CN114105646A - 原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法 - Google Patents

原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法 Download PDF

Info

Publication number
CN114105646A
CN114105646A CN202111562121.1A CN202111562121A CN114105646A CN 114105646 A CN114105646 A CN 114105646A CN 202111562121 A CN202111562121 A CN 202111562121A CN 114105646 A CN114105646 A CN 114105646A
Authority
CN
China
Prior art keywords
powder
nanocrystalline
sic
sintering
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111562121.1A
Other languages
English (en)
Other versions
CN114105646B (zh
Inventor
李达鑫
彭浩
贾德昌
杨治华
蔡德龙
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202111562121.1A priority Critical patent/CN114105646B/zh
Publication of CN114105646A publication Critical patent/CN114105646A/zh
Application granted granted Critical
Publication of CN114105646B publication Critical patent/CN114105646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

原位SiC‑BN(C)‑Ti(C,N)纳米晶复相陶瓷的制备方法,它涉及机械合金化结合反应热压烧结技术。它要解决现有陶瓷材料制备中存在加入润滑相会导致其力学性、可靠性和抗破坏性能变差的问题。方法1:h‑BN粉、石墨、立方硅粉和Ti粉球磨制备SiBCN‑xwt%Ti粉体,热压烧结。方法2:制备NB21混合粉,加立方硅粉、h‑BN粉和石墨,得SiBCN‑xwt%NB21粉体,热压烧结炉。方法3:TiN和TiB2球磨后加立方硅粉、h‑BN粉和石墨继续球磨,得非晶/纳米晶复合粉体,热压烧结炉。采用机械合金化结合热压烧结技术,制备具有优异力学和摩擦学性能及高温抗氧化性能的陶瓷;适用于制备纳米晶复相陶瓷。

Description

原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法
技术领域
本发明涉及机械合金化结合反应热压烧结技术,具体涉及原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法。
背景技术
SiC基陶瓷材料由于具有高强韧,优越的高温抗氧化性能,优异的抗摩擦磨损性能、良好的抗蠕变、耐烧蚀、抗热震等性能,已经在高温摩擦领域得到了广泛应用。然而此类陶瓷材料在1500℃以上长时间使用时,材料的高温强度、热稳定性和抗氧化性能急剧下降、干摩擦条件下摩擦系数和磨损率较大。因此研究制备出能够在1500℃以上长时间服役的耐高温结构/润滑功能一体化材料,是现代航空航天技术发展的迫切需求之一。实际工程遇到的问题是润滑相的加入破坏了陶瓷相的连续性和均匀性导致其力学性能变差,可靠性和抗破坏性能变差导致无法满足高技术领域中应用的实际需求。Ti(C,N)具有高熔点,硬度大,耐腐蚀和抗氧化性能好等特点,被广泛应用于结构材料及摩擦领域,而石墨和氮化硼也具有摩擦系数小等优点作为常用的润滑剂使用。
发明内容
本发明目的是解决现有陶瓷材料制备中存在加入润滑相会导致其力学性、可靠性和抗破坏性能变差的问题,而提供原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法。
原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,按以下步骤实现:
一、按照摩尔比1:(1~4):2称取h-BN粉、无定形石墨和立方硅粉;再按照SiBCN-xwt%Ti,x=0.1~30对Ti粉进行称取;
二、将上述称取的h-BN粉、无定形石墨、立方硅粉和Ti粉在高能球磨机中球磨20~30h,获得的SiBCN-xwt%Ti复合粉体;
三、将上述SiBCN-xwt%Ti复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1800~2000℃,烧结压力为40~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,还可以按以下步骤实现:
一、按照摩尔比3:2称取Ti粉和氮化硼粉,然后在高能球磨机中球磨30h,得到NB21混合粉;
二、按照摩尔比2:3:1称取立方硅粉、h-BN粉和无定形石墨;再按照SiBCN-xwt%NB21混合粉,x=0.1~30对NB21混合粉进行称取;
三、将上述称取的立方硅粉、h-BN粉、无定形石墨和NB21混合粉在高能球磨机中球磨20~24h,获得的SiBCN-xwt%NB21复合粉体;
四、将上述SiBCN-xwt%NB21复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1700~2000℃,烧结压力为60~80MPa,保温时间为30~120min,然后以20K/min的速率降温至1200℃,再随炉冷却,获得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,还可以按以下步骤实现:
一、按照摩尔比2:1称取硬质的TiN和TiB2,然后在高能球磨机中球磨30h,得到混合粉;
二、按照摩尔比2:1:3称取立方硅粉、h-BN粉、无定形石墨,获得A物质,再按质量比加入步骤一中所得混合粉,然后在高能球磨机中球磨20h,得到非晶/纳米晶复合粉体;所述混合粉与A物质的质量比为(70~95):(5~30);
三、将上述非晶/纳米晶复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1900℃,烧结压力为60~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
本发明采用机械合金化技术可以通过改变原料及其摩尔配比,从而可以制备出不同成分、不同微纳组织结构的SiC基陶瓷材料,为制备具有特种用途或优异性能纳米晶复相陶瓷材料提供可能。
本发明采用机械合金化结合热压烧结技术,制备具有优异力学和摩擦学性能以及高温抗氧化性能的SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷,制备的由湍层状非晶纳米晶BN(C)相包裹着纳米晶SiC和Ti(C,N)相晶粒的特殊的组织结构可以防止SiC和Ti(C,N)相晶粒的异常长大,制备出的复合陶瓷抗弯强度达到210~394MPa,弹性模量150~185GPa,维氏硬度1.5~4.7GPa,断裂韧性达到3~3.95GPa·cm1/2,体积密度为2.85g/cm3,解决了润滑相的加入破坏了陶瓷相的连续性和均匀性导致其力学性能变差,可靠性和抗破坏性能变差导致无法满足高技术领域中应用的问题。
本发明适用于制备原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷。
附图说明
图1为实施例1中SiBCN-15wt%Ti复合粉体的SEM图;
图2为实施例1中SiBCN-15wt%Ti复合粉体的局部放大图;
图3为实施例1中SiBCN-15wt%Ti复合粉体的TEM(见a部分)及HTEM图(见b部分和c部分);
图4为实施例1中原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的块体陶瓷元素面分部图,其中a表示HAADF;b至h表示相应的Si、B、C、N、Ti、O元素分布图;
图5为实施例2中Ti粉和氮化硼粉的球磨XRD图;
图6为实施例2中SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的XRD图;
图7为实施例2中SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的TEM分析图,其中a表示明场像形貌,b表示STEM形貌,c和d表示相应的HRTEM图;
图8为实施例2中SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的块体陶瓷衍射环图;
图9为实施例2中SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的力学性能图,其中a表示抗弯强度,b表示断裂韧性,c表示维氏硬度,d表示弹性模量;
图10为实施例3中SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的裂纹扩展图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,按以下步骤实现:
一、按照摩尔比1:(1~4):2称取h-BN粉、无定形石墨和立方硅粉;再按照SiBCN-xwt%Ti,x=0.1~30对Ti粉进行称取;
二、将上述称取的h-BN粉、无定形石墨、立方硅粉和Ti粉在高能球磨机中球磨20~30h,获得的SiBCN-xwt%Ti复合粉体;
三、将上述SiBCN-xwt%Ti复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1800~2000℃,烧结压力为40~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
本实施方式中h-BN粉、无定形石墨、立方硅粉和Ti粉球磨后充分固态非晶化,整个过程均在高纯氩气保护条件下进行,使五种组成元素在原子尺度得以充分混合,达到非晶状态。
具体实施方式二:本实施方式与具体实施方式一不同的是,步骤一中按照摩尔比1:3:2称取h-BN粉、无定形石墨和立方硅粉。其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是,步骤二中所述球磨采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,步骤三中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,还可以按以下步骤实现:
一、按照摩尔比3:2称取Ti粉和氮化硼粉,然后在高能球磨机中球磨30h,得到NB21混合粉;
二、按照摩尔比2:3:1称取立方硅粉、h-BN粉和无定形石墨;再按照SiBCN-xwt%NB21混合粉,x=0.1~30对NB21混合粉进行称取;
三、将上述称取的立方硅粉、h-BN粉、无定形石墨和NB21混合粉在高能球磨机中球磨20~24h,获得的SiBCN-xwt%NB21复合粉体;
四、将上述SiBCN-xwt%NB21复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1700~2000℃,烧结压力为60~80MPa,保温时间为30~120min,然后以20K/min的速率降温至1200℃,再随炉冷却,获得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
具体实施方式六:本实施方式与具体实施方式五不同的是,步骤一和三中所述球磨均采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。其它步骤及参数与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式五或六不同的是,步骤四中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。其它步骤及参数与具体实施方式五或六之一相同。
具体实施方式八:本实施方式原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,还可以按以下步骤实现:
一、按照摩尔比2:1称取硬质的TiN和TiB2,然后在高能球磨机中球磨30h,得到混合粉;
二、按照摩尔比2:1:3称取立方硅粉、h-BN粉、无定形石墨,获得A物质,再按质量比加入步骤一中所得混合粉,然后在高能球磨机中球磨20h,得到非晶/纳米晶复合粉体;所述混合粉与A物质的质量比为(70~95):(5~30);
三、将上述非晶/纳米晶复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1900℃,烧结压力为60~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
具体实施方式九:本实施方式与具体实施方式八不同的是,步骤一和二中所述球磨均采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。其它步骤及参数与具体实施方式八相同。
具体实施方式十:本实施方式与具体实施方式八或九不同的是,步骤二中混合粉与A物质的质量比为80:20。其它步骤及参数与具体实施方式八或九相同。
具体实施方式十一:本实施方式与具体实施方式八至十之一不同的是,步骤三中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。其它步骤及参数与具体实施方式八至十之一相同。
通过以下实施例验证本发明的有益效果:
实施例1:
原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,按以下步骤实现:
一、按照摩尔比1:3:2称取h-BN粉、无定形石墨和立方硅粉;再按照SiBCN-xwt%Ti,x=15对Ti粉进行称取;
二、将上述称取的h-BN粉、无定形石墨、立方硅粉和Ti粉在高能球磨机中球磨20h,获得的SiBCN-15wt%Ti复合粉体;
三、将上述SiBCN-15wt%Ti复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1800~2000℃,烧结压力为40~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
本实施例步骤二中所述球磨采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。
本实施例步骤三中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。
本实施例中制备所得SiBCN-15wt%Ti复合粉体的SEM图(见图1)和局部放大图(见图2),可见复合粉体颗粒的尺寸为50~200nm,可以明显发现粉体由于焊合作用发生硬团聚现象;SiBCN-15wt%Ti复合粉体的TEM(见图3中a部分)及HTEM图(见图3中b部分和c部分),对复合粉体进行TEM观察发现复合粉体中也存在尺寸较大的颗粒,这些颗粒是由较小的粉体颗粒团聚而形成。图3(a)为粉体的HRTEM,对粉体进行大量HRTEM观察后发现粉体颗粒基本实现非晶化,只存在少许的Ti(C,N)纳米晶,纳米晶尺寸为6~10nm。
本实施例中所得原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的块体陶瓷元素面分部,可见图4的a部分HAADF;图4的b至h部分相应的Si、B、C、N、Ti、O元素分布图,可观察到各种元素在复合材料中均匀分布。
实施例2:
原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,按以下步骤实现:
一、按照摩尔比3:2称取Ti粉和氮化硼粉,然后在高能球磨机中球磨30h,得到NB21混合粉;
二、按照摩尔比2:3:1称取立方硅粉、h-BN粉和无定形石墨;再按照SiBCN-xwt%NB21混合粉,x=15对NB21混合粉进行称取;
三、将上述称取的立方硅粉、h-BN粉、无定形石墨和NB21混合粉在高能球磨机中球磨20h,获得的SiBCN-15wt%NB21复合粉体;
四、将上述SiBCN-15wt%NB21复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1700℃,烧结压力为70MPa,保温时间为60min,然后以20K/min的速率降温至1200℃,再随炉冷却,获得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
本实施例步骤一和三中所述球磨均采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。
本实施例步骤四中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。
本实施例步骤一中Ti粉和氮化硼粉的球磨XRD图谱,从图5中可见BN峰在1h左右基本消失,Ti峰逐渐消失,经过30h高能球磨最后形成馒头状非晶峰。
本实施例中所得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷,从其XRD图谱(见图6)中可见,经过热压烧结后,陶瓷主要物象由SiC、BN(C)和Ti(C,N)组成,且随着Ti含量的增加,Ti(C,N)相含量逐渐增多。
本实施例中所得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的TEM分析,分别见图7中a部分明场像形貌;图7中b部分STEM形貌;图7中c和d部分相应的HRTEM图;从图7中可以明显发现有层片状BN(C)相,其晶粒尺寸为20~100nm,BN(C)相含有较多的层错以及在高分辨下观察到许多原子错排,湍层状BN(C)相包裹着Ti(C,N)相和SiC相,这种特殊的结构可以防止Ti(C,N)相和SiC相颗粒异常长大,从而使复合材料具有优异的力学及抗氧化性能;Ti(C,N)相均匀分布在复合材料中,其晶粒尺寸约为30nm;SiC晶粒尺寸也较小,约为30nm,从图7中能观察到SiC晶粒上有层错存在。
本实施例中所得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的块体陶瓷衍射环,见图8,图8为图7中b部分的选区电子衍射为一系列的衍射环,说明复合材料的晶粒尺寸细小为纳米晶尺寸,其中一些环发生了分化,说明一些晶粒开始向粗化发展。
本实施例中所得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的力学性能,从图9(a、b、c和d部分)中可见,其抗弯强度达到394MPa,弹性模量178.3GPa,维氏硬度4.7GPa,断裂韧性达到3.95GPa·cm1/2,体积密度为2.85g/cm3;说明复合材料具有优异的力学性能,纳米晶的引入可有效提高SiBCN陶瓷的机械性能。
实施例3:
原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,还可以按以下步骤实现:
一、按照摩尔比2:1称取硬质的TiN和TiB2,然后在高能球磨机中球磨30h,得到混合粉;
二、按照摩尔比2:1:3称取立方硅粉、h-BN粉、无定形石墨,获得A物质,再按质量比加入步骤一中所得混合粉,然后在高能球磨机中球磨20h,得到非晶/纳米晶复合粉体;所述混合粉与A物质的质量比为80:20;
三、将上述非晶/纳米晶复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1900℃,烧结压力为60~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
本实施例步骤一和二中所述球磨均采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。
本实施例步骤三中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。
本实施例中所得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的裂纹扩展图,从图10中可以看出裂纹的偏转,说明复合材料中的细小晶粒增强了复合材料的韧性,有利于提高其力学性能。

Claims (10)

1.原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于它按以下步骤实现:
一、按照摩尔比1:(1~4):2称取h-BN粉、无定形石墨和立方硅粉;再按照SiBCN-xwt%Ti,x=0.1~30对Ti粉进行称取;
二、将上述称取的h-BN粉、无定形石墨、立方硅粉和Ti粉在高能球磨机中球磨20~30h,获得的SiBCN-xwt%Ti复合粉体;
三、将上述SiBCN-xwt%Ti复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1800~2000℃,烧结压力为40~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
2.根据权利要求1所述的原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于步骤一中按照摩尔比1:3:2称取h-BN粉、无定形石墨和立方硅粉。
3.根据权利要求1所述的原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于步骤二中所述球磨采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。
4.根据权利要求1所述的原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于步骤三中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。
5.原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于它按以下步骤实现:
一、按照摩尔比3:2称取Ti粉和氮化硼粉,然后在高能球磨机中球磨30h,得到NB21混合粉;
二、按照摩尔比2:3:1称取立方硅粉、h-BN粉和无定形石墨;再按照SiBCN-xwt%NB21混合粉,x=0.1~30对NB21混合粉进行称取;
三、将上述称取的立方硅粉、h-BN粉、无定形石墨和NB21混合粉在高能球磨机中球磨20~24h,获得的SiBCN-xwt%NB21复合粉体;
四、将上述SiBCN-xwt%NB21复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1700~2000℃,烧结压力为60~80MPa,保温时间为30~120min,然后以20K/min的速率降温至1200℃,再随炉冷却,获得SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
6.根据权利要求5所述的原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于步骤一和三中所述球磨均采用粒径为1.85cm的氮化硅磨球,球料比为20:1,主盘转速为350r/min,行星盘转速为700r/min,球磨机每工作50min休息10min。
7.根据权利要求5所述的原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于步骤四中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。
8.原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于它按以下步骤实现:
一、按照摩尔比2:1称取硬质的TiN和TiB2,然后在高能球磨机中球磨30h,得到混合粉;
二、按照摩尔比2:1:3称取立方硅粉、h-BN粉、无定形石墨,获得A物质,再按质量比加入步骤一中所得混合粉,然后在高能球磨机中球磨20h,得到非晶/纳米晶复合粉体;所述混合粉与A物质的质量比为(70~95):(5~30);
三、将上述非晶/纳米晶复合粉体置于热压烧结炉,在氮气保护气下进行反应烧结,烧结温度为1900℃,烧结压力为60~80MPa,保温时间为30~60min,然后以20K/min的速率降温至1200℃,再随炉冷却,即完成原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备。
9.根据权利要求8所述的原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于步骤二中混合粉与A物质的质量比为80:20。
10.根据权利要求8所述的原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法,其特征在于步骤三中当烧结温度<1200℃时,升温速度为25K/min;当烧结温度>1200℃时,升温速度为20K/min。
CN202111562121.1A 2021-12-20 2021-12-20 原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法 Active CN114105646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111562121.1A CN114105646B (zh) 2021-12-20 2021-12-20 原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111562121.1A CN114105646B (zh) 2021-12-20 2021-12-20 原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN114105646A true CN114105646A (zh) 2022-03-01
CN114105646B CN114105646B (zh) 2022-12-09

Family

ID=80361600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111562121.1A Active CN114105646B (zh) 2021-12-20 2021-12-20 原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN114105646B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023150A (zh) * 2023-01-19 2023-04-28 天津大学 一种耐高温过渡金属碳(氮)化物/硅硼碳氮复合陶瓷气凝胶及制备方法
CN116693303A (zh) * 2023-03-31 2023-09-05 江苏东浦精细陶瓷科技股份有限公司 一种TiN-Si3N4复合材料的近净成形方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056859A (zh) * 1990-05-30 1991-12-11 中国建筑材料科学研究院高技术陶瓷研究所 反应热压制造碳氮化钛-硼化钛陶瓷
CN101367511A (zh) * 2008-08-06 2009-02-18 燕山大学 反应球磨法制备非化学计量比纳米TiNx粉末的方法
CN101445370A (zh) * 2008-12-24 2009-06-03 哈尔滨工业大学 一种TiN/TiB2复合材料的制备方法
CN101870586A (zh) * 2010-07-07 2010-10-27 哈尔滨工业大学 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056859A (zh) * 1990-05-30 1991-12-11 中国建筑材料科学研究院高技术陶瓷研究所 反应热压制造碳氮化钛-硼化钛陶瓷
CN101367511A (zh) * 2008-08-06 2009-02-18 燕山大学 反应球磨法制备非化学计量比纳米TiNx粉末的方法
CN101445370A (zh) * 2008-12-24 2009-06-03 哈尔滨工业大学 一种TiN/TiB2复合材料的制备方法
CN101870586A (zh) * 2010-07-07 2010-10-27 哈尔滨工业大学 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张聪: "碳氮化法合成Si-B-C-N和Si-Ti-C-N复合陶瓷粉末的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
李建林等: "高能球磨过程中Ti与BN的反应", 《金属学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023150A (zh) * 2023-01-19 2023-04-28 天津大学 一种耐高温过渡金属碳(氮)化物/硅硼碳氮复合陶瓷气凝胶及制备方法
CN116023150B (zh) * 2023-01-19 2024-01-23 天津大学 一种耐高温过渡金属碳(氮)化物/硅硼碳氮复合陶瓷气凝胶及制备方法
CN116693303A (zh) * 2023-03-31 2023-09-05 江苏东浦精细陶瓷科技股份有限公司 一种TiN-Si3N4复合材料的近净成形方法

Also Published As

Publication number Publication date
CN114105646B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN114105646B (zh) 原位SiC-BN(C)-Ti(C,N)纳米晶复相陶瓷的制备方法
Wang et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics
Barsoum et al. Processing and characterization of Ti 2 AlC, Ti 2 AlN, and Ti 2 AlC 0.5 N 0.5
Tyagi et al. Crystal structure and mechanical properties of spark plasma sintered Cu2Se: An efficient photovoltaic and thermoelectric material
JPH0769731A (ja) 高強度、高嵩密度導電セラミックス
Sun et al. Synthesis and characterization of a metallic ceramic material–Ti3SiC2
Zhao et al. Microstructure and mechanical properties at room and elevated temperatures of reactively hot pressed TiB2–TiC–SiC composite ceramic tool materials
WO2006005267A1 (fr) Materiau composite ceramique en ti2aln renforce a durcissement par phase dispersee de al2o3
CN110372386B (zh) 一种低温液相热压烧结制备致密碳化钽陶瓷的方法
Que et al. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum
Guo Effects of VC additives on densification and elastic and mechanical properties of hot-pressed ZrB2–SiC composites
CN113416076A (zh) 一种自增强碳化硅陶瓷材料的制备方法
Zhang et al. The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process
Chen et al. Greatly enhanced mechanical properties of thermoelectric SnSe through microstructure engineering.
CN110922195B (zh) 原位反应制备镁铝尖晶石-碳化硅复合材料的方法
CN110981489A (zh) 一种TiNx-Ti3SiC2复合材料及其制备方法
CN113149658B (zh) 一种氮化钛基复合陶瓷材料及其制备方法
Chen et al. Oxidation of Ti 3 SiC 2 composites in air
Mo et al. Effect of the TiC-TiB2-AlN system on properties of PCBN tool material
Liang et al. Novel TiC-based ceramic with enhanced mechanical properties by reaction hot-pressing at low temperature
Yoon et al. Low-temperature densification of nano Si-C powder containing Al-C additives prepared by high-energy ball-milling
Wang et al. Reactive spark plasma sintering of an electrically conductive B4C-SiC-ZrB2 composite with enhanced mechanical properties
Cai et al. Enhanced mechanical properties of W-doped Nb4AlC3 ceramics
Xie et al. Phase Transformation and Texture in Hot‐Forged or Annealed Liquid‐Phase‐Sintered Silicon Carbide Ceramics
Wang et al. Micrometer-sized titanium carbide with properties comparable to those of nanocrystalline counterparts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant