CN114021275A - 一种基于深度卷积模糊***的滚动轴承故障诊断方法 - Google Patents

一种基于深度卷积模糊***的滚动轴承故障诊断方法 Download PDF

Info

Publication number
CN114021275A
CN114021275A CN202111273866.6A CN202111273866A CN114021275A CN 114021275 A CN114021275 A CN 114021275A CN 202111273866 A CN202111273866 A CN 202111273866A CN 114021275 A CN114021275 A CN 114021275A
Authority
CN
China
Prior art keywords
fuzzy
rolling bearing
fuzzy system
fault
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111273866.6A
Other languages
English (en)
Other versions
CN114021275B (zh
Inventor
朱可恒
周顺铭
胡雄
顾邦平
孙德建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN202111273866.6A priority Critical patent/CN114021275B/zh
Publication of CN114021275A publication Critical patent/CN114021275A/zh
Application granted granted Critical
Publication of CN114021275B publication Critical patent/CN114021275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明涉及一种基于深度卷积模糊***的滚动轴承故障诊断方法,利用若干个低维模糊***以及卷积窗口处理进行弱估计量的预测,将这些预测结果再次代入更深层的模糊***进行预测,经过逐层计算最终得出计算的结果。采集滚动轴承的振动信号;计算振动信号的前五个多尺度模糊熵作为信号;将故障特征向量分为训练集和测试集;利用训练集对深度卷积模糊***进行训练并用训练好的模型对测试集进行预测;根据预测结果识别滚动轴承的工作状态与故障类型。本发明在识别轴承故障状态上具有更高的准确率和速度的优点。

Description

一种基于深度卷积模糊***的滚动轴承故障诊断方法
技术领域
本发明涉及一种滚动轴承故障诊断技术,特指一种基于深度卷积模糊***的滚动轴承故障诊断方法。
技术背景
随着现代工业的发展,机械设备越来越复杂,然而,机械设备由于复杂的运行条件以及长时间的运作,不免出现各种问题,这些问题若不被发现可能会造成机械设备停运,严重时甚至会导致人员重大伤亡,其中,滚动轴承是旋转机械中关键的部件之一,其运行状态往往决定着整台机器的性能。因此,滚动轴承的故障诊断有重要的意义。
目前,算法对故障信号的分类已经代替了传统的经验诊断方法,其中主要的故障诊断方法有神经网络、支持向量机、聚类分析等等,通过对故障信号的特征提取,对不同的故障信号加以分类。近年来随着卷积神经网络等深度学习算法在故障诊断领域的应用,对机械故障识别的准确率也得到了很大的提高。
然而,随着大数据的到来,很多轴承信号无法及时处理,主要原因是目前深度神经网络的训练算法在应用于大数据时,计算量很大,就卷积神经网络而言,其可能需要很长时间才能收敛。算法的时间耗费过长是一个需要解决的问题,因此目前在寻找高准确率算法的同时,计算速度也成为了一个很大的衡量标准。针对滚动轴承故障诊断算法数据大,处理速度慢的问题,本发明提出一种基于深度卷积模糊***的滚动轴承故障诊断方法,具有保证准确率高且速度快,识别故障效率高的优点。
发明内容
本发明是针对传统神经网络计算量大,运行时间长等问题,提出了一种基于深度卷积模糊***的滚动轴承故障诊断方法,利用若干个低维模糊***以及卷积窗口处理进行弱估计量的预测,将这些预测结果再次代入更深层的模糊***进行预测,经过逐层计算最终得出计算的结果。
一种基于深度卷积模糊***的滚动轴承故障诊断方法,具体包括如下步骤:
(1)、测量滚动轴承的振动信号;
(2)、计算轴承振动信号的多尺度模糊熵,选取前五个尺度上的模糊熵作为轴承故障特征向量;
(3)、将得到的轴承故障特征分为训练样本和测试样本;
(4)、确定深度卷积模糊***算法的移动窗口大小;
(5)、创建模糊集合,计算训练样本中输入量和输出量关于模糊集合的最大隶属度,通过隶属度构造用于测试样本预测的参数;
(6)、利用计算得到的参数和隶属度,使用模糊***得出弱估计量;
(7)、将上一层计算的弱估计量作为输入量代入下一层模糊***中,逐层计算直至顶层输出测试样本;
(8)、根据预测结果识别滚动轴承的工作状态与故障类型。
本发明的有益效果在于:
(1)、对滚动轴承的故障诊断有很高的准确率且可解释性较强;
(2)、相较于传统的故障诊断方法,本发明的耗时较短,识别效率得到了提高;
附图说明
图1深度卷积模糊***算法的结构图;
图2本发明中模糊集合的运算方式;
图3本发明中使用各类故障信号的波形图;
图4本发明基于深度卷积模糊***的滚动轴承故障诊断流程图;
图5本发明基于多尺度模糊熵和深度卷积模糊***的识别结果图;
图6本发明所提方法与其他方法的识别结果对比。
具体实施方式
本发明为了克服传统故障诊断算法计算量大,耗时久的问题,其主要建模思想是将每个低维模糊***看作输出变量的弱估计量;采用逐层方式和卷积窗口处理高维输入空间,大大加快了计算的速度。具体采用以下技术方案:
1.深度卷积模糊***算法
深度卷积模糊***算法的结构如图1所示,采用逐层方式和卷积窗口处理高维输入空间,将***分为L级,假设将信号的特征
Figure BDA0003328749920000021
作为深度卷积模糊***的输入向量,并且输出故障类型y。每一级都由nl(l=0,1,2,...,L-1)个模糊***
Figure BDA0003328749920000022
(i=1,2,...,nl, l=0,1,2,...,L-1)组成。现取部分输入向量作为起始,代入模糊***中计算出弱估计量
Figure BDA0003328749920000023
随后类似卷积神经网络的卷积核,通过长度为m的移动窗口进行位移,计算后续的弱估计量,得到第一层的结果
Figure BDA0003328749920000024
并将其看作下一层输入变量的弱估计量,经过L-1级计算后,顶层L只有一个模糊***
Figure BDA0003328749920000025
它结合了第L-1层的输出
Figure BDA0003328749920000026
得到最终一维向量作为结果。窗口大小通常为小数值,如3、4或5。具体计算的定义如下:
(1)确定移动窗口大小,移动窗口可以采用多种移动方案。它可以从
Figure BDA0003328749920000031
开始一次移动n个变量直至
Figure BDA0003328749920000032
已覆盖。例如一次移动一个变量,得到如下结果:
Figure BDA0003328749920000033
Figure BDA0003328749920000034
Figure BDA0003328749920000035
其中
Figure BDA0003328749920000036
(n=1,2,...,nl-m+1)表示输入模糊***向量的合集。
(2)由上式可得在l+1层中共有nl-m+1个量作为输入的向量,即
nl+1=nl-(m-1)
记起始输入向量总数为n0,则
nl=n0-(l+1)(m-1) (2)
(3)现假设有N组训练集,其中
Figure BDA0003328749920000037
表示第k个训练集, k=1,2,…,N,
Figure BDA0003328749920000038
为输入的特征向量,y(k)为输出向量,即预测的故障种类,模糊***
Figure BDA0003328749920000039
(i=1,2,…,nl,l=0,1,2,...,L-1)的构造如下。对于每个输入变量
Figure BDA00033287499200000310
至模糊***
Figure BDA00033287499200000311
定义模糊集合A1,A2,…,Aq为中心等距分布,q为模糊集合的元素个数,对于数组(j1,...,jm),令j1,...,jm=1,2,...,q,端点Min(xj)和Max(xj)代表训练数据中第j个特征向量的最大和最小值。结构如图2 所示,将每个训练集中全部特征量依次都找出模糊集合A1,A2,…,Aq中隶属的最大值,即
Figure BDA00033287499200000312
Figure BDA00033287499200000313
(4)随机给定输入量的隶属度参数
Figure BDA00033287499200000314
为初始值,而输出量的隶属度参数
Figure BDA00033287499200000315
等于零。由式(3)的结果找出最大的隶属度,即式(4)所示
Figure BDA00033287499200000316
Figure BDA00033287499200000317
(5)对于每个训练集都重复3和4,得到最终
Figure BDA00033287499200000318
Figure BDA00033287499200000319
并计算
Figure BDA00033287499200000320
(6)将式(4)结果代入式(5)作为模糊***输入输出关系
Figure BDA0003328749920000041
(7)由于
Figure BDA0003328749920000042
Figure BDA0003328749920000043
(8)将(7)代入(6)中分母得到
Figure BDA0003328749920000044
本文深度卷积模糊***的公式为(8)所示
2.信号特征提取及参数选择
针对信号的特征提取,传统时域特征提取方法很难准确地提取轴承的故障特征信息,因此采用多尺度模糊熵的计算方法。多尺度模糊熵是基于模糊熵而定义的。模糊熵是对时间序列复杂性和无规则程度的度量,多尺度模糊熵则在模糊熵的基础上引入了尺度因子的概念,使得其可以在不同尺度的时间序列中都可以进行复杂性和无规则程度的度量,也因此可以包含更多的信息,通过多尺度模糊熵的特征提取,可以增加神经网络等算法故障分类的准确率。
本文将使用信号前5个多尺度模糊熵为特征,作为5个输入向量,由于模糊熵值的计算取决于嵌入维数m、相似容限r、序列长度N以及模糊函数的梯度n。综合考虑数据的长度,噪声的敏感性等因素,取m=2,r=0.2SD,N=2048。在应用本发明进行实验时,将5个特征参数分为3组,移动窗口设置为1,每个模糊***输入三个特征计算弱估计量,经过两层的计算得出最后的结果,为了保证计算的快速和精确性,下文实验中的模糊集合数量取 20。
3.实例验证
为了进一步说明深度卷积模糊***对滚动轴承故障诊断的有效性,对实际的轴承故障分类进行了分析。采用模糊熵的特征提取方法,并使用深度卷积模糊***训练提取的特征,为了证明算法的有效性,另使用BP神经网络,卷积神经网络以及自编码器这些具有广泛应用的算法,通过改变训练集和测试集的数量进行对比,最后,分别计算故障分类的准确率以及算法所使用的时间。
3.1试验数据
本文采用的试验数据来自于美国凯斯西储大学的轴承数据中心,测试轴承型号为SKF 6205-2RS JEM深沟球轴承,利用电火花加工技术布置故障尺寸不同的单点故障。轴承转速为1797r/min,采样频率为12kHz,包含正常状态、内圈故障、外圈故障和滚动体故障以及不同故障尺寸共10种故障类型,每个数据长度为2048点,具体如表1所示试验数据集。各类故障信号的波形图如图3所示。
表1
Figure BDA0003328749920000051
3.2试验结果与分析
利用多尺度模糊熵分析上述十种不同滚动轴承状态下振动数据,将计算出的多尺度模糊熵作为输入向量输入深度卷积模糊***中,故障类别作为输出量进行预测,利用深度卷积模糊***的滚动轴承故障诊断步骤如图4所示。具体包括如下步骤:
(1)、测量滚动轴承的振动信号;
(2)、计算轴承振动信号的多尺度模糊熵,选取前五个尺度上的模糊熵作为轴承故障特征向量;
(3)、将得到的轴承故障特征分为训练样本和测试样本;
(4)、确定深度卷积模糊***算法的移动窗口大小;
(5)、创建模糊集合,计算训练样本中输入量和输出量关于模糊集合的最大隶属度,通过隶属度构造用于测试样本预测的参数;
(6)、利用计算得到的参数和隶属度,使用模糊***得出弱估计量;
(7)、将上一层计算的弱估计量作为输入量代入下一层模糊***中,逐层计算直至顶层输出测试样本;
(8)、根据预测结果识别滚动轴承的工作状态与故障类型。
十种轴承状态每种状态选取50组数据,为了研究算法在不同训练样本数量情况下的效果,对训练集分别取5、10、15、20个样本进行训练,其余用于测试集,共500组样本,把不同数量的训练样本输入深度卷积模糊***,用训练好的模型预测测试数据,不同数量的训练集实验十次,最后取平均值得到测试的结果。不同数量的训练集得到的识别结果如图5所示,在训练集数量取5、10、15、20时,深度卷积模糊***对测试集预测的准确率分别为98.27%、99.43%、99.69%、99.47%。为了突出该算法的优越性,利用同样的数据分别建立BP神经网络,卷积神经网络以及自编码器预测模型,并进行分类识别。识别结果见图6,具体数值见表2,所有算法的准确率均没有高于深度卷积模糊***的准确率,其中最高的为卷积神经网络,准确率分别为89.77%、86.63%、91.85%、99.17%。同时为了证明深度卷积模糊***算法的高效性,将这些算法耗费的时间进行了统计,结果如表3所示,单位为秒(s),深度卷积模糊***耗费的时间为0.1475s,0.1368s,0.1303s,0.1295s,在各个样本数量中都是最快的,可以看出,卷积神经网络的耗费时间远远高于深度卷积模糊***,其主要原因是卷积神经网络随着训练集的增加,运算量上升很大,相比之下,在5、10时,BP神经网络的速度虽然与深度卷积模糊***接近,但是BP神经网络的准确率却远远低于深度卷积模糊***。综上,一系列对比结果说明了深度卷积模糊***相比传统的深度网络拥有更高的准确率和速度,能更快更准确地识别不同的轴承故障状态。
表2
Figure BDA0003328749920000061
表3
Figure BDA0003328749920000062

Claims (1)

1.一种基于深度卷积模糊***的滚动轴承故障诊断方法,其特征在于训练速度快,准确率高,具体包括如下步骤:
(1)、测量滚动轴承的振动信号;
(2)、计算轴承振动信号的多尺度模糊熵,选取前五个尺度上的模糊熵作为轴承故障特征向量;
(3)、将得到的轴承故障特征分为训练样本和测试样本;
(4)、确定深度卷积模糊***算法的移动窗口大小;
(5)、创建模糊集合,计算训练样本中输入量和输出量关于模糊集合的最大隶属度,通过隶属度构造用于测试样本预测的参数;
(6)、利用计算得到的参数和隶属度,使用模糊***得出弱估计量;
(7)、将上一层计算的弱估计量作为输入量代入下一层模糊***中,逐层计算直至顶层输出测试样本;
(8)、根据预测结果识别滚动轴承的工作状态与故障类型。
CN202111273866.6A 2021-10-29 2021-10-29 一种基于深度卷积模糊***的滚动轴承故障诊断方法 Active CN114021275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111273866.6A CN114021275B (zh) 2021-10-29 2021-10-29 一种基于深度卷积模糊***的滚动轴承故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111273866.6A CN114021275B (zh) 2021-10-29 2021-10-29 一种基于深度卷积模糊***的滚动轴承故障诊断方法

Publications (2)

Publication Number Publication Date
CN114021275A true CN114021275A (zh) 2022-02-08
CN114021275B CN114021275B (zh) 2023-08-08

Family

ID=80059069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111273866.6A Active CN114021275B (zh) 2021-10-29 2021-10-29 一种基于深度卷积模糊***的滚动轴承故障诊断方法

Country Status (1)

Country Link
CN (1) CN114021275B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941890A (zh) * 2022-05-24 2022-08-26 日照安泰科技发展有限公司 一种基于图像和深度模糊的中央空调故障诊断方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228766A (zh) * 2017-05-22 2017-10-03 上海理工大学 基于改进多尺度模糊熵的滚动轴承故障诊断方法
US20200200648A1 (en) * 2018-02-12 2020-06-25 Dalian University Of Technology Method for Fault Diagnosis of an Aero-engine Rolling Bearing Based on Random Forest of Power Spectrum Entropy
CN112067298A (zh) * 2020-09-27 2020-12-11 上海海事大学 一种基于层次全局模糊熵的滚动轴承故障诊断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228766A (zh) * 2017-05-22 2017-10-03 上海理工大学 基于改进多尺度模糊熵的滚动轴承故障诊断方法
US20200200648A1 (en) * 2018-02-12 2020-06-25 Dalian University Of Technology Method for Fault Diagnosis of an Aero-engine Rolling Bearing Based on Random Forest of Power Spectrum Entropy
CN112067298A (zh) * 2020-09-27 2020-12-11 上海海事大学 一种基于层次全局模糊熵的滚动轴承故障诊断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘乐;孙虎儿;谢志谦;: "基于SVD-LMD模糊熵与PNN的滚动轴承故障诊断", 机械传动, no. 03 *
朱丹宸;张永祥;潘洋洋;朱群伟;: "基于多传感器信号和卷积神经网络的滚动轴承故障诊断", 振动与冲击, no. 04 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941890A (zh) * 2022-05-24 2022-08-26 日照安泰科技发展有限公司 一种基于图像和深度模糊的中央空调故障诊断方法及***
CN114941890B (zh) * 2022-05-24 2024-04-30 日照安泰科技发展有限公司 一种基于图像和深度模糊的中央空调故障诊断方法及***

Also Published As

Publication number Publication date
CN114021275B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
Wang et al. A novel weighted sparse representation classification strategy based on dictionary learning for rotating machinery
CN107228766B (zh) 基于改进多尺度模糊熵的滚动轴承故障诊断方法
CN110070060B (zh) 一种轴承设备的故障诊断方法
CN111562108A (zh) 一种基于cnn和fcmc的滚动轴承智能故障诊断方法
CN108959778B (zh) 一种基于退化模式一致性的航空发动机剩余寿命预测方法
CN110132554B (zh) 一种深度拉普拉斯自编码的旋转机械故障诊断方法
CN113673346B (zh) 一种基于多尺度SE-Resnet的电机振动数据处理与状态识别方法
CN110561191B (zh) 基于pca与自编码器的数控机床刀具磨损数据处理方法
CN111122162B (zh) 基于欧氏距离多尺度模糊样本熵的工业***故障检测方法
CN115017945A (zh) 基于增强型卷积神经网络的机械故障诊断方法和诊断***
CN112924177A (zh) 一种改进深度q网络的滚动轴承故障诊断方法
CN110991422A (zh) 基于多元时移多尺度排列熵的滚动轴承故障诊断方法
CN112364706A (zh) 一种基于类不平衡的小样本轴承故障诊断方法
Zhao et al. A novel deep fuzzy clustering neural network model and its application in rolling bearing fault recognition
CN114925809B (zh) 基于lstm的印刷机轴承故障诊断方法及装置
Hwang et al. Application of cepstrum and neural network to bearing fault detection
CN112380992A (zh) 一种加工过程监控数据准确性评估与优化方法及装置
CN114021275B (zh) 一种基于深度卷积模糊***的滚动轴承故障诊断方法
CN114487129A (zh) 基于声发射技术的柔性材料的损伤识别方法
CN112541524B (zh) 基于注意力机制改进的BP-Adaboost多源信息电机故障诊断方法
CN111474476B (zh) 一种电机故障预测方法
Yu et al. Fault diagnosis of rolling element bearing using multi-scale Lempel-Ziv complexity and mahalanobis distance criterion
CN112067298A (zh) 一种基于层次全局模糊熵的滚动轴承故障诊断方法
CN115935187B (zh) 基于核敏感度对齐网络的变工况下机械故障诊断方法
CN116952554A (zh) 基于图卷积网络的多传感器机械设备故障诊断方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant