CN114050190A - 双面钝化接触电池及其制备方法 - Google Patents

双面钝化接触电池及其制备方法 Download PDF

Info

Publication number
CN114050190A
CN114050190A CN202111374547.4A CN202111374547A CN114050190A CN 114050190 A CN114050190 A CN 114050190A CN 202111374547 A CN202111374547 A CN 202111374547A CN 114050190 A CN114050190 A CN 114050190A
Authority
CN
China
Prior art keywords
layer
double
carbon
silicon wafer
passivated contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111374547.4A
Other languages
English (en)
Other versions
CN114050190B (zh
Inventor
任常瑞
杨松波
董建文
符黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shichuang Energy Co Ltd
Original Assignee
Changzhou Shichuang Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shichuang Energy Co Ltd filed Critical Changzhou Shichuang Energy Co Ltd
Priority to CN202111374547.4A priority Critical patent/CN114050190B/zh
Publication of CN114050190A publication Critical patent/CN114050190A/zh
Priority to PCT/CN2022/118909 priority patent/WO2023087879A1/zh
Priority to KR1020247016454A priority patent/KR20240090480A/ko
Priority to DE112022004432.2T priority patent/DE112022004432T5/de
Application granted granted Critical
Publication of CN114050190B publication Critical patent/CN114050190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种双面钝化接触电池,其正面和背面分别由内至外依次设置隧穿层、掺杂poly层、钝化层;且正面和背面的掺杂poly层,其中一个为硼和碳共掺杂的poly层,另一个为磷和碳共掺杂的poly层。本发明还提供上述双面钝化接触电池的制备方法。本发明通过元素共掺杂改性poly,增加poly的禁带宽度,在保证钝化性能的同时,提高钝化层的透光性,提升电流。

Description

双面钝化接触电池及其制备方法
技术领域
本发明涉及光伏领域,具体涉及一种双面钝化接触电池及其制备方法。
背景技术
隧穿氧化层钝化接触(TOPCon)是一种用于晶硅太阳能电池的钝化结构,其由一层超薄的氧化硅和一层重掺杂的多晶硅组成,主要用于电池背表面的钝化,可以实现优异的表面钝化和载流子的选择性收集。但目前这种电池的正面仍然是金属半导体接触,金属半导体接触处的复合损失限制了电池效率的进一步提升。为了进一步提升电池的转换效率,电池正面也需采用钝化接触结构,然而电池正面不仅要有优异的钝化能力,还应有良好的光学透光性,需避免因寄生吸收而造成效率的损失。
发明内容
本发明的目的在于提供一种双面钝化接触电池及其制备方法,通过元素共掺杂改性poly,增加poly的禁带宽度,在保证钝化性能的同时,提高钝化层的透光性,提升电流。
为实现上述目的,本发明提供一种双面钝化接触电池,其正面和背面分别由内至外依次设置隧穿层、掺杂poly层、钝化层;且正面和背面的掺杂poly层,其中一个为硼和碳共掺杂的poly层,另一个为磷和碳共掺杂的poly层。
优选的,所述隧穿层为超薄氧化层。
优选的,所述超薄氧化层为氧化铝层或者二氧化硅层。
优选的,所述超薄氧化层的厚度为0.5~2.5nm(优选为1~2nm)。
优选的,所述掺杂poly层中碳掺杂的含量为1%~5%(优选为3%~4%)。
优选的,所述钝化层为SiNx层。
本发明还提供上述双面钝化接触电池的制备方法,包括如下步骤:硅片制绒后,在硅片正面和背面分别制备隧穿层,然后在硅片正面和背面分别制备碳掺杂的poly层,然后对正面poly层和背面poly层中的一个进行硼掺杂、另一个进行磷掺杂,然后在硅片正面和背面分别制备钝化层,然后在硅片正面和背面分别印刷电极。
优选的,采用PECVD或LPCVD工艺制备碳掺杂的poly层。
优选的,碳掺杂采用甲烷(CH4)作为碳源。
优选的,硅片采用N型硅片;对正面poly层进行硼掺杂,对背面poly层进行磷掺杂;制备的双面钝化接触电池为N型双面钝化接触电池。
本发明的优点和有益效果在于:提供一种双面钝化接触电池及其制备方法,本发明通过元素共掺杂改性poly,增加poly层的禁带宽度,在保证钝化性能的同时,提高钝化层的透光性,提升电流。
本发明采用双面共掺杂钝化层+隧穿层的钝化接触结构,可以极大的减少电池表面的载流子复合,提升电池开压;且利用CH4做碳源,还可提高钝化界面H含量,提升钝化效果,最高Ivoc可达750mv;而且通过碳掺杂增加poly层的带隙宽度,采用宽带隙的改性poly作为正背面钝化材料,减少了红外寄生损失吸收,提升了电池电流,从而大幅度的提升了太阳能电池效率。
本发明将超薄氧化层的厚度控制在0.5~2.5nm,更优为控制在1~2nm,以免超薄氧化层太薄或太厚;超薄氧化层太薄则钝化效果较弱;超薄氧化层太厚则会影响隧穿效果,从而影响钝化效果。
本发明将poly层中碳掺杂的含量控制在1%~5%,更优为控制在3%~4%,以免碳掺杂含量过小或过大;碳掺杂含量过小,则poly层带隙宽度增加较小,钝化和电流提升较小;碳掺杂含量过大,则影响接触电阻,从而减低FF。
本发明掺杂碳可以采用PECVD或LPCVD工艺,使用甲烷(CH4)作为碳源,后续可印刷高温浆料,或者利用ITO和低温浆料,减小横向电阻,提升FF。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供一种N型双面钝化接触电池,其正面和背面分别由内至外依次设置隧穿层、掺杂poly层、钝化层;
所述隧穿层为超薄氧化层,超薄氧化层可以采用氧化铝层或者二氧化硅层,超薄氧化层的厚度为0.5~2.5nm(优选为1~2nm);
所述掺杂poly层中碳掺杂的含量为1%~5%(优选为3%~4%);
正面的掺杂poly层为硼和碳共掺杂的poly层;
背面的掺杂poly层为磷和碳共掺杂的poly层;
所述钝化层为SiNx层。
本发明还提供上述N型双面钝化接触电池的制备方法,包括如下步骤:N型硅片制绒后,在硅片正面和背面分别制备隧穿层;然后在硅片正面和背面分别制备碳掺杂的poly层;然后对正面poly层进行硼掺杂,并对背面poly层进行磷掺杂;然后在硅片正面和背面分别制备钝化层;然后在硅片正面和背面分别印刷电极。
更具体的:可以采用PECVD或LPCVD工艺制备碳掺杂的poly层,且碳掺杂可以采用甲烷(CH4)作为碳源。
本发明的具体实施例如下:
实施例1
N型硅片制绒后,在硅片正面和背面分别制备厚度为1.2nm的氧化硅作为隧穿层;然后在硅片正面和背面分别制备碳掺杂的poly层,且poly层中碳掺杂的含量为1%;然后对正面poly层进行硼掺杂,并对背面poly层进行磷掺杂;然后在硅片正面和背面分别制备SiNx层作为钝化层;然后在硅片正面和背面分别印刷电极;最终制得N型双面钝化接触电池。
实施例2
N型硅片制绒后,在硅片正面和背面分别制备厚度为1.2nm的氧化硅作为隧穿层;然后在硅片正面和背面分别制备碳掺杂的poly层,且poly层中碳掺杂的含量为3%;然后对正面poly层进行硼掺杂,并对背面poly层进行磷掺杂;然后在硅片正面和背面分别制备SiNx层作为钝化层;然后在硅片正面和背面分别印刷电极;最终制得N型双面钝化接触电池。
实施例3
N型硅片制绒后,在硅片正面和背面分别制备厚度为1.2nm的氧化硅作为隧穿层;然后在硅片正面和背面分别制备碳掺杂的poly层,且poly层中碳掺杂的含量为10%;然后对正面poly层进行硼掺杂,并对背面poly层进行磷掺杂;然后在硅片正面和背面分别制备SiNx层作为钝化层;然后在硅片正面和背面分别印刷电极;最终制得N型双面钝化接触电池。
对比例1
N型硅片制绒后,在硅片正面进行硼掺杂,在硅片背面制备厚度为1.2nm的氧化硅作为隧穿层;然后在氧化硅上沉积poly层,并对背面poly层进行磷掺杂;然后在硅片正面和背面分别制备SiNx层作为钝化层;然后在硅片正面和背面分别印刷电极;最终制得N型双面钝化接触电池。
对各实施例和对比例1所制得的N型双面钝化接触电池进行性能测试,并将各实施例的性能数据与对比例1的性能数据进行比较;以对比例1的性能数据作为对比基数,实施例性能数据与对比例1性能数据的差异见下表:
Figure 60742DEST_PATH_IMAGE001
通过上述对比可知:
相较于对比例1,实施例1在硅片正面沉积了隧穿氧化层叠加硼碳共掺poly层作为钝化层,碳元素掺杂量1%;正面沉积的隧穿氧化层叠加硼碳共掺poly层可有效提升开压和填充因子,但由于碳掺杂量较少,电流密度损失较大,电池效率总体提升不明显。
相较于对比例1,实施例2在硅片正面沉积了隧穿氧化层叠加硼碳共掺poly层作为钝化层,碳元素掺杂量3%;正面沉积的隧穿氧化层叠加硼碳共掺poly层可有效提升开压,碳掺杂量合适,电流密度也随之提升,电池效率大幅提升。
相较于对比例1,实施例3在硅片正面沉积了隧穿氧化层叠加硼碳共掺poly层作为钝化层,碳元素掺杂量10%;正面沉积的隧穿氧化层叠加硼碳共掺poly层可有效提升开压和电流密度,但由于碳掺杂量过高,导致横向电阻变大,FF大幅降低,电池效率提升不明显。
综上可知,相比较对比例1,本发明创新性地在硅片正面制备了隧穿氧化层叠加硼碳共掺poly层作为钝化层,并同时对硅片背面掺磷poly也进行了掺碳改性;正面制备的隧穿氧化层叠加硼碳共掺poly层可以有效的钝化接触区的缺陷,从而大幅提升Uoc和FF;同时,碳元素的掺杂也减少了poly对光的吸收,提升了电流,进而大幅提升电池效率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.双面钝化接触电池,其特征在于,其正面和背面分别由内至外依次设置隧穿层、掺杂poly层、钝化层;且正面和背面的掺杂poly层,其中一个为硼和碳共掺杂的poly层,另一个为磷和碳共掺杂的poly层。
2.根据权利要求1所述的双面钝化接触电池,其特征在于,所述隧穿层为超薄氧化层。
3.根据权利要求2所述的双面钝化接触电池,其特征在于,所述超薄氧化层为氧化铝层或者二氧化硅层。
4.根据权利要求2所述的双面钝化接触电池,其特征在于,所述超薄氧化层的厚度为0.5~2.5nm。
5.根据权利要求1所述的双面钝化接触电池,其特征在于,所述掺杂poly层中碳掺杂的含量为1%~5%。
6.根据权利要求1所述的双面钝化接触电池,其特征在于,所述钝化层为SiNx层。
7.权利要求1至6中任一项所述双面钝化接触电池的制备方法,其特征在于,包括如下步骤:硅片制绒后,在硅片正面和背面分别制备隧穿层,然后在硅片正面和背面分别制备碳掺杂的poly层,然后对正面poly层和背面poly层中的一个进行硼掺杂、另一个进行磷掺杂,然后在硅片正面和背面分别制备钝化层,然后在硅片正面和背面分别印刷电极。
8.根据权利要求7所述的双面钝化接触电池的制备方法,其特征在于,采用PECVD或LPCVD工艺制备碳掺杂的poly层。
9.根据权利要求7所述的双面钝化接触电池的制备方法,其特征在于,碳掺杂采用甲烷作为碳源。
10.根据权利要求7所述的双面钝化接触电池的制备方法,其特征在于,硅片采用N型硅片;对正面poly层进行硼掺杂,对背面poly层进行磷掺杂;制备的双面钝化接触电池为N型双面钝化接触电池。
CN202111374547.4A 2021-11-19 2021-11-19 双面钝化接触电池及其制备方法 Active CN114050190B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202111374547.4A CN114050190B (zh) 2021-11-19 2021-11-19 双面钝化接触电池及其制备方法
PCT/CN2022/118909 WO2023087879A1 (zh) 2021-11-19 2022-09-15 双面钝化接触电池及其制备方法
KR1020247016454A KR20240090480A (ko) 2021-11-19 2022-09-15 양면 패시베이션 콘택트 전지 및 이것의 제조방법
DE112022004432.2T DE112022004432T5 (de) 2021-11-19 2022-09-15 Doppelseitige passivierte kontaktzelle und herstellungsverfahren davon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111374547.4A CN114050190B (zh) 2021-11-19 2021-11-19 双面钝化接触电池及其制备方法

Publications (2)

Publication Number Publication Date
CN114050190A true CN114050190A (zh) 2022-02-15
CN114050190B CN114050190B (zh) 2024-02-13

Family

ID=80210020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111374547.4A Active CN114050190B (zh) 2021-11-19 2021-11-19 双面钝化接触电池及其制备方法

Country Status (4)

Country Link
KR (1) KR20240090480A (zh)
CN (1) CN114050190B (zh)
DE (1) DE112022004432T5 (zh)
WO (1) WO2023087879A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087879A1 (zh) * 2021-11-19 2023-05-25 常州时创能源股份有限公司 双面钝化接触电池及其制备方法
CN116960231A (zh) * 2023-09-21 2023-10-27 常州亿晶光电科技有限公司 一种高透光性双面TOPCon电池的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968384A (en) * 1988-09-29 1990-11-06 Fuji Electric Corporate Research And Development Ltd. Method of producing carbon-doped amorphous silicon thin film
DE102006046726A1 (de) * 2006-10-02 2008-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle mit strukturierter Rückseitenpassivierungsschicht aus SIOx und SINx sowie Verfahren zur Herstellung
US20110108100A1 (en) * 2009-11-12 2011-05-12 Sierra Solar Power, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
CN102194897A (zh) * 2011-06-01 2011-09-21 奥特斯维能源(太仓)有限公司 掺杂碳化硅薄膜诱导背场的双面钝化太阳电池及制备方法
US20110272010A1 (en) * 2010-05-10 2011-11-10 International Business Machines Corporation High work function metal interfacial films for improving fill factor in solar cells
US20120012167A1 (en) * 2010-07-13 2012-01-19 International Business Machines Corporation Solar cell employing an enhanced free hole density p-doped material and methods for forming the same
CN109786476A (zh) * 2018-12-27 2019-05-21 中国科学院宁波材料技术与工程研究所 一种钝化接触结构及其在硅太阳电池中应用
CN111628052A (zh) * 2020-07-13 2020-09-04 苏州腾晖光伏技术有限公司 一种钝化接触电池的制备方法
US20200286734A1 (en) * 2019-03-08 2020-09-10 SK Hynix Inc. Semiconductor device and method for fabricating the same
CN112164728A (zh) * 2020-10-29 2021-01-01 天合光能股份有限公司 图形化的钝化接触太阳能电池及其制造方法
CN113345969A (zh) * 2021-04-28 2021-09-03 中国科学院宁波材料技术与工程研究所 钝化接触结构及其制备方法和应用
CN113471321A (zh) * 2021-07-23 2021-10-01 常州时创能源股份有限公司 一种TOPCon太阳能电池及制造方法
CN214753785U (zh) * 2021-06-18 2021-11-16 天合光能股份有限公司 一种单面钝化接触的太阳能电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035757B (zh) * 2012-12-05 2016-04-13 保定风帆光伏能源有限公司 一种薄膜太阳能电池及p型半导体和p型半导体的制备方法
CN109216498A (zh) * 2017-06-29 2019-01-15 上海神舟新能源发展有限公司 一种双面隧穿氧化钝化高效n型双面电池的制备方法
CN108807565B (zh) * 2018-07-13 2024-04-16 苏州太阳井新能源有限公司 一种钝化接触电极结构,其适用的太阳能电池及制作方法
CN208806263U (zh) * 2018-07-13 2019-04-30 苏州太阳井新能源有限公司 一种钝化接触电极结构及其适用的太阳能电池
CN111477720A (zh) * 2019-10-22 2020-07-31 国家电投集团西安太阳能电力有限公司 一种钝化接触的n型背结太阳能电池及其制备方法
CN111416017B (zh) * 2020-03-26 2023-03-24 泰州中来光电科技有限公司 一种钝化接触太阳电池制备方法
CN113594295B (zh) * 2021-07-23 2024-03-08 深圳黑晶光电技术有限公司 一种双面钝化结构的太阳能电池制备方法
CN114050190B (zh) * 2021-11-19 2024-02-13 常州时创能源股份有限公司 双面钝化接触电池及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968384A (en) * 1988-09-29 1990-11-06 Fuji Electric Corporate Research And Development Ltd. Method of producing carbon-doped amorphous silicon thin film
DE102006046726A1 (de) * 2006-10-02 2008-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle mit strukturierter Rückseitenpassivierungsschicht aus SIOx und SINx sowie Verfahren zur Herstellung
US20110108100A1 (en) * 2009-11-12 2011-05-12 Sierra Solar Power, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US20110272010A1 (en) * 2010-05-10 2011-11-10 International Business Machines Corporation High work function metal interfacial films for improving fill factor in solar cells
US20120012167A1 (en) * 2010-07-13 2012-01-19 International Business Machines Corporation Solar cell employing an enhanced free hole density p-doped material and methods for forming the same
CN102194897A (zh) * 2011-06-01 2011-09-21 奥特斯维能源(太仓)有限公司 掺杂碳化硅薄膜诱导背场的双面钝化太阳电池及制备方法
CN109786476A (zh) * 2018-12-27 2019-05-21 中国科学院宁波材料技术与工程研究所 一种钝化接触结构及其在硅太阳电池中应用
US20200286734A1 (en) * 2019-03-08 2020-09-10 SK Hynix Inc. Semiconductor device and method for fabricating the same
CN111668095A (zh) * 2019-03-08 2020-09-15 爱思开海力士有限公司 半导体器件及其制造方法
CN111628052A (zh) * 2020-07-13 2020-09-04 苏州腾晖光伏技术有限公司 一种钝化接触电池的制备方法
CN112164728A (zh) * 2020-10-29 2021-01-01 天合光能股份有限公司 图形化的钝化接触太阳能电池及其制造方法
CN113345969A (zh) * 2021-04-28 2021-09-03 中国科学院宁波材料技术与工程研究所 钝化接触结构及其制备方法和应用
CN214753785U (zh) * 2021-06-18 2021-11-16 天合光能股份有限公司 一种单面钝化接触的太阳能电池
CN113471321A (zh) * 2021-07-23 2021-10-01 常州时创能源股份有限公司 一种TOPCon太阳能电池及制造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PHAM, DP ET AL: "Innovative passivating contact using quantum well at poly-Si/c-Si interface for crystalline silicon solar cells", 《CHEMICAL ENGINEERING JOURNAL》, vol. 423, pages 1 - 7 *
王利;张晓丹;杨旭;魏长春;张德坤;王广才;孙建;赵颖;: "非晶硅太阳电池BZO/p-a-SiC:H接触特性改善的研究", 《物理学报》, no. 05, pages 1 - 6 *
王利;张晓丹;杨旭;魏长春;张德坤;王广才;孙建;赵颖;: "非晶硅太阳电池BZO/p-a-SiC:H接触特性改善的研究", 物理学报, no. 05 *
蔡宏琨;陶科;赵敬芳;胡居涛;张德贤;: "P型微晶硅碳的性能研究及其在柔性衬底太阳电池中的应用", 《太阳能学报》, no. 11, pages 1841 - 1844 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087879A1 (zh) * 2021-11-19 2023-05-25 常州时创能源股份有限公司 双面钝化接触电池及其制备方法
CN116960231A (zh) * 2023-09-21 2023-10-27 常州亿晶光电科技有限公司 一种高透光性双面TOPCon电池的制备方法

Also Published As

Publication number Publication date
KR20240090480A (ko) 2024-06-21
DE112022004432T5 (de) 2024-07-04
WO2023087879A1 (zh) 2023-05-25
CN114050190B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
CN109494261A (zh) 硅基太阳能电池及制备方法、光伏组件
CN112802910A (zh) 一种高效硅异质结太阳能电池及其制备方法
CN102110734B (zh) 一种纳米硅/晶体硅异质结光伏电池
CN202363468U (zh) 点接触背发射极异质结太阳电池
CN114050190B (zh) 双面钝化接触电池及其制备方法
CN113113502A (zh) 一种异质结太阳能电池及制备方法
CN213519984U (zh) 太阳能电池
CN115832069A (zh) 钝化接触结构、太阳电池及制备方法和光伏组件
CN111628032A (zh) 一种硅异质结太阳电池本征钝化层的结构及其制作方法
CN112563348A (zh) 一种隧穿氧化层钝化接触太阳能电池背面电极金属化方法
CN115985991A (zh) 太阳电池及其制备方法
CN115394863A (zh) 一种太阳电池及其制备方法
CN215220730U (zh) 一种高效硅异质结太阳能电池
CN112002778B (zh) 硅异质结太阳能电池及其制作方法
CN113948607A (zh) 一种用于制备n型选择性发射极晶硅电池的选择性扩散方法及其应用
CN117199186A (zh) 一种N-TOPCon电池的制作方法
CN116130558A (zh) 一种新型全背电极钝化接触电池的制备方法及其产品
CN216120311U (zh) 一种n型双面钝化接触电池结构
CN115425115A (zh) 一种TOPCon电池及其制作方法
CN115274927A (zh) 一种TOPCon太阳能电池的制作方法
WO2022134994A1 (zh) 太阳电池及生产方法、光伏组件
CN211789034U (zh) 一种基于钝化接触的太阳能电池片
CN114050105A (zh) 一种TopCon电池的制备方法
CN113257956A (zh) 一种TOPCon电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant