CN114042468B - 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用 - Google Patents

一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114042468B
CN114042468B CN202010717347.3A CN202010717347A CN114042468B CN 114042468 B CN114042468 B CN 114042468B CN 202010717347 A CN202010717347 A CN 202010717347A CN 114042468 B CN114042468 B CN 114042468B
Authority
CN
China
Prior art keywords
core
electrocatalyst
shell structure
powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010717347.3A
Other languages
English (en)
Other versions
CN114042468A (zh
Inventor
黄剑锋
张晓�
冯亮亮
曹丽云
刘倩倩
李帅楠
何丹阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202010717347.3A priority Critical patent/CN114042468B/zh
Priority to US17/381,089 priority patent/US11732370B2/en
Publication of CN114042468A publication Critical patent/CN114042468A/zh
Application granted granted Critical
Publication of CN114042468B publication Critical patent/CN114042468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种核壳结构Fe2P@C‑Fe3C电催化剂及其制备方法和应用,所述核壳结构Fe2P@C‑Fe3C电催化剂包括:由在其中分布有FeC3纳米点的碳层形成的碳纳米管作为基体,以及嵌入在所述碳纳米管内的由碳包覆Fe2P形成的具有核壳结构的Fe2P@C。

Description

一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用
技术领域
本发明涉及一种核壳结构Fe2P@C-Fe3C电催化剂的制备方法及多功能应用,属于电化学技术领域。
背景技术
随着全球经济的快速发展,人类对能源需求日益加强。当前的能源结构主要依赖于石油、煤炭、天然气等化石能源,过度开采和使用造成化石能源的严重短缺和环境污染等问题。为了改变这一现状,开发绿色、可持续的新能源成为全球经济发展的必然选择。
通过电化学转化法将地球上储备的丰富水资源转化为具有更高价值的产品作为一个很有潜力的可持续新能源发展方向,受到科研工作者的广泛关注。这一能源的开发和利用可实现以“H2O”、“H2”和“O2”为循环利用的能量转换体系,实现真正意义上的“零排放”。作为新型清洁能源转换体系,电解水制氢、氢燃料电池、金属-空气电池等引起广泛关注。在这些转化过程中,涉及的主要反应过程有析氧反应、析氢反应、氧还原反应等。而这些反应主要依靠电催化剂来提高其化学反应速率、能量转换效率和产物选择性。目前,贵金属作为高效的电催化剂,昂贵的成本和稀缺的资源限制了其在清洁能源领域的广泛应用。
过渡金属碳化物由于具有优异的表面电子结构及较高的导电性,且在强酸碱电解质中较稳定,可作为一种高效的ORR电催化剂。过渡金属磷化物、碳化物,由于它们在Fermi能级附近具有类似于Pt的电子结构,可通过调节过渡金属的d电子结构使其HER电催化活性明显提高。Yang等使用化学气相沉积法制备Fe3C,首先将Fe4N附在硅板上,氢气气氛下加热到700℃,然后通入甲烷气体,控制反应时间,制备出不同反应时间的产品。但是使用CVD法制备Fe3C时,反应原料必须为气态或者易于挥发的液态或固态物质,限制了CVD制备Fe3C的应用,而且反应需要使用催化剂,产物与催化剂的分离也比较困难(Yang K Y,Xu W,ZhangY,Synthesis and Characteristics of Fe3C Nanoparticles Embedded in AmorphousCarbon Matrix[J].Chem Res Chin Univ,2010,26(3):348-351.)。专利1(中国公开号CN107651959A)公开了一种在高温高压下制备一磷化二铁Fe2P的方法,其使用分析纯的铁纳米粉和红磷粉末作为起始原料在玛瑙研钵中使用酒精充分研磨混合,将压片机后的圆柱形样品烘干放入氮化硼圆管中,密封后进行高温高压反应,反应后清除样品外部的氮化硼,即可得到纯的一磷化二铁块状样品。但是该合成方法复杂,且原料中的红磷容易自燃比较危险。另外,专利2(中国公开号CN109244490A)公开了一种碳化铁@氮掺杂碳纳米催化剂的制备方法。该专利利用静电纺丝技术,将配制的前驱体溶液纺成纳米线,将制成的纳米线热处理,得到碳化铁@氮掺杂碳纳米线催化剂。该发明制备的碳化铁@氮掺杂碳纳米线催化剂主要用于电催化的氧还原反应领域。因此,开发一种低价、高效和稳定的非贵金属电催化剂成为该领域急需解决的问题。
发明内容
为了提高提高电催化性能,寻找性能优越的析氢析氧氧还原多功能催化剂以尽可能地降低成本,本发明提供了制备了一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法,有效地提升该材料在电催化领域的性能,因此具有广阔的应用前景。
一方面,本发明提供了一种核壳结构Fe2P@C-Fe3C电催化剂,包括,由在其中分布有Fe3C纳米点的碳层形成的碳纳米管作为基体,以及嵌入在所述碳纳米管内的由碳包覆Fe2P形成的具有核壳结构的Fe2P@C。本发明所提供的电催化剂是由被Fe3C纳米点修饰的碳层所形成的碳纳米管状结构(被Fe3C纳米点修饰的碳纳米管),且在所述纳米管内生长有由碳层包覆着Fe2P形成的Fe2P@C核壳结构。本发明所提供的由碳层包覆着Fe2P生长在被Fe3C纳米点修饰的碳纳米管结构的电催化剂具有大的比表面积,可以与电解液充分接触,继而能够增强其电化学性能,并且这种碳层包覆着Fe2P生长在被Fe3C纳米点修饰的碳纳米管结构的电催化剂也具有好的稳定性,这种结构在长时间测试下依旧能够保持完整的结构,结构不被破坏。
较佳的,所述核壳结构的Fe2P@C中C层的厚度为2.5~3.5nm,Fe2P的粒径为12~15nm。
较佳的,本发明结构中,被Fe3C纳米点修饰的碳纳米管的直径为30~40nm,厚度为4~6nm。又,本发明提供的电催化剂所述碳纳米管的长度可为8~15μm。此尺寸结构为最佳,若更改实验变量,碳纳米管不会生成,会生成其他形貌如颗粒块状形貌。
本发明中,生长成所述纳米管内表面由碳包覆着Fe2P的P在所述电催剂中的原子含量为2.07at%。
较佳的,所述Fe3C纳米点的粒径为4~6nm。
另一方面,本发明提供了一种核壳结构Fe2P@C-Fe3C电催化剂的制备方法,包括:
(1)将FeCl3·6H2O、C2H4N4和F127溶于溶剂(不限于乙醇,水,其他有机溶剂可行,仅起到分散溶质的作用),再经干燥去除溶剂,得到粉末A;
(2)将粉末A和次磷酸钠单独放置于瓷舟之中,在保护气氛中,先在300~500℃下保温1~3小时,再于700~900℃下保温1~3小时,得到所述核壳结构Fe2P@C-Fe3C电催化剂。
在本公开中,采用一步烧结法制备得到核壳结构Fe2P@C-Fe3C电催化剂。
较佳的,所述溶剂为乙醇;所述干燥为在60~80℃下干燥6~8小时。
较佳的,所述混合溶液中FeCl3·6H2O的质量浓度为0.005~0.03g/ml,C2H4N4的质量浓度为0.04~0.12g/ml,F127的质量浓度为0.002~0.008g/ml。较佳的,所述FeCl3·6H2O、C2H4N4和F127的质量比为(0.5~1.5):(4~6):(0.2~0.4)。
较佳的,所述粉末A和NaH2PO2的质量比为(5~7):(4~6)。
较佳的,所述保护气氛为氢气和氩气的混合气氛。
再一方面,本发明还提供了一种上述核壳结构Fe2P@C-Fe3C电催化剂在析氢反应、析氧反应和氧还原反应中的应用。
有益效果:
(1)本发明所制备的样品是由碳层包覆着Fe2P生长在被Fe3C纳米点修饰的碳纳米管结构中。这种结构具有大的比表面积,可以与电解液充分接触,继而能够增强其电化学性能;
(2)该工艺流程简单,成本大大降低,并且仅用一步烧结法即可得到;
(3)该催化剂所用方法新颖,所得产品性能优越,可应用于析氢反应、析氧反应、氧还原反应等多种方式;
(4)本发明开发与构筑新型高效稳定的非贵金属铁基电催化剂,并应用于电化学技术领域。
附图说明
图1为实施例2制备的电催化剂的X射线衍射(XRD)图谱,从图中可以看出成功制备出Fe3C和Fe2P;
图2为实施例2制备的电催化剂的低倍扫描电镜(SEM)图像(a)(b)和高倍扫描电镜(SEM)图像(c)(d),由图中可以看出成功制备出纳米管状样品,可以通过SEM图像估算出碳纳米管长分布,被Fe3C纳米点修饰的碳纳米管的直径约为30~40nm,该结构有利于增大样品比表面积,提高其电催化性能;
图3为实施例2制备的电催化剂在不同放大倍数下的透射电镜(TEM)图像,由图中可以看出Fe3C纳米点嵌入在碳纳米管壁中,核壳结构的Fe2P@C颗粒分散在碳纳米管内,由图3中b),图3中c)测量出Fe2P@C中C层的厚度为约2.5~3.5nm,Fe2P的粒径约为12~15nm,Fe3C纳米点修饰的碳纳米管的直径约为30~40nm,厚度约为4~6nm,由图3中d)测量出Fe3C纳米点的粒径约为4~6nm;
图4为实施例2制备的催化剂的EDX图,由图中我们可以看出生长成所述纳米管内表面由碳包覆着Fe2P的P在所述电催剂中的原子含量为2.07at%;
图5为实施例2制备的电催化剂在1.0M KOH条件下析氢反应的线性扫描伏安(LSV)性能测试图,由图可知在10mA/cm2的电流密度下,其过电势约为99mV,表现出优异的析氢性能;
图6为实施例2制备的电催化剂在1.0M KOH条件下析氢反应的恒电位极化(i-t)性能测试图,由图可知本发明的样品在15mA/cm2的电流密度下保持了100h的稳定性,表现出优异的稳定性;
图7为实施例2制备的电催化剂在1.0M KOH条件下析氧反应的线性扫描伏安(LSV)性能测试图,由图可知在10mA/cm2的电流密度下,其过电势约为297mV,表现出优异的析氧性能;
图8为实施例2制备的电催化剂在0.1M KOH条件下氧还原反应的线性扫描伏安(LSV)性能测试图,由图可知在1600rpm的转速下,其半波电势约为0.86V,表现出优异的氧还原性能;
图9为对比例1制备的电催化剂的X射线衍射(XRD)图谱,从图中可以看出Fe2P的衍射峰强度更高,Fe3C的衍射峰强度变弱;
图10为对比例1制备的电催化剂的低倍扫描电镜(SEM)图像,由图中可以看出只有颗粒和块状形貌,无碳纳米管生成。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明提供一种具有优异析氢、析氧、氧还原多功能的核壳结构Fe2P@C-Fe3C电催化剂及其制备方法。该核壳结构Fe2P@C-Fe3C电催化剂具有优异的催化活性。
在本发明中,为提高电催化性能为目标,对材料的微观结构进行设计调控,使其暴露更多的电催化活性位点。该核壳结构Fe2P@C-Fe3C电催化剂,以由Fe3C纳米点修饰的碳层形成管状结构,并在所述管状结构内侧(管内)镶嵌有核壳结构的Fe2P@C。所述Fe2P@C核壳结构是由碳层包覆着Fe2P生长形成核壳结构。在一个可选实施方式中,所述核壳结构的Fe2P@C中C层的厚度可为2.5~3.5nm,Fe2P的粒径可为12~15nm。本发明中的Fe2P作为电催化剂的活性中心,起到提高催化活性的作用。而Fe2P外包覆的C层,对Fe2P有一个固定的作用,使其具有良好的稳定性。
并且本发明电催化剂中还包括嵌入在碳纳米管壁中Fe3C纳米点(纳米粒子)。在可选的实施方式中,所述Fe3C纳米点的粒径为4~6nm。碳纳米管优异的导电性和超微小Fe3C纳米点暴露出的大量催化活性位点使得催化剂表现出优异的电催化性能。
本发明提供的核壳结构Fe2P@C-Fe3C电催化剂中,Fe2P的合成开始温度在300℃左右,所以是使先形成Fe2P,再生成碳,并所述碳将Fe2P包覆,从而形成由碳包覆Fe2P的具有核壳结构的Fe2P@C。而Fe3C的合成温度是从700℃左右开始,所以本发明电催化剂结构中的由Fe3C纳米点修饰的碳纳米管为最后生成的结构,且在生成的同时将具有核壳结构的Fe2P@C包覆其中。
本发明采用一步烧结法,制备如上核壳结构Fe2P@C-Fe3C电催化剂。本发明的方法中,(1)先将原料FeCl3·6H2O、C2H4N4和F127完全溶于溶剂,再经干燥去除溶剂,得到混合均匀的粉末A;(2)将粉末A放入小瓷舟中,并置于大瓷舟下游部分,将称取的NaH2PO2放入大瓷舟的上游部分,然后盖好盖子,在保护气氛中,先在300~500℃下保温1~3小时,再于700~900℃下保温1~3小时,得到所述核壳结构Fe2P@C-Fe3C电催化剂。次磷酸钠烧结后有其他产物,粉末A主要与次磷酸钠分解的PH3反应,分开烧结可以保证反应既能顺利进行,且产物纯度高。以下示例性地说明核壳结构Fe2P@C-Fe3C电催化剂的制备方法。
称取六水合三氯化铁(FeCl3·6H2O)、双氰胺(C2H4N4)和聚氧乙烯聚氧丙烯共聚物(F127)(三氯化铁(FeCl3·6H2O)为铁源,双氰胺(C2H4N4)为碳源,聚氧乙烯聚氧丙烯共聚物(F127)为形貌调控剂)溶于溶剂中,得到混合溶液。所述溶剂可为乙醇、水、异丙醇等,加入量可为10~20ml。控制混合溶液中此时FeCl3·6H2O的质量浓度为(0.005~0.03)g/ml,C2H4N4的质量浓度为(0.04~0.12)g/ml,F127的质量浓度为(0.002~0.008)g/ml。优选地,FeCl3·6H2O、C2H4N4和F127的质量比可为(0.5~1.5):(4~6):(0.2~0.4)。在溶解过程中,在室温下磁力搅拌20-30min,促进其混合。该步骤先让反应原料均匀溶解,然后再进行固相烧结,如果直接将固体原料混合后进行固相烧结,反应会不均匀,产品的结构会出现团聚,大的颗粒,且生成Fe2P以及Fe3C的含量会下降,导致性能下降。
将混合溶液放入烘箱在60~80℃下干燥6~8h以去除溶剂,干燥后研磨30min,使得原料均匀混合,收集得到粉末A。
称取0.5~1.5g粉末A,并且按照质量比为m(粉末A):m(NaH2PO2)=(5~7):(4~6)称取一定量的次磷酸钠(NaH2PO2)。然后将粉末A放入小瓷舟中,并置于大瓷舟下游部分,将称取的NaH2PO2放入大瓷舟的上游部分,然后盖好盖子。其中合适的粉末A和NaH2PO2的质量比值可以使Fe2P以及Fe3C达到性能最好的状态,若是次磷酸钠增多,样品中先进行的磷化会消耗更多的铁,导致生成的Fe3C含量减少。若是粉末A过多,碳的含量会增多,从而影响暴露出的Fe2P和Fe3C,继而影响样品的性能。
将加好样品的瓷舟放入低温管式炉中,交替进行2~4次抽真空,2~4次充氢氩气后将管内的空气排除干净后,在氢/氩气气氛保护下进行两端升温烧结。
该烧结的制度包括:先升温至300~500℃并保温1~3h,然后再升温至700~900℃并保温1~3h,最后待管式炉自然冷却至室温时打开低温管式炉取出瓷舟。次磷酸钠的开始分解温度在290~300℃左右(其中2NaH2PO2=PH3(g)+Na2HPO4),第一段300~500℃下保温以使次磷酸钠分解产生的PH3和FeCl3·6H2O反应生成Fe2P。第二段在700~900℃下保温时,开始碳化形成在Fe2P表面包覆一层碳层的Fe2P@C核壳结构,同时形成碳纳米管将该Fe2P@C核壳结构包覆其中。此外在650℃附近时FeCl3·6H2O和C2H4N4也开始反应生成稳定的Fe3C纳米点并伴随有碳纳米管形成嵌入碳纳米管管壁之中,最终得到核壳结构Fe2P@C-Fe3C电催化剂。优选地,第一阶段升温的升温速率为5~10℃/min。第二阶段的升温速率为5~10℃/min。
将瓷舟中的样品放入研钵中研磨成细小的粉末状样品后进行收集,即得到核壳结构Fe2P@C-Fe3C电催化剂。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)称取六水合三氯化铁(FeCl3·6H2O)、双氰胺(C2H4N4)和聚氧乙烯聚氧丙烯共聚物(F127)溶于10ml乙醇中,得到混合溶液。控制FeCl3·6H2O、C2H4N4和F127的质量比为0.5:4:0.2,此时FeCl3·6H2O的质量浓度为0.01g/ml、C2H4N4的质量浓度为0.008g/ml,F127的质量浓度为0.004g/ml。将混合溶液在室温下磁力搅拌20min后,放入烘箱在60℃下干燥6h,干燥后研磨收集得到粉末A;
(2)称取0.5g粉末A,并且按照质量比为m(粉末A):m(NaH2PO2)=5:4称取一定量的次磷酸钠(NaH2PO2),将粉末A放入小瓷舟中,并置于大瓷舟下游部分,将称取的NaH2PO2放入大瓷舟的上游部分,然后盖好盖子;
(3)将加好样品的瓷舟放入低温管式炉中,交替进行2次抽真空,2次充氢氩气后将管内的空气排除干净后,在氢氩气气氛保护下进行两端升温烧结,首先以3℃/min升温至300℃并保温3h,然后以10℃/min升温至700℃并保温3h,最后待管式炉自然冷却至室温时打开低温管式炉取出瓷舟;
(4)将瓷舟中的样品放入研钵中研磨成细小的粉末状样品后进行收集,即得到核壳结构Fe2P@C-Fe3C电催化剂。
该电催化剂中,Fe2P@C中C层的厚度约为2.5~3.5nm,Fe2P的粒径约为12~15nm。核壳结构Fe2P@C-Fe3C电催化剂中P的含量约为2.07at%。Fe3C纳米点修饰的碳纳米管的直径约为30~40nm,长度约为8~15μm,厚度约为4~6nm。Fe3C纳米点的粒径约为4~5nm。
实施例2
(1)称取六水合三氯化铁(FeCl3·6H2O)、双氰胺(C2H4N4)和聚氧乙烯聚氧丙烯共聚物(F127)溶于15ml乙醇中,得到混合溶液。控制FeCl3·6H2O、C2H4N4和F127的质量比为1:5:0.3,此时FeCl3·6H2O的质量浓度为0.013g/ml、C2H4N4的质量浓度为0.067g/ml,F127的质量浓度为0.004g/ml。将混合溶液在室温下磁力搅拌25min后,放入烘箱在70℃下干燥7h,干燥后研磨收集得到粉末A;
(2)称取1g粉末A,并且按照质量比为m(粉末A):m(NaH2PO2)=6:5称取一定量的次磷酸钠(NaH2PO2),将粉末A放入小瓷舟中,并置于大瓷舟下游部分,将称取的NaH2PO2放入大瓷舟的上游部分,然后盖好盖子;
(3)将加好样品的瓷舟放入低温管式炉中,交替进行3次抽真空,3次充氢氩气后将管内的空气排除干净后,在氢氩气气氛保护下进行两端升温烧结,首先以3℃/min升温至400℃并保温2h,然后以10℃/min升温至800℃并保温2h,最后待管式炉自然冷却至室温时打开低温管式炉取出瓷舟;
(4)将瓷舟中的样品放入研钵中研磨成细小的粉末状样品后进行收集,即得到最终样品。
该电催化剂中,Fe2P@C中C层的厚度约为2.5~3.5nm,Fe2P的粒径约为12~15nm。核壳结构Fe2P@C-Fe3C电催化剂中P的含量约为2.07at%。Fe3C纳米点修饰的碳纳米管的直径约为30~40nm,长度约为8~15μm,厚度约为4~6nm。Fe3C纳米点的粒径约为4~5nm;
表1为实施例2为制备室温电催化剂各元素的原子比:
元素 C k N k O k P k Fe k
原子比/% 29.24 35.95 32.36 2.07 0.39
实施例3
(1)称取六水合三氯化铁(FeCl3·6H2O)、双氰胺(C2H4N4)和聚氧乙烯聚氧丙烯共聚物(F127)溶于20ml乙醇中,得到混合溶液。控制FeCl3·6H2O、C2H4N4和F127的质量比为1.5:6:0.4,此时FeCl3·6H2O的质量浓度为0.015g/ml、C2H4N4的质量浓度为0.06g/ml,F127的质量浓度为0.004g/ml。将混合溶液在室温下磁力搅拌30min后,放入烘箱在80℃下干燥8h,干燥后研磨收集得到粉末A;
(2)称取1.5g粉末A,并且按照质量比为m(粉末A):m(NaH2PO2)=7:6称取一定量的次磷酸钠(NaH2PO2),将粉末A放入小瓷舟中,并置于大瓷舟下游部分,将称取的NaH2PO2放入大瓷舟的上游部分,然后盖好盖子;
(3)将加好样品的瓷舟放入低温管式炉中,交替进行4次抽真空,4次充氢氩气后将管内的空气排除干净后,在氢氩气气氛保护下进行两端升温烧结,首先以3℃/min升温至500℃并保温1h,然后以10℃/min升温至900℃并保温1h,最后待管式炉自然冷却至室温时打开低温管式炉取出瓷舟;
(4)将瓷舟中的样品放入研钵中研磨成细小的粉末状样品后进行收集,即得到最终样品。
该电催化剂中,Fe2P@C中C层的厚度约为2.5~3.5nm,Fe2P的粒径约为12~15nm。核壳结构Fe2P@C-Fe3C电催化剂中P的含量约为2.07at%。Fe3C纳米点修饰的碳纳米管的直径约为30~40nm,长度约为8~15μm,厚度约为4~6nm。Fe3C纳米点的粒径约为4~5nm。
对比例1
(1)称取六水合三氯化铁(FeCl3·6H2O)、双氰胺(C2H4N4)和聚氧乙烯聚氧丙烯共聚物(F127)溶于15ml乙醇中,得到混合溶液。控制FeCl3·6H2O、C2H4N4和F127的质量比为1:5:0.3,此时FeCl3·6H2O的质量浓度为0.013g/ml、C2H4N4的质量浓度为0.067g/ml,F127的质量浓度为0.004g/ml。将混合溶液在室温下磁力搅拌25min后,放入烘箱在70℃下干燥7h,干燥后研磨收集得到粉末A;
(2)称取1g粉末A,并且按照质量比为m(粉末A):m(NaH2PO2)=6:5称取一定量的次磷酸钠(NaH2PO2),将粉末A与NaH2PO2直接混合放入瓷舟中,然后盖好盖子;
(3)将加好样品的瓷舟放入低温管式炉中,交替进行3次抽真空,3次充氢氩气后将管内的空气排除干净后,在氢氩气气氛保护下进行两端升温烧结,首先以3℃/min升温至400℃并保温2h,然后以10℃/min升温至800℃并保温2h,最后待管式炉自然冷却至室温时打开低温管式炉取出瓷舟;
(4)将瓷舟中的样品放入研钵中研磨成细小的粉末状样品后进行收集,即得到对比例1的样品。
由对比例1制备的电催化剂的X射线衍射(XRD)图谱中可以看出Fe2P的衍射峰强度更高,Fe3C的衍射峰强度变弱;对比例1制备的电催化剂的低倍扫描电镜(SEM)图像,由图中可以看出只有颗粒和块状形貌,无碳纳米管生成。并且在制备样品的过程中分开烧结避免了次磷酸钠分解产物对样品的污染,后续步骤中也不需要去除杂质,可以直接收集产物,实施实验较对比实验更合理简单,便于实现。

Claims (7)

1.一种核壳结构Fe2P@C-Fe3C电催化剂,其特征在于,包括:由在其中分布有FeC3纳米点的碳层形成的碳纳米管作为基体,以及嵌入在所述碳纳米管内的由碳包覆Fe2P形成的具有核壳结构的Fe2P@C;
所述核壳结构Fe2P@C-Fe3C电催化剂的制备方法包括:
(1)先将原料FeCl3·6H2O、C2H4N4和F127完全溶于溶剂,再经干燥去除溶剂,得到混合均匀的粉末A;
(2)将粉末A放入小瓷舟中,并置于大瓷舟下游部分,将称取的NaH2PO2放入大瓷舟的上游部分,然后盖好盖子,在氢气和氩气的混合气氛中,先在300~500 ℃下保温1~3小时,再于700~900 ℃下保温1~3小时,得到所述核壳结构Fe2P@C-Fe3C电催化剂;所述粉末A和NaH2PO2的质量比为(5~7):(4~6)。
2. 根据权利要求1所述的核壳结构Fe2P@C-Fe3C电催化剂,其特征在于,所述核壳结构的Fe2P@C中C层的厚度为2.5~3.5 nm,Fe2P的粒径为12~15 nm。
3. 根据权利要求1所述的核壳结构Fe2P@C-Fe3C电催化剂,其特征在于,所述碳纳米管的直径为30~40 nm,厚度为4~6 nm。
4.根据权利要求1所述的核壳结构Fe2P@C-Fe3C电催化剂,其特征在于,所述FeC3纳米点的粒径为4~6nm。
5.根据权利要求1-4中任一项所述的核壳结构Fe2P@C-Fe3C电催化剂,其特征在于,所述核壳结构Fe2P@C-Fe3C电催化剂中P的含量为2.07at%。
6. 根据权利要求1所述的核壳结构Fe2P@C-Fe3C电催化剂,其特征在于,所述FeCl3·6H2O的质量浓度为0.005~0.03 g/ml,C2H4N4的质量浓度为0.04~0.12 g/ml,F127的质量浓度为0.002~0.008g/ml,所述FeCl3·6H2O、C2H4N4和F127的质量比为(0.5~1.5):(4~6):(0.2~0.4)。
7.一种权利要求1-6中任一项所述核壳结构Fe2P@C-Fe3C电催化剂在析氢反应、析氧反应和氧还原反应中的应用。
CN202010717347.3A 2020-07-23 2020-07-23 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用 Active CN114042468B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010717347.3A CN114042468B (zh) 2020-07-23 2020-07-23 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用
US17/381,089 US11732370B2 (en) 2020-07-23 2021-07-20 Core-shell FE2P@c-FE3C electrocatalyst and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010717347.3A CN114042468B (zh) 2020-07-23 2020-07-23 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114042468A CN114042468A (zh) 2022-02-15
CN114042468B true CN114042468B (zh) 2023-08-22

Family

ID=79687954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010717347.3A Active CN114042468B (zh) 2020-07-23 2020-07-23 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用

Country Status (2)

Country Link
US (1) US11732370B2 (zh)
CN (1) CN114042468B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824304B (zh) * 2022-05-26 2023-07-25 陕西科技大学 一种Fe2N/Fe2P/FeS/C复合材料及其制备方法和应用
CN115064717B (zh) * 2022-07-12 2023-06-16 郑州大学 一种锌空气电池正极用orr-oer催化剂及其制备方法
CN115608387B (zh) * 2022-09-21 2024-03-12 青岛科技大学 P-MoO3/P-MoO2/P-Fe3O4异质结构纳米带的制备方法及其光催化应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108837838A (zh) * 2018-05-09 2018-11-20 陕西科技大学 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用
CN108906106A (zh) * 2018-07-04 2018-11-30 大连理工大学 一种FeNi/N-C高分散核壳结构催化剂及其制备方法
KR20190034897A (ko) * 2017-09-25 2019-04-03 울산과학기술원 M-N-C 계 전극촉매 및 그 제조방법과 Fe-N-C 계 전극촉매를 포함하는 연료전지
CN109865524A (zh) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 一种碳支撑过渡金属磷化物产氢电催化剂及其制备方法
CN110075886A (zh) * 2019-05-31 2019-08-02 中南林业科技大学 镍基-碳复合电催化剂及其制备方法
CN110142058A (zh) * 2019-05-21 2019-08-20 大连理工大学 一种F127诱导的三维多孔FeNi-NC双功能电催化剂及其制备方法
CN110952110A (zh) * 2018-09-27 2020-04-03 天津大学 一种纳米多孔Pd-Fe-P-C材料及其制备方法和其电解水制氢中应用
CN110975922A (zh) * 2019-12-31 2020-04-10 上海应用技术大学 一种用于碱性溶液析氢的Co@FePx-NCs材料及其制备方法与应用
CN111188126A (zh) * 2020-01-08 2020-05-22 嘉兴学院 一种柔性磷化铁/碳纳米纤维膜及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107651959B (zh) 2017-11-02 2020-01-31 中国科学院地球化学研究所 一种在高温高压下制备一磷化二铁Fe2P的方法
CN109244490A (zh) 2018-09-12 2019-01-18 江苏师范大学 一种碳化铁@氮掺杂碳纳米催化剂的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034897A (ko) * 2017-09-25 2019-04-03 울산과학기술원 M-N-C 계 전극촉매 및 그 제조방법과 Fe-N-C 계 전극촉매를 포함하는 연료전지
CN109865524A (zh) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 一种碳支撑过渡金属磷化物产氢电催化剂及其制备方法
CN108837838A (zh) * 2018-05-09 2018-11-20 陕西科技大学 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用
CN108906106A (zh) * 2018-07-04 2018-11-30 大连理工大学 一种FeNi/N-C高分散核壳结构催化剂及其制备方法
CN110952110A (zh) * 2018-09-27 2020-04-03 天津大学 一种纳米多孔Pd-Fe-P-C材料及其制备方法和其电解水制氢中应用
CN110142058A (zh) * 2019-05-21 2019-08-20 大连理工大学 一种F127诱导的三维多孔FeNi-NC双功能电催化剂及其制备方法
CN110075886A (zh) * 2019-05-31 2019-08-02 中南林业科技大学 镍基-碳复合电催化剂及其制备方法
CN110975922A (zh) * 2019-12-31 2020-04-10 上海应用技术大学 一种用于碱性溶液析氢的Co@FePx-NCs材料及其制备方法与应用
CN111188126A (zh) * 2020-01-08 2020-05-22 嘉兴学院 一种柔性磷化铁/碳纳米纤维膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
碳化铁/氮掺杂碳纳米粒子的制备及其电化学析氢性能;杨森等;《功能材料》;第51卷(第6期);第6027-6033页 *

Also Published As

Publication number Publication date
US11732370B2 (en) 2023-08-22
CN114042468A (zh) 2022-02-15
US20220025533A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
Han et al. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution
CN114042468B (zh) 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用
Cheng et al. In-situ grafting of N-doped carbon nanotubes with Ni encapsulation onto MOF-derived hierarchical hybrids for efficient electrocatalytic hydrogen evolution
Wang et al. Co–VN encapsulated in bamboo-like N-doped carbon nanotubes for ultrahigh-stability of oxygen reduction reaction
Chen et al. Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis
Niu et al. Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels
Zhang et al. Core/shell Ni@ Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media
Zhuang et al. A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement
Shaijumon et al. Platinum/multiwalled carbon nanotubes-platinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell
CN109701545B (zh) 一种负载钒钴合金纳米颗粒的电催化材料及其制备方法
CN109530714A (zh) 一种复合电极材料及其制备方法和应用
Yang et al. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction
CN111672521A (zh) 一种过渡金属单原子材料及其制备方法和应用
Sahoo et al. Platinum-decorated chemically modified reduced graphene oxide–multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell
Jiao et al. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects
CN110756188A (zh) 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
Song et al. Cu nanoclusters on N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction
Jing et al. An acid-base molecular assembly strategy toward N-doped Mo2C@ C nanowires with mesoporous Mo2C cores and ultrathin carbon shells for efficient hydrogen evolution
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Yang et al. N-doped carbon modified Pt/CNTs synthesized by atomic layer deposition with enhanced activity and stability for methanol electrooxidation
Wang et al. One-pot synthesis of Mo2C&MoS2 loaded on N/S co-doped carbon materials as the electrocatalyts for hydrogen evolution reaction
Wang et al. Highly performed nitrogen-doped porous carbon electrocatalyst for oxygen reduction reaction prepared by a simple and slight regulation in hydrolyzing process of ZIF-8
Wei et al. Phytic acid-assisted fabrication of porous leaf-like hollow structured Co2P@ C for efficient hydrogen evolution
Wang et al. One-pot solution-free construction for hybrids of molybdenum carbide nanoparticles and porous N-doped carbon nanoplates as efficient electrocatalyst of hydrogen evolution
Ding et al. CeO2 nanoparticles-decorated CoP nanocubes for accelerating alkaline electrocatalytic oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant