤维素纳米晶和纤维素粉中的一种或多种。优选地,纤维素纳米纤维的直径为4-10nm,长为1-3μm。更优选直径为4-8nm,长为1.5-2μm。优选地,纤维素纳米晶的直径为5-20nm,长为50-200nm。优选地,纤维素粉粒径≤25μm。
本发明是通过ZrO2粉、Ta2O5粉和稀土氧化物粉如Sm2O3粉、Gd2O3粉、Eu2O3粉、RE2O3/ThO2粉在高温下发生固相合成反应,直接生成高熵陶瓷,之后通过纤维素造孔得到多孔高熵陶瓷。
下面结合具体实施例进一步说明本发明的技术方案。
下面实施例中所采用的CeO2粉、Gd2O3粉、Tm2O3粉、Er2O3粉、ZrO2粉及Ta2O5粉的纯度均≥99.99%。
实施例1
制备(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7多孔高熵陶瓷,包括以下步骤:
(1)分别称取4.3028g的CeO2粉、4.5313g的Gd2O3粉、4.7815g的Er2O3粉、4.8234g的Tm2O3粉、9.8576g的ZrO2粉和4.4189g的Ta2O5粉,置于容量为500mL的氧化锆球磨罐中,向球磨罐中加入30mL超纯水,15g的ZrO2大球、30g的ZrO2中球和15g的ZrO2小球(原料中Ce、Gd、Tm和Er的摩尔比为1:1:1:1,Zr和Ta的摩尔比为4:1,稀土元素的总摩尔量与Zr和Ta的总摩尔量相等,球磨球与原料的质量比接近2:1)。将球磨罐置于球磨机中以400rpm的转速球磨24h。球磨结束将得到的混合物置于80℃下干燥24小时,过200目标准筛。将过筛后的粉末置于压块机中压块,压力设置为10MPa。将压好的块体放入马弗炉中烧结,升温速率2℃/min,于1500℃下保温24h。将保温后的块体置于碳化钨震动碎样机中,碎样时间设置为9s,从而得到(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7高熵陶瓷粉末。
(2)称取25g上述制备的(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7高熵陶瓷粉末和5g的纤维素粉末,加入到500mL的氧化锆球磨罐中,加入50mL的超纯水,15g的ZrO2大球、30g的ZrO2中球和15g的ZrO2小球。将球磨罐置于球磨机中以400rpm的转速球磨24h。球磨结束将得到的混合物置于80℃下干燥24h,并过100目标准筛,将过筛后的粉末置于压块机中压块,压力设置为10MPa。将块体放入马弗炉中烧结,升温速率2℃/min,于1600℃下保温12h,从而得到(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7多孔高熵陶瓷。
采用热常数测定方法或者标准测定多孔高熵陶瓷的耐隔热保温性能,其数值最低为0.52W/m·K。
图3为实施例1中合成的高熵陶瓷的EDS能谱元素分布图,从中可以看出所有元素在颗粒中均匀分散,表明高熵陶瓷已经形成。
采用扫描电子显微镜测定方法或者标准测定多孔高熵陶瓷的孔径,数值约在0.5μm。图4为实施例1中合成的高熵陶瓷的SEM图,可以看出为多孔结构,其孔径尺寸约为0.5μm。
实施例2
制备(Sm0.25Eu0.25Gd0.25Th0.25)2(Zr0.8Ta0.2)2O7多孔高熵陶瓷,包括如下步骤:
(1)分别称取4.3588g的Sm2O3粉、4.3991g的Eu2O3粉、4.5313g的Gd2O3粉、6.6010g的ThO2粉、9.8576g的ZrO2粉和4.4189g的Ta2O5粉,置于容量为500mL的氧化锆球磨罐中,加入30mL超纯水、75g的ZrO2大球、150g的ZrO2中球和75g的ZrO2小球(原料中Ce、Gd、Tm和Er的摩尔比为1:1:1:1,Zr和Ta的摩尔比为4:1,稀土元素的总摩尔量与Zr和Ta的总摩尔量相等,磨球与原料的质量比接近10:1)。将球磨罐置于球磨机中以200rpm的转速球磨24h。球磨结束后将得到的混合物置于80℃下干燥24h,过200目标准筛,将过筛后的粉末置于压块机中压块,压力设置为15MPa。将块体放入马弗炉中烧结,升温速率2℃/min,于1600℃下保温12h。将保温后的块体置于碳化钨震动碎样机中,碎样时间设置为15s,从而得到(Sm0.25Eu0.25Gd0.25Th0.25)2(Zr0.8Ta0.2)2O7高熵陶瓷粉末。
(2)称取22.5g上述制备的(Sm0.25Eu0.25Gd0.25Th0.25)2(Zr0.8Ta0.2)2O7高熵陶瓷粉末和7.5g的纤维素粉末,加入到500mL的氧化锆球磨罐中,加入100mL的超纯水,75g的ZrO2大球、150g的ZrO2中球和75g的ZrO2小球。将球磨罐置于球磨机中以200rpm的转速球磨24h。将球磨结束得到的混合物置于80℃下干燥24h,并过100目标准筛,将过筛后的粉末置于压块机中压块,压力设置为15MPa。将块体放入马弗炉中烧结,升温速率2℃/min,于1600℃下保温12h,从而得到(Sm0.25Eu0.25Gd0.25Th0.25)2(Zr0.8Ta0.2)2O7多孔高熵陶瓷。
采用热常数测定方法或者标准测定多孔高熵陶瓷的耐隔热保温性能,其数值为0.23W/m·K。
采用扫描电子显微镜测定方法或者标准测定多孔高熵陶瓷的孔径,数值约为1μm。
实施例3
制备(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7多孔高熵陶瓷,包括如下步骤:
(1)分别称取4.3028g的CeO2粉、4.5313g的Gd2O3粉、4.8234g的Tm2O3粉、4.7815g的Er2O3粉、11.0898g的ZrO2粉和2.2095g的Ta2O5粉,置于容量为500mL的氧化锆球磨罐中,加入30mL超纯水,75g的ZrO2大球、150g的ZrO2中球和75g的ZrO2小球(原料中Ce、Gd、Tm和Er的摩尔比为1:1:1:1,Zr和Ta的摩尔比为9:1,稀土元素的总摩尔量与Zr和Ta的总摩尔量相等,球磨球与原料的质量比接近10:1)。将该球磨罐置于球磨机中以200rpm的转速球磨24h。将球磨结束得到的混合物置于80℃下干燥24h,并过200目标准筛,将过筛后的粉末置于压块机中压块,压力设置为10MPa。将块体放入马弗炉中烧结,升温速率2℃/min,于1500℃下保温24h。将保温后的块体置于碳化钨震动碎样机中,碎样时间设置为10s,从而得到(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7高熵陶瓷粉末。
(2)称取25.0g上述制备的(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7高熵陶瓷粉末和5g的纤维素粉末,并加入到500mL的氧化锆球磨罐中,加入50mL的超纯水,15g的ZrO2大球、30g的ZrO2中球和15g的ZrO2小球。将球磨罐置于球磨机中以400rpm的转速球磨24h。将球磨结束得到的混合物置于80℃下干燥24h,过100目标准筛,将过筛后的粉末置于压块机中压块,压力设置为10MPa。将块体放入马弗炉中烧结,升温速率2℃/min,于1500℃下保温6h,从而得到(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7多孔高熵陶瓷。
采用热常数测定方法或者标准测定多孔高熵陶瓷的耐隔热保温性能,其数值为0.55W/m·K。
采用扫描电子显微镜方法或者标准测定多孔高熵陶瓷的孔径,数值为0.6μm。
图2为实施例1和实施例3中制备的高熵陶瓷粉体的XRD图谱,从中可以看出已经合成的陶瓷属于缺陷型萤石结构,无第二相出现,表明各种氧化物已经形成了固溶体,形成了高熵陶瓷。
以上所述仅是本发明的优选应用实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (27)

1.一种锆钽复合稀土基多孔高熵陶瓷,其特征在于,具有以下化学通式: [Mz(REz/Thz)](ZrxTay)2O7,其中,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu 中的至少三种;RE选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的一种且不与稀土元素M相同;x≥0.5,0<y≤0.5,z=0.25,x+y=1,稀土元素M和RE/Th的物质的量与Zr、Ta两种元素的物质的量之比为1:1。
2.根据权利要求1所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,x:y=(0.6~0.9):(0.4~0.1)。
3.根据权利要求1或2所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,M选自三种稀土元素Sm、Eu和Gd的组合。
4. 根据权利要求1或2所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,所述锆钽复合稀土基多孔高熵陶瓷的化学通式为[Sm0.25Eu0.25Gd0.25 (RE/Th)0.25]2(ZrxTay)2O7; RE选自稀土元素Ce、Er和Tm中的一种。
5. 根据权利要求1所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,其结构式为(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.8Ta0.2)2O7、(Sm0.25Eu0.25Gd0.25Th0.25)2(Zr0.8 Ta0.2)2O7、(Ce0.25Gd0.25Er0.25Tm0.25)2(Zr0.9Ta0.1)2O7、(La0.25Eu0.25Gd0.25Th0.25)(Zr0.8 Ta0.2)2O7、(La0.25Eu0.25Gd0.25Yb0.25)2(Zr0.7 Ta0.3)2O7、(La0.25Gd0.25Er0.25Yb0.25)(Zr0.6 Ta0.4)2O7、(Gd0.25Er0.25Tm0.25Yb0.25)2(Zr0.5Ta0.5)2O7、(Sm0.25Eu0.25Gd0.25Tm0.25)(Zr0.9 Ta0.1)2O7
6.根据权利要求1所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,其孔径为0.1~30μm。
7.根据权利要求6所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,孔径为0.5~5μm。
8.根据权利要求7所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,孔径为0.5~1μm。
9.根据权利要求8所述的锆钽复合稀土基多孔高熵陶瓷,其特征在于,孔径为0.6μm。
10.一种权利要求1至9中任一项所述锆钽复合稀土基多孔高熵陶瓷的制备方法,其特征在于,包括以下步骤:
S1、称取原料ZrO2粉、Ta2O5粉、稀土氧化物M2O3、RE2O3粉混合,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的至少三种;RE选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的一种且不与M相同;或者
称取原料ZrO2粉、Ta2O5粉、稀土氧化物M2O3粉、ThO2粉混合,M选自稀土元素Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、Er、Tm、Yb和Lu中的至少三种;
将上述原料加入水后进行高能球磨,得到第一混合粉末;稀土元素M和RE/Th的物质的量之和与Zr、Ta两种元素的物质的量之和的比值为1:1;
S2、将所述第一混合粉末进行干燥处理,过筛,压块,得到第一致密胚体,将所述第一致密胚体烧结,得到高熵陶瓷,破碎后得到高熵陶瓷粉体;
S3、向所述高熵陶瓷粉体中加入成孔剂纤维素和水,高能球磨,得到第二混合粉末,经干燥,过筛,压块,得到第二致密胚体,将所述第二致密胚体烧结,得到多孔高熵陶瓷。
11.根据权利要求10所述的制备方法,其特征在于,所述步骤S1中将原料放入氧化锆球磨罐中,加入ZrO2球磨球研磨至均匀;所述球磨球与原料的质量比为2:1~20:1。
12.根据权利要求10所述的制备方法,其特征在于,所述球磨球与原料的质量比为2:1~10:1。
13.根据权利要求10所述的制备方法,其特征在于,所述ZrO2球磨球中大球、中球和小球的质量比为1:2:1。
14.根据权利要求10所述的制备方法,其特征在于,球磨转速为200-500rpm,球磨时间为6-24小时,球磨方式为每球磨2分钟后停止4分钟,正转反转依次轮换。
15.根据权利要求10所述的制备方法,其特征在于,将所述第一混合粉末在60-90℃下干燥12-24小时,之后过100-200目筛子。
16.根据权利要求10所述的制备方法,其特征在于,所述步骤S2中压块的压力为200-400kN。
17.根据权利要求10所述的制备方法,其特征在于所述步骤S2中将所述第一致密胚体以速率2-5℃/分钟升温至1200-1700℃,烧结2-24小时。
18.根据权利要求10所述的制备方法,其特征在于所述步骤S2中使用碳化钨震动磨样机进行破碎,所述破碎的时间为5-30秒。
19.根据权利要求10至18中任一项所述的制备方法,其特征在于,所述步骤S3中加入的成孔剂纤维素与所述高熵陶瓷粉体的质量比为0.1-0.5:1。
20.根据权利要求10所述的制备方法,其特征在于,所述步骤S3中将第二混合粉末在60-90℃下干燥12-24小时后,过50-200目筛。
21.根据权利要求10所述的制备方法,其特征在于,所述步骤S3中压块的压力为5-15MPa。
22.根据权利要求10所述的制备方法,其特征在于,将所述第二致密胚体在1200-1700℃下烧结2-24小时。
23.根据权利要求10至18中任一项所述的制备方法,其特征在于,所述成孔剂为纤维素纳米纤维、纤维素纳米晶和纤维素粉中的一种或多种。
24.根据权利要求23所述的制备方法,其特征在于,所述纤维素纳米纤维的直径为4-10nm,长为1-3μm。
25.根据权利要求24所述的制备方法,其特征在于,所述纤维素纳米纤维的直径为4-8nm,长为1.5-2μm。
26.根据权利要求23所述的制备方法,其特征在于,所述纤维素纳米晶的直径为5-20nm,长为50-200nm。
27.根据权利要求23所述的制备方法,其特征在于,所述纤维素粉粒径≤25μm。
CN202010898654.6A 2020-08-31 2020-08-31 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法 Active CN114105672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010898654.6A CN114105672B (zh) 2020-08-31 2020-08-31 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010898654.6A CN114105672B (zh) 2020-08-31 2020-08-31 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114105672A CN114105672A (zh) 2022-03-01
CN114105672B true CN114105672B (zh) 2023-04-18

Family

ID=80359917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010898654.6A Active CN114105672B (zh) 2020-08-31 2020-08-31 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114105672B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572162A (zh) * 2022-04-29 2023-01-06 厦门稀土材料研究所 一种堆用中子控制用稀土中高熵铪酸盐陶瓷材料
CN114835492A (zh) * 2022-05-18 2022-08-02 厦门稀土材料研究所 一种稀土基锆铪复合陶瓷材料及其制备方法和应用
CN116655378B (zh) * 2023-04-18 2023-11-10 哈尔滨工业大学 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986377A (zh) * 2017-04-14 2017-07-28 西南科技大学 一种Gd2Ti2‑xZrxO7烧绿石的自蔓延制备方法
CN107662947A (zh) * 2017-08-30 2018-02-06 昆明工匠涂层科技有限公司 Sm‑Eu‑Gd三稀土离子钽酸盐及其制备方法与应用
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
WO2020077771A1 (zh) * 2018-10-15 2020-04-23 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
CN111533557A (zh) * 2020-03-27 2020-08-14 东华大学 一种焦绿石型高熵氧化物固化体及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273099B2 (ja) * 1994-07-21 2002-04-08 京セラ株式会社 希土類複合酸化物系焼結体及びその製造方法
JPH0840774A (ja) * 1994-07-29 1996-02-13 Kyocera Corp 窒化珪素質焼結体
JP3320645B2 (ja) * 1997-11-06 2002-09-03 株式会社東芝 セラミックス焼結体の製造方法
WO2019038967A1 (ja) * 2017-08-24 2019-02-28 株式会社村田製作所 発光セラミックス及び波長変換装置
CN108218424B (zh) * 2018-01-10 2020-11-17 福建火炬电子科技股份有限公司 一种高频微波陶瓷电容器介质材料及其制备方法
CN108911751B (zh) * 2018-06-30 2021-05-14 华南理工大学 一种ZrHfTaNbTiC超高温高熵陶瓷材料及其制备方法
CN109437928A (zh) * 2018-12-29 2019-03-08 昆明理工大学 氧化锆/氧化钛/氧化铈掺杂稀土钽/铌酸盐RE3Ta/NbO7陶瓷粉体及其制备方法
CN110002870A (zh) * 2019-04-26 2019-07-12 昆明理工大学 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法
CN110078507B (zh) * 2019-06-18 2020-12-18 昆明理工大学 一种高熵稀土增韧钽酸盐陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986377A (zh) * 2017-04-14 2017-07-28 西南科技大学 一种Gd2Ti2‑xZrxO7烧绿石的自蔓延制备方法
CN107662947A (zh) * 2017-08-30 2018-02-06 昆明工匠涂层科技有限公司 Sm‑Eu‑Gd三稀土离子钽酸盐及其制备方法与应用
WO2020077771A1 (zh) * 2018-10-15 2020-04-23 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN111533557A (zh) * 2020-03-27 2020-08-14 东华大学 一种焦绿石型高熵氧化物固化体及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
曹万强等.造粒.《材料物理专业实验教程》.冶金工业出版社,2016, *
理查德•布洛克利等.顶部涂层.《材料技术》.北京理工大学出版社,2016, *
高熵合金抗氧化性能研究现状及展望;杨晓萌等;《材料导报》;20191125;第358-365页 *
高熵碳化物粉体的研究现状;李岗等;《硬质合金》;20200415(第02期);第79-88页 *

Also Published As

Publication number Publication date
CN114105672A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN114105672B (zh) 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
JP7412019B2 (ja) 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法
Li et al. Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors
CN102070335B (zh) 一种烧绿石结构稀土锆酸盐材料及其制备方法与应用
CN110002870A (zh) 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法
Li et al. Effects of Gd3+ substitution on the fabrication of transparent (Y1− xGdx) 3Al5O12 ceramics
CN101514100A (zh) 一种石榴石结构的闪烁透明陶瓷体系及其制备方法
CN110002873B (zh) 一种多孔钽酸盐陶瓷及其制备方法
CN114751744A (zh) 铈酸稀土基高熵陶瓷材料及其制备方法
CN105418063A (zh) 一种非化学计量比镥铝石榴石闪烁陶瓷及其制备方法
CN100584796C (zh) 一种Y2O3-TiO2系微波介质陶瓷及其制备方法
CN102464972A (zh) 一种具有高磁熵变的磁制冷材料化合物及其制备方法
CN102730756A (zh) 一种烧绿石型稀土锆酸盐的制备方法
CN114075074B (zh) 一种稀土掺杂钨酸基高熵陶瓷及其制备方法
CN116986902A (zh) 一种亚微米细晶结构的高熵钙钛矿陶瓷材料及制备方法
CN114988869B (zh) 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用
CN114105629B (zh) 一种铬酸稀土基多孔导电高熵陶瓷的制备方法及应用
JPH07267748A (ja) 多孔質焼結体及びその製造方法
CN106977205B (zh) 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法
CN110550945A (zh) 一种LuAG:Ce透明陶瓷的制备方法及LuAG:Ce透明陶瓷
CN114804875A (zh) 一种铈锆复合稀土基高熵陶瓷材料及其制备方法
KR102455806B1 (ko) 이트리아가 첨가된 중성자 흡수 소결체 및 이의 제조방법
CN115448717A (zh) 一种稀土基钼酸盐高熵负热膨胀陶瓷材料及其制备方法
KR101143311B1 (ko) 고온환경 열차폐용 저열전도성 복합산화물 및 그 제조 방법
CN115403379A (zh) 一种细晶高熵稀土钽酸盐陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant