CN114004880B - 双目相机的点云和强反光目标实时定位方法 - Google Patents

双目相机的点云和强反光目标实时定位方法 Download PDF

Info

Publication number
CN114004880B
CN114004880B CN202111263387.6A CN202111263387A CN114004880B CN 114004880 B CN114004880 B CN 114004880B CN 202111263387 A CN202111263387 A CN 202111263387A CN 114004880 B CN114004880 B CN 114004880B
Authority
CN
China
Prior art keywords
binocular camera
depth information
point
image
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111263387.6A
Other languages
English (en)
Other versions
CN114004880A (zh
Inventor
龚启勇
幸浩洋
黄晓琦
吕粟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202111263387.6A priority Critical patent/CN114004880B/zh
Publication of CN114004880A publication Critical patent/CN114004880A/zh
Application granted granted Critical
Publication of CN114004880B publication Critical patent/CN114004880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/66Analysis of geometric attributes of image moments or centre of gravity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种双目相机的点云和强反光目标实时定位方法,属一种结构光物体目标定位方法,该方法为双目相机与RGB相机启动后,结构光与照明光交替投射目标,双目相机隔帧交替曝光,一帧用于采集具有结构光纹理的红外结构像,一帧用于高反光物体定位;所述高反光物体定位为通过RGB相机所采集到的RGB图像进行高反光物体的识别计数。在本方法中通过拍摄视角相同的双目相机与RGB相机分别采集RGB图像与红外结构像,以高反光物体的边缘或区域中心作为特征点建立点对关系,进而获得高反光物体的深度信息,融合红外结构像中其它物体的深度信息,依次进行红外结构像中高反光物体以及非高反光物体的三维坐标配准,进而完成目标的同步实时定位。

Description

双目相机的点云和强反光目标实时定位方法
技术领域
本发明涉及一种结构光物体目标定位方法,更具体的说,本发明主要涉及一种双目相机的点云和强反光目标实时定位方法。
背景技术
在医学手术或其它治疗中,需要利用影像学数据和光学三维成像数据配合进行手术器械或治疗装置的导航,实时测量出手术器械或治疗器械相对于器官或病灶的空间位置,使得医生可基于此进行精准的手术或治疗。目前光学三维成像数据的获取主要依赖深度相机,而深度相机的主要工作方式有双目非结构光深度相机和双目结构光深度相机以及TOF相机等几种类型。其中双目结构光深度相机(结构光RGBD相机)基于已知的镜头焦距、极线视差等参数并通过极限方程式即可获得图像中物体的深度信息。此类相机在使用过程中,对于为解决平面纯净背景无法提供双目匹配特征点和对环境光敏感等问题,在双目相机基础上增加红外发射器投射已知图案。但是,现有红外结构光RGBD相机有一个缺点,即因为对高反光物体表面结构光不能稳定投射图案成像,造成高反光物体无法获得深度信息,因而有必要针对双目结构光深度相机对于具有高反光物体的图像目标定位方法作进一步的研究和改进。
发明内容
本发明的目的之一在于解决上述不足,提供一种双目相机的点云和强反光目标实时定位方法,以期望解决现有技术中双目结构光深度相机对高反光物体表面结构光不能稳定投射图案成像,造成高反光物体无法获得深度信息等技术问题。
为解决上述的技术问题,本发明采用以下技术方案:
本发明所提供的一种基于主动式双目相机的点云和强反光目标实时定位方法,所述的方法包括如下步骤:
步骤A、双目相机与RGB相机启动后,结构光与照明光交替投射目标,双目相机隔帧交替曝光,一帧用于采集具有结构光纹理的红外结构像,一帧用于高反光物体定位,如此交替;所述高反光物体定位为通过RGB相机所采集到的RGB图像进行高反光物体的识别计数;
步骤B、在红外结构像中对应的位置建立高反光物体的中心点或边缘点,在通过极限约束建立点对关系,三角测距式计算得到高反光物体的深度信息;
步骤C、将高反光物体的深度信息与红外结构像中其它物体的深度信息融合,然后结合红外结构像中物体的二维坐标一并传输至下位机。
作为优选,进一步的技术方案是:所述目标图像中物体的二维坐标为根据双目相机的镜头预先标定的像素大小,以及镜头之间的物理距离值所确定的X轴与Y轴的值。
更进一步的技术方案是:所述步骤C中其它物体的深度信息,为在步骤A中双目相机启动后,采集红外结构像中除高反光物体外的其它物体的结构光纹理角点,然后建立纹理角点在双目相机镜头画面中的点对关系,再通过所述三角测距公式或求解极线方程计算得到。
更进一步的技术方案是:所述三角测距公式为:
Figure BDA0003326365050000021
式中,Z为深度信息,d为视差,B为双目相机镜头之间的物理距离值,f为双目相机的镜头焦距,xl与xr分别为双目相机镜头图像同名点在左边镜头和右边镜头图像传感器上的位置。
更进一步的技术方案是:所述步骤C中的深度信息融合为将高反光物体的深度信息与红外结构像中其它物体的深度信息直接重叠在一起,形成当前双目相机采集的红外结构像中全部物体的深度信息。
更进一步的技术方案是:所述步骤A中高反光物体的形状为球形。
更进一步的技术方案是:所述结构光为红外发射器所投射,所述红外发射器与照明光光源交替启动。
更进一步的技术方案是:所述的方法在FPGA平台上实现。
与现有技术相比,本发明的有益效果之一是:通过拍摄视角相同的双目相机与RGB相机分别采集红外结构像与RGB图像,从而便于识别出目标图像中高反光物体在红外结构像中的位置,并以高反光物体的边缘或区域中心作为特征点建立点对关系,进而获得高反光物体的深度信息,融合红外结构像中其它物体的深度信息,依次进行红外结构像中高反光物体以及非高反光物体的三维坐标配准,进而完成目标的同步实时定位,通过双目相机隔帧曝光可避免照明光过强影响结构光纹理获取,照明光与结构光交替投射目标采用低曝光的模式亦可控制照明光源的发热量,降低环境干扰。
附图说明
图1为用于说明本发明一个实施例的方法流程图;
图2为RGBD相机与双目相机交替曝光的结构图;
图3为用于说明本发明一个实施例中的三角测距式原理图;
图4为用于说明本发明一个实施例的应用方式框图。
具体实施方式
下面结合附图对本发明作进一步阐述。
参考图1所示,本发明的一个实施例是一种双目相机的点云和强反光目标实时定位方法,该方法的实质是在既有结构光双目相机原理基础上,通过RGB成像,利用RGB图像中高反光物体(不局限于球形等)与背景亮度差异进行识别与计数,对非高反光物体采用普通结构光纹理配准极线约束求解深度信息的方法。对于高反光物体,以边缘或区域质心作为特征点对进行配准,再进行单独的深度信息计算,然后再与原图像中的深度信息融合。
支持该方法实现的***采用一个RGB摄像头和两个近红外(850nm)摄像头(即双目相机),分辨率采用1920*1080,另外配备两套光源,一套为红外结构光,用于主动式双目进行纹理补充,进行深度图成像,另一套为环形光源套在左右近红外相机外,用于光球定位。两套光源交替工作,近红外相机一帧用于深度图求解,一帧用于光球定位,相机工作在60fps,各自可达30fps。RGBD成像和光球定位采用隔帧曝光曝光,光球定位采用近红外环形光源,采用低曝光模式,一方面降低环境干扰,另一方面可控制***的发热量。
基于前述的方式,在本实施例中,以反光小球为例对本发明所提供的方法进行说明,其按照如下步骤执行:
步骤S1、双目相机与RGB相机启动后,两者所拍摄的角度相同,可同时得到两个图像,分别为红外结构像(RGBD成像)与常规的RBG图像。即当照明光与结构光交替投射目标时,前述的双目相机交替隔帧曝光,一帧用于采集具有结构光纹理的红外结构像,即RGBD成像,一帧用于反光小球定位,如此循环交替隔帧曝光,具体可参见图2所示,图中A连接线所指的为RGBD成像,B所指的为光球定位,即初始点t为初始曝光。由于在RGB图像中,反光小球的识别更为明显,且照明光不会影响到结构光纹理的采集,因此在本步骤中,前述反光小球定位为通过RGB相机所采集到的RGB图像进行识别与计数;根据连通性判断哪些像素构成反光小球整体,就可以判断有几个反光小球和各个反光小球的质心,一个反光小球高亮像素的横纵坐标求平均就可得到质心;
在本步骤中,关于双目相机的使用与现有的同类双目相机相类似,结构光为红外发射器所投射,从而形成具有结构光纹理的红外结构像,在上述的步骤进行中,前述红外发射器与照明光光源交替启动;
步骤S2、在红外结构像中对应的位置建立反光小球的中心点或边缘点,在双目相机镜头画面中的点对关系,在此处建立点对关系时,选择反光小球的中心点(质心)或者边缘点均可,通过极限约束和三角测距公式计算得到反光小球的深度信息;前述的点对关系是指同一个物体(或者点)在双目左右两个相机两个画面上的两个点;双目相机两个镜头采集到的两张图片上对应的两个反光小球各自的质心就建立了质心点的点对;如果是利用边缘点,建立的就是边缘点对;前述步骤见图1所示右侧的步骤;
步骤S3、将反光小球的深度信息与红外结构像中其它物体的深度信息融合,然后结合红外结构像中物体的二维坐标一并传输至下位机。
在本步骤中,目标图像中物体的二维坐标为根据双目相机的镜头预先标定的像素大小,以及镜头之间的物理距离值所确定的X轴与Y轴的值。并且前述红外结构像中其它物体的深度信息,为在步骤S1中双目相机启动后,采集红外结构像中除反光小球外的其它物体的结构光纹理角点,然后建立纹理角点在双目相机镜头画面中的点对关系,再通过所述三角测距公式或求解极线方程计算得到,即图1左侧所示的步骤。
在本实施例中所应用到的极限约束是一种的结构光深度相机常用的减少特征点对匹配算法计算量的方法。极线约束描述的是当同一个点投影到两个不同视角的图像上时,像点、相机光心在投影模型下形成的约束。
在本实施例中所应用到的三角测距法也是一种的结构光深度相机常用的深度信息计算方式,如图3所示,其一个较为典型的式子如下:
Figure BDA0003326365050000061
其原理如图3所示,对应在上式中,Z为深度信息,d为视差,B为双目相机镜头之间的物理距离值,f为双目相机的镜头焦距,xl与xr分别为在左边镜头和右边镜头图像传感器上的位置。
确切的说,在本实施例中所称的深度信息融合为将反光小球的深度信息与红外结构像中其它物体的深度信息直接重叠在一起,形成当前双目相机采集的红外结构像中全部物体的深度信息。具体而言,深度信息的融合是指有纹理的地方就用纹理建立点对得到深度信息,无法形成结构光纹理的地方就用质心/边缘求解得到深度信息,两者叠在一起,同时得到有纹理地方的空间信息三维坐标和质心/边缘点三维坐标;因为在应用中双目相机已被标定,即两相机的间距,相机传感器像素大小和镜头等成像参数已经和一定距离上物理空间建立明确关系,在此基础上,求解上述类型的三角测距式可以直接得到三维坐标。
参考图4所示,在本发明的一个较佳应用例中,发明人考虑到现有深度相机主流都是在FPGA平台上实现的深度计算算法,因此上述方法实现的载体采用FPGA S OC平台,具体的模块框图如图4所示,即采用逻辑单元和处理核异步计算方案。计算平台同时为可以为PC机或基于ARM的嵌入式计算机。
需要说明的是,上述的极线约束和三角测距公式其已在本领域中存在应用,故对于上述约束和公式的原理以及求解的方式,不再进行详述。
除上述以外,还需要说明的是,在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明的范围内。
尽管这里参照本发明的多个解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开、附图和权利要求的范围内,可以对主题组合布局的组成部件和/或布局进行多种变型和改进。除了对组成部件和/或布局进行的变型和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

Claims (7)

1.一种双目相机的点云和强反光目标实时定位方法,其特征在于所述的方法包括如下步骤:
步骤A、双目相机与RGB相机启动后,结构光与照明光交替投射目标,双目相机隔帧交替曝光,一帧用于采集具有结构光纹理的红外结构像,一帧用于高反光物体定位;所述高反光物体定位为通过RGB相机所采集到的RGB图像进行高反光物体的识别计数;
步骤B、在红外结构像中对应的位置建立高反光物体的中心点或边缘点,通过极限约束建立点对关系,三角测距公式计算得到高反光物体的深度信息;
步骤C、将高反光物体的深度信息与红外结构像中其它物体的深度信息融合,然后结合红外结构像中物体的二维坐标一并传输至下位机;所述其它物体的深度信息,为在步骤A中双目相机启动后,采集红外结构像中除高反光物体外的其它物体的结构光纹理角点,然后建立纹理角点在双目相机镜头画面中的点对关系,再通过所述三角测距公式或求解极线方程计算得到。
2.根据权利要求1所述的双目相机的点云和强反光目标实时定位方法,其特征在于:所述步骤C中目标图像中物体的二维坐标为根据双目相机的镜头预先标定的像素大小,以及镜头之间的物理距离值所确定的X轴与Y轴的值。
3.根据权利要求1所述的双目相机的点云和强反光目标实时定位方法,其特征在于所述的三角测距公式为:
Figure FDA0004134935080000011
式中,Z为深度信息,d为视差,B为双目相机镜头之间的物理距离值,f为双目相机的镜头焦距,xl与xr分别为双目相机镜头图像同名点在左边镜头和右边镜头图像传感器上的位置。
4.根据权利要求1或2所述的双目相机的点云和强反光目标实时定位方法,其特征在于:所述步骤C中的深度信息融合为将高反光物体的深度信息与红外结构像中其它物体的深度信息直接重叠在一起,形成当前双目相机采集的红外结构像中全部物体的深度信息。
5.根据权利要求1或2所述的双目相机的点云和强反光目标实时定位方法,其特征在于:所述步骤A中高反光物体的形状为球形。
6.根据权利要求1或2所述的双目相机的点云和强反光目标实时定位方法,其特征在于:所述结构光为红外发射器所投射,所述红外发射器与照明光光源交替启动。
7.根据权利要求1或2所述的双目相机的点云和强反光目标实时定位方法,其特征在于:所述的方法在FPGA平台上实现。
CN202111263387.6A 2021-04-08 2021-04-08 双目相机的点云和强反光目标实时定位方法 Active CN114004880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111263387.6A CN114004880B (zh) 2021-04-08 2021-04-08 双目相机的点云和强反光目标实时定位方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111263387.6A CN114004880B (zh) 2021-04-08 2021-04-08 双目相机的点云和强反光目标实时定位方法
CN202110375959.3A CN113052898B (zh) 2021-04-08 2021-04-08 基于主动式双目相机的点云和强反光目标实时定位方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202110375959.3A Division CN113052898B (zh) 2021-04-08 2021-04-08 基于主动式双目相机的点云和强反光目标实时定位方法

Publications (2)

Publication Number Publication Date
CN114004880A CN114004880A (zh) 2022-02-01
CN114004880B true CN114004880B (zh) 2023-04-25

Family

ID=76519395

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110375959.3A Active CN113052898B (zh) 2021-04-08 2021-04-08 基于主动式双目相机的点云和强反光目标实时定位方法
CN202111263387.6A Active CN114004880B (zh) 2021-04-08 2021-04-08 双目相机的点云和强反光目标实时定位方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110375959.3A Active CN113052898B (zh) 2021-04-08 2021-04-08 基于主动式双目相机的点云和强反光目标实时定位方法

Country Status (1)

Country Link
CN (2) CN113052898B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115471874B (zh) * 2022-10-28 2023-02-07 山东新众通信息科技有限公司 基于监控视频的施工现场危险行为识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297491A (zh) * 2019-07-02 2019-10-01 湖南海森格诺信息技术有限公司 基于多个结构光双目ir相机的语义导航方法及其***
CN110533708A (zh) * 2019-08-28 2019-12-03 维沃移动通信有限公司 一种电子设备及深度信息获取方法
CN111012370A (zh) * 2019-12-25 2020-04-17 四川大学华西医院 基于ai的x射线成像分析方法、装置及可读存储介质
CN111657947A (zh) * 2020-05-21 2020-09-15 四川大学华西医院 一种神经调控靶区的定位方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088116A (en) * 1998-03-11 2000-07-11 Pfanstiehl; John Quality of finish measurement optical instrument
WO2012054231A2 (en) * 2010-10-04 2012-04-26 Gerard Dirk Smits System and method for 3-d projection and enhancements for interactivity
CN104111036A (zh) * 2013-04-18 2014-10-22 中国科学院沈阳自动化研究所 一种基于双目视觉的镜面物体测量装置及方法
CN103868460B (zh) * 2014-03-13 2016-10-05 桂林电子科技大学 基于视差优化算法的双目立体视觉自动测量方法
CN104905764B (zh) * 2015-06-08 2017-09-12 四川大学华西医院 一种基于fpga的高速视线跟踪方法
CN104905765B (zh) * 2015-06-08 2017-01-18 四川大学华西医院 眼动跟踪中基于CamShift算法的FPGA实现方法
CN107123156A (zh) * 2017-03-10 2017-09-01 西北工业大学 一种与双目立体视觉相结合的主动光源投影三维重构方法
CN107948520A (zh) * 2017-11-30 2018-04-20 广东欧珀移动通信有限公司 图像处理方法和装置
CN108470373B (zh) * 2018-02-14 2019-06-04 天目爱视(北京)科技有限公司 一种基于红外的3d四维数据采集方法及装置
CN108564041B (zh) * 2018-04-17 2020-07-24 云从科技集团股份有限公司 一种基于rgbd相机的人脸检测和修复方法
CN109978953A (zh) * 2019-01-22 2019-07-05 四川大学 用于目标三维定位的方法及***
CN110021035B (zh) * 2019-04-12 2020-12-11 哈尔滨工业大学 Kinect深度相机的标记物及基于该标记物的虚拟标记物跟踪方法
CN110390719B (zh) * 2019-05-07 2023-02-24 香港光云科技有限公司 基于飞行时间点云重建设备
CN110097024B (zh) * 2019-05-13 2020-12-25 河北工业大学 一种移乘搬运护理机器人的人体姿态视觉识别方法
CN110349213B (zh) * 2019-06-28 2023-12-12 Oppo广东移动通信有限公司 基于深度信息的位姿确定方法、装置、介质与电子设备
CN110349251B (zh) * 2019-06-28 2020-06-16 深圳数位传媒科技有限公司 一种基于双目相机的三维重建方法及装置
CN112465905A (zh) * 2019-09-06 2021-03-09 四川大学华西医院 基于深度学习的磁共振成像数据的特征脑区定位方法
CN111028295A (zh) * 2019-10-23 2020-04-17 武汉纺织大学 一种基于编码结构光和双目的3d成像方法
CN111121722A (zh) * 2019-12-13 2020-05-08 南京理工大学 结合激光点阵和偏振视觉的双目三维成像方法
CN111336947A (zh) * 2020-03-02 2020-06-26 南昌航空大学 一种基于双目点云融合的镜面类物体线激光扫描方法
CN111754573B (zh) * 2020-05-19 2024-05-10 新拓三维技术(深圳)有限公司 一种扫描方法及***
CN111750806B (zh) * 2020-07-20 2021-10-08 西安交通大学 一种多视角三维测量***及方法
CN111951376B (zh) * 2020-07-28 2023-04-07 中国科学院深圳先进技术研究院 融合结构光和光度学的三维对象重建方法及终端设备
CN111950426A (zh) * 2020-08-06 2020-11-17 东软睿驰汽车技术(沈阳)有限公司 目标检测方法、装置及运载工具
CN112053432B (zh) * 2020-09-15 2024-03-26 成都贝施美医疗科技股份有限公司 一种基于结构光与偏振的双目视觉三维重建方法
CN112254670B (zh) * 2020-10-15 2022-08-12 天目爱视(北京)科技有限公司 一种基于光扫描和智能视觉融合的3d信息采集设备
CN112308014B (zh) * 2020-11-18 2024-05-14 成都集思鸣智科技有限公司 双眼瞳孔与角膜反光点高速精确搜索定位方法
CN112595262B (zh) * 2020-12-08 2022-12-16 广东省科学院智能制造研究所 一种基于双目结构光的高反光表面工件深度图像获取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297491A (zh) * 2019-07-02 2019-10-01 湖南海森格诺信息技术有限公司 基于多个结构光双目ir相机的语义导航方法及其***
CN110533708A (zh) * 2019-08-28 2019-12-03 维沃移动通信有限公司 一种电子设备及深度信息获取方法
CN111012370A (zh) * 2019-12-25 2020-04-17 四川大学华西医院 基于ai的x射线成像分析方法、装置及可读存储介质
CN111657947A (zh) * 2020-05-21 2020-09-15 四川大学华西医院 一种神经调控靶区的定位方法

Also Published As

Publication number Publication date
CN114004880A (zh) 2022-02-01
CN113052898A (zh) 2021-06-29
CN113052898B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN106595528B (zh) 一种基于数字散斑的远心显微双目立体视觉测量方法
CN110044300A (zh) 基于激光器的两栖三维视觉探测装置及探测方法
TWI555379B (zh) 一種全景魚眼相機影像校正、合成與景深重建方法與其系統
JP3624353B2 (ja) 3次元形状計測方法およびその装置
CA2875820C (en) 3-d scanning and positioning system
CN111160136B (zh) 一种标准化3d信息采集测量方法及***
CN108388341B (zh) 一种基于红外摄像机-可见光投影仪的人机交互***及装置
CN114998499A (zh) 一种基于线激光振镜扫描的双目三维重建方法及***
CN105004324B (zh) 一种具有三角测距功能的单目视觉传感器
WO2018028152A1 (zh) 一种图像采集设备、虚拟现实设备
CN111127540B (zh) 一种三维虚拟空间自动测距方法及***
CN109242898A (zh) 一种基于图像序列的三维建模方法及***
CN108981608A (zh) 一种新型线结构光视觉***及标定方法
CN114004880B (zh) 双目相机的点云和强反光目标实时定位方法
CN116188558A (zh) 基于双目视觉的立体摄影测量方法
CN110909571B (zh) 一种高精度面部识别空间定位方法
CN212256370U (zh) 光学式运动捕捉***
CN206300653U (zh) 一种虚拟现实***中的空间定位装置
Yamauchi et al. Calibration of a structured light system by observing planar object from unknown viewpoints
CN111862170A (zh) 光学式运动捕捉***及方法
CN108090930A (zh) 基于双目立体相机的障碍物视觉检测***及方法
CN107063131B (zh) 一种时间序列相关无效测量点去除方法及***
WO2022111104A1 (zh) 一种多翻滚角度的智能视觉3d信息采集设备
CN212163540U (zh) 全向立体视觉的摄像机配置***
CN114155349A (zh) 一种三维建图方法、三维建图装置及机器人

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant