WO2018028152A1 - 一种图像采集设备、虚拟现实设备 - Google Patents

一种图像采集设备、虚拟现实设备 Download PDF

Info

Publication number
WO2018028152A1
WO2018028152A1 PCT/CN2017/071110 CN2017071110W WO2018028152A1 WO 2018028152 A1 WO2018028152 A1 WO 2018028152A1 CN 2017071110 W CN2017071110 W CN 2017071110W WO 2018028152 A1 WO2018028152 A1 WO 2018028152A1
Authority
WO
WIPO (PCT)
Prior art keywords
depth
module
infrared
field information
collected
Prior art date
Application number
PCT/CN2017/071110
Other languages
English (en)
French (fr)
Inventor
高艳朋
李建华
Original Assignee
信利光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信利光电股份有限公司 filed Critical 信利光电股份有限公司
Publication of WO2018028152A1 publication Critical patent/WO2018028152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • 3D image acquisition products use two cameras for image acquisition. Two cameras are used to simulate the left and right parallax. Two images of binocular parallax in the same scene are captured from different viewpoints by two cameras, and binocular parallax is restored. The depth of the scene is obtained, and then the image is sent to the image splicer, and the image is spliced and transmitted to the 3D display for display, and finally the 3D effect image is obtained.
  • the present invention provides an image acquisition device and a virtual reality device, so as to solve the problem that the accuracy of the 3D image acquisition device in the prior art is poor, and the 3D effect is not obvious.
  • the present invention provides the following technical solutions:
  • An image acquisition device comprising:
  • a two-dimensional image capturing module for collecting a two-dimensional image of an object to be collected
  • a depth of field information camera module collects depth of field information of the object to be collected by using a structured light method
  • the two-dimensional image capturing module and the depth-of-depth information camera module are located on the same side of the object to be collected, and are used to capture the same image of the object to be collected, and the two-dimensional image capturing module and The depth of field information camera module is the same distance from the object to be collected.
  • the depth of field information camera module comprises: an infrared transmitting module, an infrared receiving module, and a depth of field processing chip;
  • the infrared emitting module emits infrared light and illuminates the object to be collected
  • the infrared receiving module receives the reflected infrared light reflected by the object to be collected, and sends the reflected infrared light to the depth of field processing chip;
  • the depth of field processing chip receives the reflected infrared light and forms depth of field information.
  • the distance between the two-dimensional image capturing module and the infrared receiving module is smaller than the distance between the eyes of the person.
  • the two-dimensional image capturing module is in close contact with the infrared receiving module.
  • the infrared light emitted by the infrared emitting module is a lattice surface light structure in the form of a grid.
  • the infrared light emitted by the infrared emitting module is line structured light.
  • the infrared receiving module is an infrared receiving camera, and the structure thereof comprises:
  • Lens pedestal, filter, image sensor, flexible printed circuit board
  • the filter is an infrared filter that transmits infrared light to filter out other light.
  • the present invention also provides a virtual reality device, including a virtual reality image capturing device, wherein the virtual reality image capturing device is the image capturing device according to any of the above.
  • the image capture device and the virtual reality device provided by the present invention wherein the image capture device includes a two-dimensional image capture module and a depth of field information camera module, and the two-dimensional image capture module is used for Collecting a two-dimensional image of the object to be collected, and the depth information camera module is configured to collect depth information of the object to be collected, where the depth information camera module and the two-dimensional image camera module are located on the same side of the object to be collected For photographing the object to be collected The same image, and the distance between the two is the same as the distance of the object to be collected, because the depth of field information camera module uses the structured light method to collect the depth of field information of the object to be collected, thereby obtaining accurate depth of field information, and obtaining the depth of field information and The acquired two-dimensional image of the object to be collected is post-synthesized to obtain a 3D effect.
  • the image acquisition device provided by the invention can obtain more accurate
  • FIG. 1 is a schematic diagram of a principle of acquiring an image by an image acquisition device provided by the present application
  • FIG. 2 is a schematic structural diagram of a two-dimensional image capturing module provided by the present application.
  • FIG. 3 is a schematic diagram of a line structure light collection image provided by the present application.
  • FIG. 4 is a schematic diagram of a surface structure light collection image provided by the present application.
  • the 3D image capturing device in the prior art uses two two-dimensional image cameras to shoot from different angles, and the shooting distance recognition accuracy of the object is poor because two two-dimensional image camera ranging
  • the principle is to measure the distance according to the number of pixel offsets. The farther the distance is, the pixel offset is not obvious, and the difference of the test distance is not obvious. If the distance between the object and the camera is 5 meters or 10 meters, the image taken by the camera may be Both are 8 meters or 9 meters. When the 3D image is formed, the synthetic 3D effect is not obvious due to the inaccurate depth information.
  • the present invention provides an image capturing device, as shown in FIG. 1 , comprising: a two-dimensional image capturing module 1 for collecting a two-dimensional image of an object to be collected 3; a depth of field information camera module 2, the depth of field information camera module
  • the group 2 uses the structured light method to acquire the depth of field information of the object to be collected 3; wherein the two-dimensional image capturing module 1 and the depth of field information camera module 2 are located on the same side of the object to be collected, and are used for shooting.
  • the same image of the object to be collected, and the distance between the two-dimensional image capturing module 1 and the depth of field information camera module 2 is the same as the distance from the object 3 to be collected.
  • the specific location between the two-dimensional image capturing module and the depth of field information camera module is not limited, as long as the two-dimensional image capturing module and the depth of field information camera module
  • the distance from the object to be collected 3 is the same, and the same position of the object to be collected can be simultaneously photographed. That is, the optical axis of the received light of the depth information camera module may be parallel to the lens optical axis of the two-dimensional image capturing module.
  • the depth of field information camera module may be located at any position 360° around the optical axis of the lens of the two-dimensional image capturing module.
  • the two-dimensional image capturing module in the embodiment is a camera module capable of capturing a two-dimensional image, and is preferably a camera that normally captures a two-dimensional image.
  • the structure of the two-dimensional image capturing module in this embodiment is as shown in the figure.
  • the main structure includes: a lens 12, a motor 13, a filter 14, a susceptor 15, and an image sensor 18, wherein the image sensor is fabricated on a printed circuit board (PCB) or On the flexible printed circuit (FPC), as shown in FIG. 2, the PCB or the FPC is further provided with a structure such as a memory 16, a capacitor or a resistor 17, a driving chip 19, etc., through the soft and hard board 110.
  • the connector 111 is connected to other structures.
  • a protective film 11 may be disposed on the outside of the lens 12.
  • the filter 14 is a filter that can pass visible light but can filter infrared light to prevent image distortion caused by infrared light.
  • the above is only the main result of a camera that normally takes a two-dimensional picture provided in this embodiment.
  • the specific structure of the two-dimensional image capturing module is not limited in this embodiment, as long as a clear two-dimensional image of the object to be collected can be obtained.
  • the depth of field information camera module uses the structured light method to obtain the depth of field information of the object to be collected.
  • the structured light method (Structured Light) is an active optical measurement technology, and the basic principle is that the structured light is composed of structured light.
  • the projector projects a controllable light spot, a light strip or a smooth surface structure on the surface of the object to be measured, and obtains an image by an image sensor (such as a camera), and calculates a three-dimensional coordinate of the object by using a triangular principle through a system geometric relationship.
  • the structured light measurement method has the characteristics of simple calculation, small volume, low price, large scale, easy installation and maintenance, and is widely used in actual three-dimensional contour measurement.
  • the structured light method is divided into three types: light point structured light, line structured light, and surface structured light.
  • the spot-type structured light measurement method requires measurement by scanning the object point by point, and the time required for image pickup and image processing increases sharply as the object to be measured increases, making it difficult to perform real-time measurement.
  • By replacing the point source with line structured light only one-dimensional scanning is required to obtain the depth map of the object, and the time for image acquisition and image processing is greatly reduced.
  • FIG. 3 is a schematic diagram of the line structure light.
  • the structure light source 21 emits the structured light 4 to the surface of the object 3 to be collected, and forms a light bar projection on the surface of the object 3 to be collected, and the picture 6 is captured by the structured light camera 22, An image 5 including depth of field information is formed thereon, and an image 5 containing the depth of field information is processed and calculated to obtain a depth of field information of the object 3 to be collected. Then, the auxiliary mechanical device is used to rotate the light bar projection portion, thereby completing the scanning of the entire object to be measured, thereby obtaining the depth information of the entire object.
  • the two-dimensional structured light pattern is projected onto the surface of the object, so that the three-dimensional contour measurement can be realized without scanning, and the measurement speed is fast, and the most common method in the smooth surface light is the projection grating stripe.
  • the schematic light source 21 emits a projection grating stripe to the surface of the object to be collected 3.
  • the camera module 22 captures the stripe information of the projection grating, and the projection grating stripe is deformed after passing through the three-dimensional object.
  • the depth of field information of the three-dimensional object is obtained by obtaining the deformed projection grating stripe and performing phase calculation on the obtained deformed projection grating stripe.
  • the depth of field information camera module can accurately obtain the depth of field information by using the structured light method.
  • the structure of the depth information camera module is preferably used in this embodiment.
  • the light method is a surface structured light mode, that is, the light emitted by the structure light source of the depth of field information camera module is surface structured light.
  • the depth information camera module and the two-dimensional image camera module are to be The objects are collected at the same distance and are located on the same side of the object to be collected for capturing the same image of the object to be collected.
  • the depth of field information camera module uses the structured light method to collect the depth information of the object to be collected, thereby obtaining accurate depth of field information, and obtaining the obtained depth information and the acquired object to be collected.
  • the 2D image is post-synthesized to produce a 3D effect.
  • the image acquisition device provided by the present application can obtain more accurate depth information of the object to be collected, thereby obtaining a better 3D effect. .
  • the 3D image capturing device in the prior art uses two two-dimensional image cameras to shoot from different angles, and must simulate the distance between the two eyes to obtain images of different angles, and finally, through synthesis, two different The images of the angles are collectively referred to as 3D renderings.
  • the distance between the eyes of the average person is about 6.5 cm to 8.0 cm. Therefore, the distance between the two two-dimensional image cameras used in the prior art 3D image capturing device should be 6.5 cm to 8.0 cm, and the distance cannot be Too small, not too big. Since the distance between the two two-dimensional image cameras cannot be smaller, the 3D image capturing device in the prior art has a large volume, which is disadvantageous for installation in a device with a small space.
  • VR is short for Virtual Reality - Virtual Reality.
  • VR technology is a kind of computer application and human-computer interaction technology. It applies virtual information to the real world by means of computer and visualization technology. The real environment and virtual objects are superimposed on the same picture or space in real time.
  • VR technology uses computer simulation to generate a virtual world of three dimensions, providing users with simulations of visual, auditory, tactile and other senses, so that users are as immersive as they are, therefore, VR technology for 3D
  • the effect requirements are more stringent, and since it is currently a head-mounted VR device, in order to prevent the user from bringing the VR device, the VR device is more and more demanding due to the excessively large VR device, resulting in a poor user experience. .
  • the image capturing device provided in this embodiment as shown in FIG. 3, the two-dimensional image capturing module 1 and the depth-of-field information camera module are located on the same side of the object to be collected, and are used to capture the same object to be collected.
  • An image, and the distance between the two-dimensional image capturing module 1 and the depth-of-depth information camera module is the same as the distance from the object 3 to be collected. That is, the closer the distance between the two-dimensional image capturing module and the camera 22 of the depth-of-depth information camera module, the more consistent the obtained images, and the better the 3D effect of the later synthesis.
  • VR devices it is used as a VR image acquisition device.
  • an image capturing device including: a two-dimensional image capturing module for collecting a two-dimensional image of an object to be collected; a depth of field information camera module, and the depth of field information camera module adopting a structured light method Collecting the depth of field information of the object to be collected; wherein the two-dimensional image capturing module and the depth of field information camera module are located on the same side of the object to be collected, and are used to capture the same image of the object to be collected. And the distance between the two-dimensional image capturing module and the depth of field information camera module is the same as the distance from the object to be collected.
  • the depth of field information camera module in the embodiment includes: an infrared transmitting module, an infrared receiving module, and a depth of field processing chip; the infrared emitting module emits infrared light and is irradiated onto the object to be collected; the infrared receiving The module receives the reflected infrared light reflected by the object to be collected, and sends the reflected infrared light to the depth of field processing chip; the depth of field processing chip receives the reflected infrared light and forms depth of field information.
  • the infrared emitting module is a structured light source capable of emitting infrared structured light, and the infrared structured light may be point structured light, line structured light or surface structured light.
  • the infrared emitted by the infrared transmitting module in this embodiment is red.
  • the external light is a line structure light; further, the surface structure light does not need to be scanned with respect to the line structure light.
  • the infrared light emitted by the infrared emission module in the embodiment is a surface structure light, and more preferably, the implementation
  • the infrared light surface structured light emitted by the infrared emitting module is a lattice surface structured light in the form of a grid, so that the subsequent depth of field information can be more accurate.
  • the infrared receiving module in the embodiment may be any infrared receiving camera capable of receiving infrared light
  • the main structure includes: a lens, a base, a filter, an image sensor, and a flexible printed circuit board; wherein the filter is Infrared filters that transmit infrared light to filter out other light.
  • the infrared receiving module has the same structure as the two-dimensional image capturing module, except that the filter of the infrared receiving module is filtered by infrared light.
  • the filter of the two-dimensional image camera module is a filter that cannot pass infrared light, so that the two camera modules do not affect each other, and can work independently to obtain different image information respectively.
  • the image acquisition device provided in this embodiment has a better distance between the two-dimensional image capturing module and the depth-of-depth information camera module. Therefore, in the embodiment, the two-dimensional image capturing module and the two-dimensional image capturing module are preferably The distance between the infrared receiving modules is less than the distance between the eyes of the person, where the distance between the eyes of the person includes, but is not limited to, 6.5 cm-8 cm. More preferably, the two-dimensional image capturing module in the embodiment can also be closely attached to the depth of field information camera module.
  • the image capturing device includes a two-dimensional image capturing module and a depth of field information camera module, wherein the depth of field information camera module collects the depth of field information of the object to be collected by using a structured light method, thereby obtaining a relatively Accurate depth of field information, in order to synthesize the two-dimensional image of the object to be collected collected by the two-dimensional camera module in the later stage, and obtain a better 3D effect.
  • the depth of field information camera module uses the infrared emitting module to emit infrared light, and uses the infrared receiving module to collect infrared light, so that the two-dimensional image capturing module can work independently without affecting each other.
  • the infrared light contains high light energy, and after being reflected by the object to be collected, the energy of the reflected light is also high, so that the collection of depth information is guaranteed.
  • Yet another embodiment of the present application provides a virtual reality device that uses a computer simulation to generate a virtual world of three dimensions, providing a user with a simulation of visual, auditory, tactile, and the like, so that the user is as immersive as the immersive.
  • the virtual reality device includes a 3D image capturing device, a 3D image synthesizing device, and a 3D image display device, wherein the 3D image capturing device is the image capturing device described in the above embodiments.
  • the depth of field information camera module uses a structured light method to collect depth of field information of an object to be collected, thereby obtaining accurate depth of field information.
  • the obtained depth information and the acquired two-dimensional image of the object to be collected are post-synthesized to obtain a 3D effect.
  • the image acquisition device provided by the present application can obtain more accurate depth information of the object to be collected, thereby obtaining a better 3D effect.
  • the virtual reality device has a better 3D effect and a better user experience.
  • the distance requirement between the two-dimensional image camera module and the depth of field information camera module is as close as possible, so that the two-dimensional image camera module and the depth of field information camera module
  • the captured images of the objects to be collected can be consistent, so the smaller the distance between the two is, the better the volume can be compared with the prior art 3D image capturing device, so that it can be installed more conveniently.
  • a virtual reality device In a virtual reality device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

本申请提供一种图像采集设备和虚拟现实设备,其中,图像采集设备包括二维图像摄像模组和景深信息摄像模组,二维图像摄像模组用于采集待采集物体的二维图像,而景深信息摄像模组用于采集待采集物体的景深信息,景深信息摄像模组与二维图像摄像模组位于待采集物体的同一侧,用于拍摄所述待采集物体的同一图像,且二者距离待采集物体的距离相同,由于景深信息摄像模组采用结构光方法采集待采集物体的景深信息,从而能够得到精确的景深信息;相对于现有技术中采用两个二维图像摄像模组模拟人眼获得的图像信息,本发明提供的图像采集设备能够得到更加准确的待采集物体的景深信息,从而能够得到更好的3D效果。

Description

一种图像采集设备、虚拟现实设备 技术领域
本申请要求于2016年8月12日提交中国专利局、申请号为201610664075.9、发明名称为“一种图像采集设备、虚拟现实设备”的国内申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
近年来随着计算机技术与通信技术的快速发展,人们对数字视频图像显示技术提出更高的要求,传统的2D显示已经不能满足人们对于画面逼真感的追求,人们需要在观看图像时,有一种真切的身临其境的感觉,于是3D的显示效果已经成为一种趋势。
目前3D影像采集产品大多采用两个摄像头进行影像采集,用两个摄像头模拟左右两眼视差,通过两个摄像头从不同视点拍摄得到同一场景的两幅存在双目视差的图像,利用双目视差恢复得到场景深度,再将图像发给图像拼接器,图像拼接后传递给3D显示器进行显示,最终得到3D效果影像。
但由于现有技术中的3D影像采集设备采集图像的精度较差,得到的3D效果不明显。
发明内容
有鉴于此,本发明提供一种图像采集设备、虚拟现实设备,以解决现有技术中3D影像采集设备采集图像的精度较差,得到的3D效果不明显的问题。
为实现上述目的,本发明提供如下技术方案:
一种图像采集设备,包括:
二维图像摄像模组,用于采集待采集物体的二维图片;
景深信息摄像模组,所述景深信息摄像模组采用结构光方法采集所述待采集物体的景深信息;
其中,所述二维图像摄像模组与所述景深信息摄像模组位于所述待采集物体的同一侧,用于拍摄所述待采集物体的同一图像,且所述二维图像摄像模组与所述景深信息摄像模组距离所述待采集物体的距离相同。
优选地,所述景深信息摄像模组包括:红外发射模块、红外接收模块、景深处理芯片;
所述红外发射模块发射红外光,照射到所述待采集物体上;
所述红外接收模块接收经所述待采集物体反射的反射红外光,并将所述反射红外光发送至所述景深处理芯片;
所述景深处理芯片接收所述反射红外光,并形成景深信息。
优选地,所述二维图像摄像模组与所述红外接收模块之间的距离小于人的两眼之间的距离。
优选地,所述二维图像摄像模组紧贴所述红外接收模块。
优选地,所述红外发射模块发射的红外光为网格形式的点阵面光结构。
优选地,所述红外发射模块发射的红外光为线结构光。
优选地,所述红外接收模块为红外接收摄像头,其结构包括:
镜头、基座、滤光片、图像传感器、柔性印刷线路板;
其中,所述滤光片为透射红外光过滤掉其他光的红外滤光片。
本发明还提供一种虚拟现实设备,包括虚拟现实影像采集设备,所述虚拟现实影像采集设备为上面任意一项所述的图像采集设备。
经由上述的技术方案可知,本发明提供的图像采集设备和虚拟现实设备,其中,所述图像采集设备包括二维图像摄像模组和景深信息摄像模组,所述二维图像摄像模组用于采集待采集物体的二维图像,而所述景深信息摄像模组用于采集待采集物体的景深信息,所述景深信息摄像模组与所述二维图像摄像模组位于待采集物体的同一侧,用于拍摄所述待采集物体的 同一图像,且二者距离所述待采集物体的距离相同,由于所述景深信息摄像模组采用结构光方法采集待采集物体的景深信息,从而能够得到精确的景深信息,将得到的景深信息与获取的待采集物体的二维图像经过后期合成制作,得到3D效果。相对于现有技术中采用两个二维图像摄像模组模拟人眼获得的图像信息,本发明提供的图像采集设备能够得到更加准确的待采集物体的景深信息,从而能够得到更好的3D效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请提供的图像采集设备采集图像原理示意图;
图2为本申请提供的二维图像摄像模组结构示意图;
图3为本申请提供的线结构光采集图像示意图;
图4为本申请提供的面结构光采集图像示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有技术中的3D影像采集装置采用两个二维图像摄像头,从不同角度拍摄,对物体的拍摄距离识别精度较差,因为两个二维图像摄像头测距 的原理是依据像素偏移个数来测量距离的,距离越远,像素偏移不明显,测试的距离差异不明显,如物体与摄像头的距离为5米或10米,摄像头拍摄出的图像可能均为8米或9米,在形成3D图像时,由于景深信息不准确,造成合成的3D效果不明显的现象。
本发明提供一种图像采集设备,如图1所示,包括:二维图像摄像模组1,用于采集待采集物体3的二维图片;景深信息摄像模组2,所述景深信息摄像模组2采用结构光方法采集所述待采集物体3的景深信息;其中,所述二维图像摄像模组1与所述景深信息摄像模组2位于所述待采集物体的同一侧,用于拍摄所述待采集物体的同一图像,且所述二维图像摄像模组1与所述景深信息摄像模组2距离所述待采集物体3的距离相同。
需要说明的是,本实施例中不限定所述二维图像摄像模组与所述景深信息摄像模组之间的具***置,只要所述二维图像摄像模组与所述景深信息摄像模组距离所述待采集物体3的距离相同,且能够同时拍摄待采集物体的同一位置即可。即所述景深信息摄像模组的接收光的光轴与所述二维图像摄像模组的镜头光轴平行即可。所述景深信息摄像模组可以位于绕所述二维图像摄像模组的镜头光轴360°的任意位置。
本实施例中所述二维图像摄像模组即为能够拍摄二维图像的摄像模组,优选为正常拍摄二维图片的摄像头,本实施例中所述二维图像摄像模组的结构如图2所示,主要结构包括:镜头12、马达13、滤光片14、基座15和图像传感器(sensor)18,其中所述图像传感器制作在印刷电路板(Printed Circuit Board,简称PCB)或可挠性印刷电路板(Flexible Printed Circuit,简称FPC)上,如图2中所示,所述PCB或FPC上还设置有存储器16、电容或电阻17、驱动芯片19等结构,通过软硬板110和连接器111与其他结构相连。为保护所述镜头不被外界物体污染或磨损,在镜头12的外侧还可以设置保护膜11。其中,滤光片14为可以通过可见光,但能够过滤红外光的滤光片,以阻止红外光造成图片失真现象。
以上仅为本实施例中提供的一种正常拍摄二维图片的摄像头的主要结 构,本实施例中对所述二维图像摄像模组的具体结构不做限定,只要能够得到待采集物体的清晰二维图像即可。
本实施例中所述景深信息摄像模组采用结构光方法得到待采集物体的景深信息,需要说明的是结构光方法(Structured Light)是一种主动式光学测量技术,其基本原理是由结构光投射器向被测物体表面投射可控制的光点、光条或光面结构,并由图像传感器(如摄像机)获得图像,通过***几何关系,利用三角原理计算得到物体的三维坐标。结构光测量方法具有计算简单、体积小、价格低、大量程、便于安装和维护的特点,在实际三维轮廓测量中被广泛使用。
结构光方法分为光点式结构光、线结构光以及面结构光三种形式。光点式结构光测量方法需要通过逐点扫描物体进行测量,图像摄取和图像处理需要的时间随着被测物体的增大而急剧增加,难以完成实时测量。用线结构光代替点光源,只需要进行一维扫描就可以获得物体的深度图,图像获取和图像处理的时间大大减少。
如图3所示为线结构光的示意图,结构光源21发射结构光4到待采集物体3的表面,在待采集物体3的表面形成光条投影,通过结构光摄像头22拍摄得到图片6,其上形成包含有景深信息的图像5,通过对包含有景深信息的图像5进行处理并计算,得到待采集物体3的一个景深信息。再利用辅助的机械装置旋转光条投影部分,从而完成对整个被测物体的扫描,进而得到整个物体的景深信息。
当采用面结构光时,将二维的结构光图案投射到物体表面上,这样不需要进行扫描就可以实现三维轮廓测量,测量速度很快,光面结构光中最常用的方法是投影光栅条纹到物体表面。如图4所示为面结构光的示意图,结构光源21发射投影光栅条纹到待采集物体3的表面,摄像模组22通过拍摄投影光栅条纹信息,由于投影光栅条纹经过三维物体后,产生变形,通过得到变形后的投影光栅条纹,再通过对得到的变形后的投影光栅条纹进行相位等计算,得到三维物体的景深信息。
因此,本实施例中所述景深信息摄像模组采用结构光方法能够准确得到景深信息,优选的,为提高景深信息获得速度,本实施例中优选的,所述景深信息摄像模组采用的结构光方法为面结构光方式,即景深信息摄像模组的结构光源发射的光为面结构光。
需要说明的是,为保证后期将获得的二维图像以及待采集物体的景深信息合成为3D效果图时的3D效果,本实施例中,景深信息摄像模组与二维图像摄像模组与待采集物体的距离相同,且位于所述待采集物体的同一侧,用于拍摄待采集物体的同一个图像。
本实施例中提供的图像采集设备,由于所述景深信息摄像模组采用结构光方法采集待采集物体的景深信息,从而能够得到精确的景深信息,将得到的景深信息与获取的待采集物体的二维图像经过后期合成制作,得到3D效果。相对于现有技术中采用两个二维图像摄像模组模拟人眼获得的图像信息,本申请提供的图像采集设备能够得到更加准确的待采集物体的景深信息,从而能够得到更好的3D效果。
进一步地,现有技术中的3D影像采集装置采用两个二维图像摄像头,从不同角度拍摄,且必须模拟人两眼的距离,从而获得不同角度的图像,最终再通过合成,将两个不同角度的图像合称为3D效果图。而一般人两眼之间的距离大约为6.5cm~8.0cm,因此,现有技术中的3D影像采集装置所使用的两个二维图像摄像头之间的距离应为6.5cm~8.0cm,距离不能太小,也不能太大。而由于两个二维图像摄像头之间的距离不能更小,因此,现有技术中3D影像采集装置的体积较大,不利于安装在空间较小的设备中。
VR为虚拟现实-Virtual Reality的简称。VR技术是一种计算机应用和人机交互技术,它借助计算机和可视化技术将虚拟的信息应用到真实世界,真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在。VR技术利用电脑模拟产生一个三度空间的虚拟世界,提供用户关于视觉、听觉、触觉等感官的模拟,让用户如同身临其境一般,因此,VR技术对3D 效果要求较为严格,且由于目前均为头戴式VR设备,为避免用户带上VR设备后,由于VR设备体积过大,造成用户体验差的情况,VR设备对体积的要求也越来越苛刻。
而本实施例中提供的图像采集设备,如图3所示,二维图像摄像模组1与景深信息摄像模组位于所述待采集物体的同一侧,用于拍摄所述待采集物体的同一图像,且所述二维图像摄像模组1与所述景深信息摄像模组距离所述待采集物体3的距离相同。即二维图像摄像模组与景深信息摄像模组的摄像头22之间的距离越近,获得的图像越一致,从而后期合成的3D效果越好。因此,二维图像摄像模组与景深信息摄像模组之间的距离越小越好,相对于现有技术中的3D影像采集装置的体积可以做到更小,因此,可以更方便地安装在VR设备中,作为VR影像采集设备使用。
本申请另一实施例提供一种图像采集设备,包括:二维图像摄像模组,用于采集待采集物体的二维图片;景深信息摄像模组,所述景深信息摄像模组采用结构光方法采集所述待采集物体的景深信息;其中,所述二维图像摄像模组与所述景深信息摄像模组位于所述待采集物体的同一侧,用于拍摄所述待采集物体的同一图像,且所述二维图像摄像模组与所述景深信息摄像模组距离所述待采集物体的距离相同。
具体的,本实施例中所述景深信息摄像模组包括:红外发射模块、红外接收模块、景深处理芯片;所述红外发射模块发射红外光,照射到所述待采集物体上;所述红外接收模块接收经所述待采集物体反射的反射红外光,并将所述反射红外光发送至所述景深处理芯片;所述景深处理芯片接收所述反射红外光,并形成景深信息。
本实施例中所述红外发射模块为结构光源,能够发射红外结构光,所述红外结构光可以是点结构光、线结构光或面结构光。本实施例中,为提高获得景深信息的效率,优选地,本实施例中所述红外发射模块发射的红 外光为线结构光;进一步的,相对于线结构光,面结构光无需进行扫描,因此,本实施例中所述红外发射模块发射的红外光为面结构光,更为优选的,本实施例中所述红外发射模块发射的红外光面结构光,为网格形式的点阵面结构光,从而使得后续景深信息能够更加准确。
本实施例中所述红外接收模块可以是任意能够接受红外光的红外接收摄像头,主要结构包括:镜头、基座、滤光片、图像传感器、柔性印刷线路板;其中,所述滤光片为透射红外光过滤掉其他光的红外滤光片。
需要说明的是,本实施例中优选的,所述红外接收模块与二维图像摄像模组的结构相同,不同之处在于,所述红外接收模块的滤光片为可通过红外光的滤光片,而二维图像摄像模组的滤光片为不能通过红外光的滤光片,从而使得两个摄像模组互不影响,能够独立工作,分别获得不同的图像信息。
由于本实施例中提供的图像采集设备,二维图像摄像模组与景深信息摄像模组之间的距离越近越好,因此,本实施例中优选地,所述二维图像摄像模组与所述红外接收模块之间的距离小于人的两眼之间的距离,此处,所述人的两眼之间的距离包括但不限于6.5cm-8cm。更为优选地,本实施例中所述二维图像摄像模组还可以紧贴所述景深信息摄像模组。
本实施例中提供的图像采集设备包括二维图像摄像模组和景深信息摄像模组,其中,所述景深信息摄像模组采用结构光方法采集所述待采集物体的景深信息,从而能够获得较为准确的景深信息,以便于后期与二维摄像模组采集的待采集物体的二维图片进行合成,获得较好的3D效果。进一步地,本实施例中景深信息摄像模组采用红外发射模块发射红外光,并采用红外接收模块采集红外光,从而使得与二维图像摄像模组之间能够独立工作,互不影响。另外,红外光含有的光能量较高,在被待采集物体反射后,反射光线的能量也较高,从而使得景深信息的采集得到保障。
本申请的再一个实施例提供一种虚拟现实设备,利用电脑模拟产生一个三度空间的虚拟世界,提供用户关于视觉、听觉、触觉等感官的模拟,让用户如同身临其境一般。所述虚拟现实设备包括3D影像采集装置、3D影像合成装置,以及3D影像显示装置,其中,所述3D影像采集装置为本申请上面实施例中所述的图像采集设备。
一方面,由于所述图像采集设备包括二维图像摄像模组和景深信息摄像模组,所述景深信息摄像模组采用结构光方法采集待采集物体的景深信息,从而能够得到精确的景深信息,将得到的景深信息与获取的待采集物体的二维图像经过后期合成制作,得到3D效果。相对于现有技术中采用两个二维图像摄像模组模拟人眼获得的图像信息,本申请提供的图像采集设备能够得到更加准确的待采集物体的景深信息,从而能够得到更好的3D效果,进而使得虚拟现实设备的3D效果更好,用户体验更佳。
另一方面,由于上述实施例提供的图像采集设备,对二维图像摄像模组以及景深信息摄像模组之间的距离要求是尽量接近,以使得二维图像摄像模组以及景深信息摄像模组拍摄得到的待采集物体的图像能够一致,所以两者之间的距离越小越好,相对于现有技术中的3D影像采集装置的体积可以做到更小,因此,可以更方便地安装在虚拟现实设备中。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种图像采集设备,其特征在于,包括:
    二维图像摄像模组,用于采集待采集物体的二维图片;
    景深信息摄像模组,所述景深信息摄像模组采用结构光方法采集所述待采集物体的景深信息;
    其中,所述二维图像摄像模组与所述景深信息摄像模组位于所述待采集物体的同一侧,用于拍摄所述待采集物体的同一图像,且所述二维图像摄像模组与所述景深信息摄像模组距离所述待采集物体的距离相同。
  2. 根据权利要求1所述的图像采集设备,其特征在于,所述景深信息摄像模组包括:红外发射模块、红外接收模块、景深处理芯片;
    所述红外发射模块发射红外光,照射到所述待采集物体上;
    所述红外接收模块接收经所述待采集物体反射的反射红外光,并将所述反射红外光发送至所述景深处理芯片;
    所述景深处理芯片接收所述反射红外光,并形成景深信息。
  3. 根据权利要求2所述的图像采集设备,其特征在于,所述二维图像摄像模组与所述红外接收模块之间的距离小于人的两眼之间的距离。
  4. 根据权利要求3所述的图像采集设备,其特征在于,所述二维图像摄像模组紧贴所述红外接收模块。
  5. 根据权利要求2所述的图像采集设备,其特征在于,所述红外发射模块发射的红外光为网格形式的点阵面光结构。
  6. 根据权利要求2所述的图像采集设备,其特征在于,所述红外发射模块发射的红外光为线结构光。
  7. 根据权利要求2所述的图像采集设备,其特征在于,所述红外接收 模块为红外接收摄像头,其结构包括:
    镜头、基座、滤光片、图像传感器、柔性印刷线路板;
    其中,所述滤光片为透射红外光过滤掉其他光的红外滤光片。
  8. 一种虚拟现实设备,其特征在于,包括虚拟现实影像采集设备,所述虚拟现实影像采集设备为权利要求1-7任意一项所述的图像采集设备。
PCT/CN2017/071110 2016-08-12 2017-01-13 一种图像采集设备、虚拟现实设备 WO2018028152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610664075.9 2016-08-12
CN201610664075.9A CN106210474A (zh) 2016-08-12 2016-08-12 一种图像采集设备、虚拟现实设备

Publications (1)

Publication Number Publication Date
WO2018028152A1 true WO2018028152A1 (zh) 2018-02-15

Family

ID=57514433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071110 WO2018028152A1 (zh) 2016-08-12 2017-01-13 一种图像采集设备、虚拟现实设备

Country Status (2)

Country Link
CN (1) CN106210474A (zh)
WO (1) WO2018028152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111882596A (zh) * 2020-03-27 2020-11-03 浙江水晶光电科技股份有限公司 结构光模组三维成像方法、装置、电子设备以及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210474A (zh) * 2016-08-12 2016-12-07 信利光电股份有限公司 一种图像采集设备、虚拟现实设备
CN108262969A (zh) * 2016-12-30 2018-07-10 富泰华工业(深圳)有限公司 图像采集终端及方法
CN107124604B (zh) * 2017-06-29 2019-06-04 诚迈科技(南京)股份有限公司 一种利用双摄像头实现三维图像的方法及装置
CN108174101B (zh) * 2017-12-29 2020-09-18 维沃移动通信有限公司 一种拍摄方法和装置
CN108322639A (zh) * 2017-12-29 2018-07-24 维沃移动通信有限公司 一种图像处理的方法、装置以及移动终端
CN108259740A (zh) * 2017-12-29 2018-07-06 维沃移动通信有限公司 一种全景图像生成的方法、装置以及移动终端
CN110278426B (zh) * 2018-03-18 2024-02-13 宁波舜宇光电信息有限公司 深度信息摄像模组及其基座组件、电子设备和制备方法
CN109451294B (zh) * 2018-09-26 2023-07-14 深圳达闼科技控股有限公司 3d显示方法、***、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622591A (zh) * 2012-01-12 2012-08-01 北京理工大学 3d人体姿态捕捉模仿***
CN203070205U (zh) * 2012-06-21 2013-07-17 乾行讯科(北京)科技有限公司 一种基于手势识别的输入设备
CN104780313A (zh) * 2015-03-26 2015-07-15 广东欧珀移动通信有限公司 一种图像处理的方法及移动终端
CN106210474A (zh) * 2016-08-12 2016-12-07 信利光电股份有限公司 一种图像采集设备、虚拟现实设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086509B1 (ko) * 2012-11-23 2020-03-09 엘지전자 주식회사 3차원 영상 획득 방법 및 장치
CN104157107B (zh) * 2014-07-24 2016-05-18 燕山大学 一种基于Kinect传感器的人体姿势矫正装置
TWI595457B (zh) * 2014-12-02 2017-08-11 Metal Ind Res And Dev Centre Anti-collision three-dimensional depth sensing system and its operation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622591A (zh) * 2012-01-12 2012-08-01 北京理工大学 3d人体姿态捕捉模仿***
CN203070205U (zh) * 2012-06-21 2013-07-17 乾行讯科(北京)科技有限公司 一种基于手势识别的输入设备
CN104780313A (zh) * 2015-03-26 2015-07-15 广东欧珀移动通信有限公司 一种图像处理的方法及移动终端
CN106210474A (zh) * 2016-08-12 2016-12-07 信利光电股份有限公司 一种图像采集设备、虚拟现实设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111882596A (zh) * 2020-03-27 2020-11-03 浙江水晶光电科技股份有限公司 结构光模组三维成像方法、装置、电子设备以及存储介质
CN111882596B (zh) * 2020-03-27 2024-03-22 东莞埃科思科技有限公司 结构光模组三维成像方法、装置、电子设备以及存储介质

Also Published As

Publication number Publication date
CN106210474A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018028152A1 (zh) 一种图像采集设备、虚拟现实设备
US11693242B2 (en) Head-mounted display for virtual and mixed reality with inside-out positional, user body and environment tracking
US10560683B2 (en) System, method and software for producing three-dimensional images that appear to project forward of or vertically above a display medium using a virtual 3D model made from the simultaneous localization and depth-mapping of the physical features of real objects
WO2019007180A1 (zh) 同时具备摄影测量和三维扫描功能的手持式大尺度三维测量扫描仪***
US20140307100A1 (en) Orthographic image capture system
JP2010113720A (ja) 距離情報を光学像と組み合わせる方法及び装置
JP2001008235A (ja) 3次元データの再構成のための画像入力方法及び多眼式データ入力装置
JP2023526239A (ja) 医療シーンなどのシーンを撮像してシーン内の物体を追跡する方法及びシステム
JP2009300268A (ja) 3次元情報検出装置
WO2019184185A1 (zh) 目标图像获取***与方法
CN107517346B (zh) 基于结构光的拍照方法、装置及移动设备
CN110213491B (zh) 一种对焦方法、装置及存储介质
JP2011160421A (ja) 立体画像の作成方法、作成装置及びプログラム
WO2018032841A1 (zh) 绘制三维图像的方法及其设备、***
CN108645353B (zh) 基于多帧随机二元编码光场的三维数据采集***及方法
CN110880161B (zh) 一种多主机多深度摄像头的深度图像拼接融合方法及***
CN206378680U (zh) 基于结构光多模块360度空间扫描和定位的3d相机
CN109084679A (zh) 一种基于空间光调制器的3d测量及获取装置
KR101296365B1 (ko) 카메라를 이용한 홀로그램 터치 인식방법
KR101275127B1 (ko) 초점 가변 액체 렌즈를 이용한 3차원 이미지 촬영장치 및 방법
KR101741227B1 (ko) 입체 영상 표시 장치
CN104700392A (zh) 虚拟影像定位方法及其装置
TW201917347A (zh) 深度感測攝影系統
KR20150047604A (ko) 물체 공간의 물정의 기술을 위한 방법 및 이의 실행을 위한 연결
JP2006197036A (ja) 立体画像表示装置および立体画像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838289

Country of ref document: EP

Kind code of ref document: A1