CN114050727A - 一种lcc-mmc混合型交交换流器的电路拓扑结构 - Google Patents

一种lcc-mmc混合型交交换流器的电路拓扑结构 Download PDF

Info

Publication number
CN114050727A
CN114050727A CN202111397781.9A CN202111397781A CN114050727A CN 114050727 A CN114050727 A CN 114050727A CN 202111397781 A CN202111397781 A CN 202111397781A CN 114050727 A CN114050727 A CN 114050727A
Authority
CN
China
Prior art keywords
lcc
mmc
module
converter
circuit topology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111397781.9A
Other languages
English (en)
Inventor
孟永庆
厉璇
闫书豪
马春喆
胡雅涵
苑宾
张和
高子健
尹聪琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
State Grid Economic and Technological Research Institute
Original Assignee
Xian Jiaotong University
State Grid Economic and Technological Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, State Grid Economic and Technological Research Institute filed Critical Xian Jiaotong University
Priority to CN202111397781.9A priority Critical patent/CN114050727A/zh
Publication of CN114050727A publication Critical patent/CN114050727A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/19Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in series, e.g. for voltage multiplication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/25Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种LCC‑MMC混合型交交换流器的电路拓扑结构,包括正极部分及负极部分,其中,正极部分包括第一LCC‑MMC整流模块及第一LCC‑MMC逆变模块;负极部分包括第二LCC‑MMC整流模块及第二LCC‑MMC逆变模块;其中,第一LCC‑MMC整流模块、第一LCC‑MMC逆变模块、第二LCC‑MMC逆变模块及第二LCC‑MMC整流模块依次连接组成串联回路,外接的第一***与第一LCC‑MMC整流模块及第二LCC‑MMC整流模块相连接,外接的第二***与第一LCC‑MMC逆变模块及第二LCC‑MMC逆变模块相连接,该结构能够独立控制有功和无功,且成本较低。

Description

一种LCC-MMC混合型交交换流器的电路拓扑结构
技术领域
本发明属于高电压、大功率电力变换装置拓扑结构领域,涉及一种LCC-MMC混合型交交换流器的电路拓扑结构。
背景技术
高电压大功率交交换流器的实际工程应用非常广泛,在异步联网、海上风电、远距离分频输电、海洋油气开采及未来海底输配电***建设等方面都具有非常重要的作用。此外,在轨道交通、采矿、冶炼、轧钢等电力传动以及高电压大功率电源行业领域,大功率交交换流器同样不可或缺。
交交换流器是柔性分频输电***的核心器件,目前主流的换流器拓扑均采用模块化多电平技术。该技术可以在运行范围内快速独立控制有功和无功,受端***可以是无源网络,具有损耗低、波形质量高、故障处理能力强等优点,但由于需要大量IGBT原件,投资成本过高。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种LCC-MMC混合型交交换流器的电路拓扑结构,该结构能够独立控制有功和无功,且成本较低。
为达到上述目的,本发明所述的LCC-MMC混合型交交换流器的电路拓扑结构包括正极部分及负极部分,其中,正极部分包括第一LCC-MMC整流模块及第一LCC-MMC逆变模块;负极部分包括第二LCC-MMC整流模块及第二LCC-MMC逆变模块;其中,第一LCC-MMC整流模块、第一LCC-MMC逆变模块、第二LCC-MMC逆变模块及第二LCC-MMC整流模块依次连接组成串联回路,外接的第一***与第一LCC-MMC整流模块及第二LCC-MMC整流模块相连接,外接的第二***与第一LCC-MMC逆变模块及第二LCC-MMC逆变模块相连接。
第一***作为输入侧***,第二***作为输出侧***,其中,第一***及第二***中的一个为有源***。
第一LCC-MMC整流模块、第二LCC-MMC整流模块、第一LCC-MMC逆变模块及第二LCC-MMC逆变模块均由一个基于半控型器件的6脉波3相全桥LCC换流器以及一个基于全控型器件的模块化多电平换流器串联组成。
所述6脉波3相全桥LCC换流器由6个晶闸管、3个换相电感以及一个平波电抗器组成;
所述模块化多电平换流器由6个桥臂组成,每个桥臂均由电感、等效电阻以及N个半桥子模块串联而成。
所述半桥子模块结构包括电力电子器件及直流电容,所述电力电子器件包括串联的两个全控型电力电子器件,所述直流电容与所述电力电子器件并联连接。
半桥子模块的数目N由直流母线电压以及6脉波3相全桥LCC换流器的耐压水平以及MMC与LCC换流器的功率优化配合情况决定。
本发明具有以下有益效果:
本发明所述的LCC-MMC混合型交交换流器的电路拓扑结构在具体操作时,第一LCC-MMC整流模块、第一LCC-MMC逆变模块、第二LCC-MMC逆变模块及第二LCC-MMC整流模块依次连接组成串联回路,外接的第一***与第一LCC-MMC整流模块及第二LCC-MMC整流模块相连接,外接的第二***与第一LCC-MMC逆变模块及第二LCC-MMC逆变模块相连接,即,既可以以并网模式直接连接两个不同频率和幅值的三相交流***,又可以以电源模式直接连接无源负荷,兼具模块化多电平技术以及传统LCC换流器的优点,广泛适用于高电压、大功率电力变换应用场合,相比较于现有多种基于模块化多电平技术的换流器拓扑,能够显著降低***的体积及成本,提高可靠性。另外,相比较于传统LCC换流器,本发明能够向无源***供电,交流故障时MMC可以暂时维持交流母线电压,LCC换相失败时MMC仍能够传输功率,可靠性较高。
附图说明
图1为本发明的结构示意图;
图2为LCC-MMC整流模块的结构示意图;
图3为LCC-MMC逆变模块的结构示意图;
图4为LCC-MMC整流模块中6脉波3相全桥LCC换流器主电路结构图;
图5为LCC-MMC逆变模块中6脉波3相全桥LCC换流器主电路结构图;
图6为模块化多电平换流器的主电路结构图;
图7为模块化多电平换流器中子模块电路结构图;
图8为基于本发明的分频电网与工频电网互联***结构图;
图9为基于本发明的分频海上风电并网***结构图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
参考图1,本发明所述的LCC-MMC混合型交交换流器的电路拓扑结构包括正极部分及负极部分,其中,正极部分包括第一LCC-MMC整流模块及第一LCC-MMC逆变模块;负极部分包括第二LCC-MMC整流模块及第二LCC-MMC逆变模块;其中,第一LCC-MMC整流模块、第一LCC-MMC逆变模块、第二LCC-MMC逆变模块及第二LCC-MMC整流模块依次组成串联回路,外接的第一***与第一LCC-MMC整流模块及第二LCC-MMC整流模块相连接,外接的第二***与第一LCC-MMC逆变模块及第二LCC-MMC逆变模块相连接,通过本发明将第一***的第一频率三相电压及电流转换为第二***的第二频率三相电压及电流。
参考图2及图3,x=1,2,第一LCC-MMC整流模块、第一LCC-MMC逆变模块、第二LCC-MMC整流模块及第二LCC-MMC逆变模块均由一个基于半控型器件的6脉波3相全桥LCC换流器以及一个基于全控型器件的模块化多电平换流器(MMC)串联组成,换流器的交流侧通过换流变与对应交流***相连。
参考图4及图5,6脉波3相全桥LCC换流器由6个半控型电力电子器件VT1~VT6、3个换相电感Lcr以及一个平波电抗器Ldc组成,半控型电力电子器件为晶闸管(Thyristor),又称作可控硅整流器(Silicon Controlled Rectifier)。可选的,各LCC换流器的平波电抗器可以进行等效并整合为一个或多个平波电抗器串联在直流母线上。
第一LCC-MMC整流模块及第二LCC-MMC整流模块中的6脉波3相全桥LCC换流器的电路结构如图4所示,晶闸管VT1、VT3、VT5的正极经Ldc与直流侧正极相连,晶闸管VT1、VT3、VT5的负极经换相电感Lcr分别与第一***的A、B、C三相相连;晶闸管VT4、VT6、VT2的正极经换相电感Lcr分别与第一***的A、B、C三相相连,晶闸管VT4、VT6、VT2的负极与直流侧负极相连。
第一LCC-MMC逆变模块及第二LCC-MMC逆变模块中的6脉波3相全桥LCC换流器的电路结构如图5所示,晶闸管VT1、VT3、VT5的负极经Ldc与直流侧正极相连,晶闸管VT1、VT3、VT5的正极经换相电感Lcr分别与第二***的U、V、W三相相连;晶闸管VT4、VT6、VT2的负极经换相电感Lcr分别与第二***的U、V、W三相相连,晶闸管VT4、VT6、VT2的正极与直流侧负极相连。
如图6所示,模块化多电平换流器在整流模块与逆变模块中拓扑相似,由6个桥臂组成,每个桥臂由电感L、等效电阻R以及N个半桥子模块串联而成。
在第一LCC-MMC整流模块及第二LCC-MMC整流模块中,三个上主桥臂的正极连接直流侧的正极,负极分别与第一***的A、B、C三相相连;三个下主桥臂的负极连接直流侧的负极,正极分别与第一***的A、B、C三相相连。
在第一LCC-MMC逆变模块及第二LCC-MMC逆变模块中,三个上主桥臂的正极连接直流侧的正极,负极分别与第二***2的U、V、W三相相连;三个下主桥臂的负极连接直流侧的负极,正极分别与第二***的U、V、W三相相连。
如图7所示,半桥子模块结构包括电力电子器件及直流电容,所述电力电子器件包括串联的两个全控型电力电子器件T1和T2,所述直流电容C与所述电力电子器件并联连接。全控型电力电子器件包括绝缘栅双极型晶体管以及与绝缘栅双极型晶体管并联连接的反压二极管。同时,电力电子器件还可以为金属(metal)-氧化物(oxide)-半导体(semiconductor)场效应晶体管(MOS)管或者双极型晶体管(Bipolar JunctionTransistor,缩写为BJT)等。
半桥子模块的数目N由直流母线电压以及6脉波3相全桥LCC换流器耐压水平决定,同时需考虑MMC与LCC换流器的功率优化配合情况。
根据第一***与第二***类型的不同,本发明的应用场景可分为:
场景1
第一***为有源***,第二***为无源***,本发明适用于电力传动以及充当高电压大功率电源,第一***为配电站和/或变电站和/或发电站,第二***为无源电网、轨道交通、采矿、冶炼以及轧钢等无源负荷。
场景2
第一***为无源***,第二***为有源***,本发明适用于分频海上风电、分频陆上风电以及分频光伏等分频新能源电源接入电网的场景。
场景3
第一***为有源***,第二***为有源***,本发明适用于异步交流***联网、含电源新能源***接入、分频电力***以及工频电力***联网等场景。
实施例一
参考图8,将本发明应用于分频电网与工频电网连接的场景。
分频电网与工频电网均为有源网络,LCC-MMC混合型交交换流器直流侧中性点不接地,即图1中n11点仅与p21点相连,n12点仅与p22点相连。对于功率较低、直流电压较低的场景,可以仅配备正极部分或负极部分,以提高整体***的经济性。
对于LCC,由于和有源网络相连,可以实现3相全桥LCC换流器的换相,在正常情况下,整流侧采用定直流电流控制,逆变侧采用定关断角控制。另外,整流侧和逆变侧还分别配备最小触发角控制及低压限流控制等辅助控制策略。
对于MMC,整流侧采用定直流电压和定交流电压的控制方式,逆变侧采用定直流电流和定交流电压的控制方式,其目的是利用MMC对交流母线电压的调节能力,以改善LCC甚至整个***的运行特性,同时可以和LCC的定直流电流控制进行协调配合。
同时,对LCC输出谐波分量进行补偿,可选的,当补偿能力不足时,可以在并网点PCC1及PCC2分别加入无功补偿设备,以提高输出波形质量。
实施例二
参考图9,本发明应用于分频海上风电并网的场景。
分频海上风机发出50/3Hz低频电能,经集电线路汇集至分频海上升压站,再通过分频海底电缆输送至陆上,经本发明实现从分频电能至工频电能的转换,完成分频海上风电场的并网。本发明的直流侧中性点接地,即图1中n11点、n12点、p21点及p22点接地。
对于整流模块,由于海上风电场采用最大功率点跟踪(Maximum Power PointTracking,缩写MPPT)模式,需要换流器为风电场提供电压,由于LCC不具有提供电压能力,风电场电压需要由MMC提供。因此,LCC可以采用定直流电流控制,辅以最小触发角控制、低压限流控制等其他控制方式。MMC可以采用恒压恒频控制(V/f控制)或引入下垂控制,为风电场提供电压。为实现V/f控制,须在分频侧并网点PCC1处并联电容C。
对于逆变模块,由于工频侧与工频电网直接相连,与实施例一中逆变模块相类似,LCC可以采用定关断角控制,MMC采用定直流电压和定交流电压的控制方式。
与实施例一相同,MMC可以通过适当控制策略,对LCC输出谐波分量进行补偿,可选的,当补偿能力不足时,可以在并网点PCC1、PCC2分别加入无功补偿设备,以提高输出波形质量。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (7)

1.一种LCC-MMC混合型交交换流器的电路拓扑结构,其特征在于,包括正极部分及负极部分,其中,正极部分包括第一LCC-MMC整流模块及第一LCC-MMC逆变模块;负极部分包括第二LCC-MMC整流模块及第二LCC-MMC逆变模块;其中,第一LCC-MMC整流模块、第一LCC-MMC逆变模块、第二LCC-MMC逆变模块及第二LCC-MMC整流模块依次连接组成串联回路,外接的第一***与第一LCC-MMC整流模块及第二LCC-MMC整流模块相连接,外接的第二***与第一LCC-MMC逆变模块及第二LCC-MMC逆变模块相连接。
2.根据权利要求1所述的LCC-MMC混合型交交换流器的电路拓扑结构,其特征在于,第一***作为输入侧***,第二***作为输出侧***,其中,第一***及第二***中的一个为有源***。
3.根据权利要求1所述的LCC-MMC混合型交交换流器的电路拓扑结构,其特征在于,第一LCC-MMC整流模块、第二LCC-MMC整流模块、第一LCC-MMC逆变模块及第二LCC-MMC逆变模块均由一个基于半控型器件的6脉波3相全桥LCC换流器以及一个基于全控型器件的模块化多电平换流器串联组成。
4.根据权利要求1所述的LCC-MMC混合型交交换流器的电路拓扑结构,其特征在于,所述6脉波3相全桥LCC换流器由6个晶闸管、3个换相电感以及一个平波电抗器组成。
5.根据权利要求1所述的LCC-MMC混合型交交换流器的电路拓扑结构,其特征在于,所述模块化多电平换流器由6个桥臂组成,每个桥臂均由电感、等效电阻以及N个半桥子模块串联而成。
6.根据权利要求5所述的LCC-MMC混合型交交换流器的电路拓扑结构,其特征在于,所述半桥子模块结构包括电力电子器件及直流电容,所述电力电子器件包括串联的两个全控型电力电子器件,所述直流电容与所述电力电子器件并联连接。
7.根据权利要求1所述的LCC-MMC混合型交交换流器的电路拓扑结构,其特征在于,半桥子模块的数目N由直流母线电压以及6脉波3相全桥LCC换流器的耐压水平以及功率优化配合情况决定。
CN202111397781.9A 2021-11-23 2021-11-23 一种lcc-mmc混合型交交换流器的电路拓扑结构 Pending CN114050727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111397781.9A CN114050727A (zh) 2021-11-23 2021-11-23 一种lcc-mmc混合型交交换流器的电路拓扑结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111397781.9A CN114050727A (zh) 2021-11-23 2021-11-23 一种lcc-mmc混合型交交换流器的电路拓扑结构

Publications (1)

Publication Number Publication Date
CN114050727A true CN114050727A (zh) 2022-02-15

Family

ID=80210400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111397781.9A Pending CN114050727A (zh) 2021-11-23 2021-11-23 一种lcc-mmc混合型交交换流器的电路拓扑结构

Country Status (1)

Country Link
CN (1) CN114050727A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114944767A (zh) * 2022-04-08 2022-08-26 中国南方电网有限责任公司超高压输电公司昆明局 Lcc-mmc混合型直流融冰装置拓扑结构的设计
CN115441750A (zh) * 2022-09-28 2022-12-06 广东电网有限责任公司 一种混合型交交换流器
CN116260348A (zh) * 2023-05-09 2023-06-13 四川大学 一种基于mmc的大容量电解制氢混合整流器及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162155A (zh) * 2015-08-26 2015-12-16 浙江大学 一种具有直流故障穿越能力的串联混合型双极直流输电***
CN107204626A (zh) * 2017-06-09 2017-09-26 电子科技大学 一种lcc‑mmc交错混合双极直流输电***
CN107968588A (zh) * 2017-12-17 2018-04-27 华中科技大学 一种级联换流阀、直流输电***及其控制方法
CN207559578U (zh) * 2017-11-16 2018-06-29 华中科技大学 混合型mmc分层接入的混合直流输电***及故障穿越***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162155A (zh) * 2015-08-26 2015-12-16 浙江大学 一种具有直流故障穿越能力的串联混合型双极直流输电***
US20170331390A1 (en) * 2015-08-26 2017-11-16 Zhejiang University An lcc and mmc series-connected hvdc system with dc fault ride-through capability
CN107204626A (zh) * 2017-06-09 2017-09-26 电子科技大学 一种lcc‑mmc交错混合双极直流输电***
CN207559578U (zh) * 2017-11-16 2018-06-29 华中科技大学 混合型mmc分层接入的混合直流输电***及故障穿越***
CN107968588A (zh) * 2017-12-17 2018-04-27 华中科技大学 一种级联换流阀、直流输电***及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114944767A (zh) * 2022-04-08 2022-08-26 中国南方电网有限责任公司超高压输电公司昆明局 Lcc-mmc混合型直流融冰装置拓扑结构的设计
CN115441750A (zh) * 2022-09-28 2022-12-06 广东电网有限责任公司 一种混合型交交换流器
CN116260348A (zh) * 2023-05-09 2023-06-13 四川大学 一种基于mmc的大容量电解制氢混合整流器及控制方法

Similar Documents

Publication Publication Date Title
EP3514936B1 (en) Hybrid dc converter for offshore wind farm
US11791632B2 (en) High-frequency uncontrolled rectifier-based DC transmission system for offshore wind farm
CN114050727A (zh) 一种lcc-mmc混合型交交换流器的电路拓扑结构
CN103311947B (zh) 一种基于模块化多电平换流器的三极直流输电***拓扑结构
CN106374830B (zh) 大功率高升压比光伏直流变流器装置及控制方法
WO2017084120A1 (zh) 单向直流-直流自耦变压器及其高低压侧故障隔离方法
CN105162155A (zh) 一种具有直流故障穿越能力的串联混合型双极直流输电***
CN105099206B (zh) 一种直流-直流固态变压器
CN103219738A (zh) 一种基于三极式结构的直流输电***
WO2021147514A1 (zh) 模块化多电平交流-直流变换***
CN103997033A (zh) 一种具备直流故障穿越能力的高压直流输电***
CN103973121A (zh) 单相电力电子变压器
Sharma et al. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system
CN111900884A (zh) 一种直流配网的电力电子变压设备及其控制方法
CN102055348A (zh) 一种用于配网的降压型电力电子变压器
CN110718931A (zh) 一种适用于海上风电并网的新型直流输电***
WO2023134225A1 (zh) 一种低频输电***及其控制方式
CN116316782A (zh) 一种混合轻型海上风电直流输电***和方法
CN105656336A (zh) 一种降低直流侧谐波的换流器结构
CN113258598B (zh) 一种海上风电直流送出的拓扑电路及控制方法
CN115333135A (zh) 一种双极柔性直流换流站控制***
CN201966811U (zh) 一种用于配网的降压型电力电子变压器
Xia et al. Cooperative control strategy of fundamental frequency modulation-based current source converters for offshore wind farms
CN115276433B (zh) 一种制氢变流器
CN115207959B (zh) 一种基于lcc和全桥mmc-statcom混合串联的海上风电直流输电***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination