CN113844274B - 悬浮电磁铁横向位移修正***、方法、设备及存储介质 - Google Patents

悬浮电磁铁横向位移修正***、方法、设备及存储介质 Download PDF

Info

Publication number
CN113844274B
CN113844274B CN202111171233.4A CN202111171233A CN113844274B CN 113844274 B CN113844274 B CN 113844274B CN 202111171233 A CN202111171233 A CN 202111171233A CN 113844274 B CN113844274 B CN 113844274B
Authority
CN
China
Prior art keywords
displacement
transverse
vertical
displacement sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111171233.4A
Other languages
English (en)
Other versions
CN113844274A (zh
Inventor
张文跃
佟来生
罗华军
丁婵
侯磊
李海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Zhuzhou Locomotive Co Ltd
Original Assignee
CRRC Zhuzhou Locomotive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Zhuzhou Locomotive Co Ltd filed Critical CRRC Zhuzhou Locomotive Co Ltd
Priority to CN202111171233.4A priority Critical patent/CN113844274B/zh
Publication of CN113844274A publication Critical patent/CN113844274A/zh
Application granted granted Critical
Publication of CN113844274B publication Critical patent/CN113844274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明公开了一种悬浮电磁铁横向位移修正***、方法、设备及存储介质,垂向位移、垂向加速度、横向位移、横向加速度、沿线路运动速度以及沿线路实时位置均从壳体的安装位置处获取,使各检测数据来源于同一位置,无需将不同位置的检测数据近似折算到同一位置,避免了近似折算产生的误差,检测精度较高;信号采集组件中各部件同时启动,且通过同一通道进行传输,保证了所有检测数据均在同一时间轴,避免了采用不同渠道获取数据,因时间轴不统一而导致动力学分析时出现较大相位误差的问题,提高了动力学分析时的准确性;且采用信号调理与传输模块进行数据传输,而不采用车载CAN网络,提高了采样频率和采样精度。

Description

悬浮电磁铁横向位移修正***、方法、设备及存储介质
技术领域
本发明属于中低速磁浮列车技术领域,尤其涉及一种磁浮列车悬浮电磁铁横向位移修正***、方法、设备及存储介质。
背景技术
磁浮列车采用电磁力实现支撑与导向,并配置直线电机实现驱动,车辆与轨道间无机械接触,因此具有运行速度高、噪声小、振动低、起动及制动速度快、转弯半径小、爬坡能力强、安全舒适及维护少等显著优点,是未来高速、绿色交通的发展方向之一。
为了简化***结构,降低整车成本,现有中低速磁浮列车的悬浮***只在垂直方向施加悬浮间隙的主动闭环控制,横向位移是利用悬浮电磁铁的横向分力实现被动控制,因此现有的悬浮传感器也只需获取悬浮电磁铁的垂向位移和垂向加速度信息。
然而为了深入分析中低速磁浮列车悬浮***的特性,对车轨关系进行全方位的***分析和评估,进一步完善中低速磁浮列车技术平台,在设计初期进行车辆动力学分析时,除现有的垂向位移和垂向加速度信息外,还需获取悬浮电磁铁的横向位移信息。
传统的方法是:在中低速磁浮列车悬浮架的适当位置加装位移传感器,检测轨道侧面,获取横向位移和横向加速度信息。其不足之处在于:(1)中低速磁浮轨道侧面为斜面,加装的横向位移传感器测得的数据中,包含有悬浮电磁铁垂向位移变化引起的横向位移变化量,而非实际的横向位移;(2)受结构限制,通过加装位移传感器实现横向位移检测,其检测位置和原有的垂向位移检测不在同一位置,综合分析时,还需要将数据近似折算到悬浮电磁铁上的同一位置,因此误差较大。
发明内容
本发明的目的在于提供一种磁浮列车悬浮电磁铁横向位移修正***、方法、设备及存储介质,以降低因数据近似折算产生的误差和各数据相位误差,有效提高悬浮电磁铁横向位移的检测精度。
本发明是通过如下的技术方案来解决上述技术问题的:一种磁浮列车悬浮电磁铁横向位移修正***,包括信号采集组件、信号调理与传输模块以及上位机;所述信号采集组件设于待检悬浮电磁铁端部,信号采集组件包括壳体,以及设于所述壳体内的第一位移传感器、第二位移传感器、第三位移传感器、第一加速度传感器、第二加速度传感器和信号处理模块;所述第一位移传感器、第二位移传感器分别设于所述壳体上表面的不同纵向位置,且第一位移传感器和第二位移传感器的检测方向均设置在垂向;所述第三位移传感器设于所述壳体的横向侧面,且第三位移传感器的检测方向设置在横向;所述第一加速度传感器的检测方向设置在垂向;所述第二加速度传感器的检测方向设置在横向;以列车运行方向为纵向,以垂直于地面的方向为垂向,以平行于地面且垂直于运行方向的方向为横向;
所述第一位移传感器、第二位移传感器、第三位移传感器、第一加速度传感器以及第二加速度传感器分别与所述信号处理模块连接,所述信号处理模块分别与悬浮控制器、信号调理与传输模块连接,所述信号调理与传输模块与所述上位机连接;
所述上位机包括信息存储模块、横向位移误差修正模块、沿线路运动速度计算模块以及沿线路实时位置计算模块;
所述信息存储模块,用于存储线路所有轨道接缝的编号、每个轨道接缝到线路始端的距离、以及修正后的横向位移、垂向位移、横向加速度、垂向加速度、沿线路运动速度和沿线路实时位置;
所述横向位移误差修正模块,用于对实时检测的横向位移进行修正,修正后的横向位移的计算表达式为Sh′=Sh-(Sv-Sv0)·tanα,其中Sh′为修正后的横向位移,Sh为第三位移传感器实时检测的横向位移,Sv0为垂向位移的初始值,Sv为第一位移传感器实时检测的垂向位移和第二位移传感器实时检测的垂向位移中的最小值,α为F型轨道内侧侧面与垂向之间的夹角;
所述沿线路运动速度计算模块,用于根据第一位移传感器与第二位移传感器之间的纵向间距、通过轨道接缝时的时间计算沿线路运动速度,沿线路运动速度的计算表达式为
Figure BDA0003293256010000021
其中D0为第一位移传感器与第二位移传感器之间的纵向间距,
Figure BDA0003293256010000022
为第二位移传感器通过第i个轨道接缝时的时间,
Figure BDA0003293256010000023
为第一位移传感器通过第i个轨道接缝时的时间,
Figure BDA0003293256010000024
vi为悬浮电磁铁通过第i个轨道接缝时的速度,即沿线路运动速度;
所述沿线路实时位置计算模块,用于根据通过轨道接缝时的速度和时间、以及轨道接缝到线路始端的距离计算沿线路实时位置。
本发明中,所述第一位移传感器、第二位移传感器均用于检测悬浮电磁铁的垂向位移;所述第三位移传感器用于检测悬浮电磁铁的横向位移;所述第一加速度传感器用于检测悬浮电磁铁的垂向加速度;所述第二加速度传感器用于检测悬浮电磁铁的横向加速度;所述信号处理模块用于取第一位移传感器和第二位移传感器检测数据中的最小值作为信号采集组件垂向位移输出,以及用于对各传感器的检测数据进行调理和滤波后输出;所述信号调理与传输模块用于对各传感器的检测数据进行调理并传输给上位机;所述上位机用于对横向位移进行修正,根据第一位移传感器与第二位移传感器的纵向间距、通过轨道接缝时的时间计算沿线路运动速度,根据通过轨道接缝时的速度和时间、以及轨道接缝到线路始端的距离计算沿线路实时位置,以及用于存储线路所有轨道接缝编号以及每个轨道接缝到线路始端的距离。
由于各传感器均集成在一个壳体内,因此垂向位移、垂向加速度、横向位移、横向加速度、沿线路运动速度以及沿线路实时位置均从壳体的安装位置处获取,使各检测数据来源于同一位置,无需将不同位置的检测数据近似折算到同一位置,避免了近似折算产生的误差;信号采集组件中各部件同时启动,且通过同一通道进行传输,保证了所有检测数据均在同一时间轴,避免了采用不同渠道获取数据,因时间轴不统一而导致动力学分析时出现较大相位误差的问题,提高了动力学分析时的准确性,且采用信号调理与传输模块进行数据传输,而不采用车载CAN网络传输,提高了采样频率和采样精度。由于第一位移传感器、第二位移传感器处于不同纵向位置,沿列车的运行方向,第一位移传感器和第二位移传感器将先后通过轨道接缝,通过轨道接缝时位移传感器会出现垂向位移增大的“正弦状”波形,第一位移传感器和第二位移传感器在纵向上的间距只要不使两者同时出现“正弦状”波形,再对两者进行取最小值,即可克服第一位移传感器或第二位移传感器通过轨道接缝时输出特性发生的变化,消除了轨道接缝对垂向位移的影响,获得平滑的准确的垂向位移;通过对横向位移修正避免了垂向位移变化对横向位移造成的影响,提高了横向位移的检测精度。
进一步地,所述第一位移传感器、第二位移传感器以及第三位移传感器均选用电涡流位移传感器。
电涡流位移传感器利用电涡流效应,能够准确测量垂向位移和横向位移,具有长期工作可靠性好、灵敏度高、抗干扰能力强、非接触测量、响应速度快、不受油水等介质的影响,更进一步地提高了检测的精度。
进一步地,所述第三位移传感器有两个,两个所述第三位移传感器分别设于所述壳体的横向两侧。
考虑冗余设计,设置两个第三位移传感器,通过取两个横向位移的平均值作为信号采集组件横向位移的输出,提高了检测精度。
本发明还提供一种磁浮列车悬浮电磁铁横向位移修正方法,利用上所述的磁浮列车悬浮电磁铁横向位移修正***,包括:
获取悬浮电磁铁的第一垂向位移、第二垂向位移、横向位移、垂向加速度以及横向加速度;
取第一垂向位移和第二垂向位移中的最小值作为信号采集组件输出的垂向位移;
根据所述垂向位移对所述横向位移进行修正,得到修正后的横向位移;
根据第一位移传感器与第二位移传感器之间的纵向间距、通过轨道接缝时的时间计算沿线路运动速度;
根据通过轨道接缝时的速度和时间、以及轨道接缝到线路始端的距离计算沿线路实时位置;
将所述垂向位移、修正后的横向位移、垂向加速度、横向加速度、沿线路运动速度以及沿线路实时位置与轨道接缝对应,并保存;
所述修正后的横向位移的计算表达式为:
Sh′=Sh-(Sv-Sv0)·tanα
其中,Sh′为修正后的横向位移,Sh为第三位移传感器实时检测的横向位移,Sv0为垂向位移的初始值,Sv为第一位移传感器实时检测的第一垂向位移和第二位移传感器实时检测的第二垂向位移中的最小值,α为F型轨道内侧侧面与垂向之间的夹角。
通过取第一垂向位移和第二垂向位移中的最小值来消除因通过轨道接缝时垂向位移增大的“正弦状”波形对垂向位移检测的影响,提高了垂向位移实时检测的准确性,通过对横向位移修正避免了垂向位移变化对横向位移造成的影响,提高了横向位移的检测精度;垂向位移、垂向加速度、横向位移、横向加速度、沿线路运动速度以及沿线路实时位置均从壳体的安装位置处获取,使各检测数据在同一位置处采集(即数据来源于同一位置),无需将不同位置的检测数据近似折算到同一位置,避免了近似折算产生的误差;各传感器采用同一电源供电,且同时启动,再通过同一通道传输给上位机,保证了所有检测数据均在同一时间轴,避免了采用不同渠道获取数据,因时间轴不统一而导致动力学分析时出现较大相位误差的问题,提高了动力学分析时的准确性。
进一步地,所述沿线路运动速度的计算表达式为:
Figure BDA0003293256010000041
其中,D0为第一位移传感器与第二位移传感器之间的纵向间距,
Figure BDA0003293256010000042
为第二位移传感器通过第i个轨道接缝时的时间,
Figure BDA0003293256010000043
为第一位移传感器通过第i个轨道接缝时的时间,
Figure BDA0003293256010000044
vi为悬浮电磁铁通过第i个轨道接缝时的速度,即沿线路运动速度。
本发明还提供一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述的磁浮列车悬浮电磁铁横向位移修正方法。
本发明还提供一种存储介质,其上存储有计算机程序,其特征在于:该程序被处理器执行时实现如上所述的磁浮列车悬浮电磁铁横向位移修正方法。
有益效果
与现有技术相比,本发明的优点在于:
与现有技术相比,本发明所提供的一种悬浮电磁铁横向位移修正***、方法、设备及存储介质,垂向位移、垂向加速度、横向位移、横向加速度、沿线路运动速度以及沿线路实时位置均从壳体的安装位置处获取,使各检测数据来源于同一位置,无需将不同位置的检测数据近似折算到同一位置,避免了近似折算产生的误差;信号采集组件中各部件同时启动,且通过同一通道进行传输,保证了所有检测数据均在同一时间轴,避免了采用不同渠道获取数据,因时间轴不统一而导致动力学分析时出现较大相位误差的问题,提高了动力学分析时的准确性;且采用信号调理与传输模块进行数据传输,而不采用车载CAN网络,提高了采样频率和采样精度。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一个实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中一种悬浮电磁铁横向位移修正***的结构框图;
图2是本发明实施例中信号采集组件的结构示意图;
图3是本发明实施例中信号采集组件在悬浮电磁铁上的安装示意图;
图4是本发明实施例中第一位移传感器或第二位移传感器通过轨道接缝时的输出特性曲线;
图5是本发明实施例中信号采集组件位于F型导轨处的示意图;
其中,1-信号采集组件,101-壳体,102-第一位移传感器,103-第二位移传感器,104-第一加速度传感器,105-第三位移传感器,106-第二加速度传感器,107-信号处理模块,1071-垂向位移逻辑单元,2-信号调理与传输模块,3-上位机,301-信息存储模块,302-横向位移误差修正模块,303-沿线路运动速度计算模块,304-沿线路实时位置计算模块,4-F型导轨,5-悬浮电磁铁。
具体实施方式
下面结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
如图1~3所示,本实施例所提供的一种磁浮列车悬浮电磁铁横向位移修正***,包括信号采集组件1、信号调理与传输模块2以及上位机3;信号采集组件1设于待检悬浮电磁铁5端部,信号采集组件1包括壳体101,以及设于壳体101内的第一位移传感器102、第二位移传感器103、第三位移传感器105、第一加速度传感器104、第二加速度传感器106和信号处理模块107;第一位移传感器102、第二位移传感器103分别设于壳体101上表面的不同纵向位置,且第一位移传感器102和第二位移传感器103的检测方向均设置在垂向;第三位移传感器105设于所述壳体101的横向侧面,且第三位移传感器105的检测方向设置在横向;第一加速度传感器104的检测方向设置在垂向;第二加速度传感器106的检测方向设置在横向;以列车运行方向为纵向,以垂直于地面的方向为垂向,以平行于地面且垂直于运行方向的方向为横向。
如图1所示,第一位移传感器102、第二位移传感器103、第三位移传感器105、第一加速度传感器104以及第二加速度传感器106分别与信号处理模块107连接,信号处理模块107分别与悬浮控制器、信号调理与传输模块2连接,信号调理与传输模块2与所述上位机3连接。各传感器的检测数据(即第一位移传感器102、第二位移传感器103、第三位移传感器105、第一加速度传感器104以及第二加速度传感器106的检测数据)经信号处理模块107进行信号处理后,其中一通道将正常悬浮所需的垂向位移和垂向加速度传输给悬浮控制器,另一通道与信号调理与传输模块2相连,信号调理与传输模块2再与上位机3相连,传输实时采集的垂向位移、垂向加速度、横向位移、横向加速度,并在上位机3软件中通过修正和计算同步获取修正后的横向位移、沿线路运动速度以及沿线路实时位置,从而同步获取车辆动力学分析所需的垂向位移、垂向加速度、横向位移、横向加速度、沿线路运动速度以及沿线路实时位置等综合姿态信息。
如图2所示,第一位移传感器102、第二位移传感器103分别设于壳体101上表面的不同纵向位置,通过不同纵向位置的第一位移传感器102和第二位移传感器103来检测悬浮电磁铁的垂向位移。由于位移传感器在通过轨道接缝时,其输出特性会发生变化,如图4所示,会出现垂向位移增大的“正弦状”波形,如果仅采用一个位移传感器来检测垂向位移,将导致轨道接缝处垂向位移存在误差,因此本实施例中采用第一位移传感器102和第二位移传感器103来检测垂向位移,取第一位移传感器102和第二位移传感器103检测数据中的最小值作为实时垂向位移,保证了得到的实时垂向位移不受轨道接缝“正弦状”波形的影响,获得了平滑的准确的垂向位移。第一位移传感器102和第二位移传感器103之间的纵向间距根据轨道接缝来设置,轨道接缝越大,两者之间的纵向间距越大,例如轨道接缝最大值为40mm时,两者之间的纵向间距要求不小于90mm,轨道接缝最大值为60mm时,两者之间的纵向间距要求不小于110mm,该纵向间距只要保证第一位移传感器102和第二位移传感器103不同时出现“正弦状”波形,即可消除轨道接缝对垂向位移的影响。
第三位移传感器105设于壳体101的横向侧面,用于检测悬浮电磁铁的横向位移。考虑冗余设计,在壳体101的横向两侧分别设置一个第三位移传感器105,即两个第三位移传感器105(如图2和5所示,有两个105),通过取两个横向位移的平均值作为信号采集组件1横向位移的输出,提高了检测精度。
信号处理模块107用于取第一位移传感器102和第二位移传感器103检测数据中的最小值作为信号采集组件1垂向位移输出,以及用于对各传感器的检测数据进行调理和滤波后输出。信号处理模块107包括垂向位移逻辑单元1071,通过垂向位移逻辑单元1071来实现取第一位移传感器102和第二位移传感器103检测数据中的最小值的逻辑。
信号调理与传输模块2用于对各传感器的检测数据进行调理并传输给上位机3,采用专用的同一通道进行数据传输,而不采用车载CAN网络,提高了采样频率和采样精度,采样频率高达≥1000Hz。
上位机3用于对横向位移进行修正,根据第一位移传感器102与第二位移传感器103的纵向间距、通过轨道接缝时的时间计算沿线路运动速度,根据通过轨道接缝时的速度和时间、以及轨道接缝到线路始端的距离计算沿线路实时位置,以及用于存储线路所有轨道接缝编号以及每个轨道接缝到线路始端的距离。具体的,上位机3包括信息存储模块301、横向位移误差修正模块302、沿线路运动速度计算模块303以及沿线路实时位置计算模块304。
信息存储模块301,用于存储线路所有轨道接缝的编号、每个轨道接缝到线路始端的距离、以及修正后的横向位移、垂向位移、横向加速度、垂向加速度、沿线路运动速度和沿线路实时位置。磁浮线路建设完成后,所有轨道接缝到线路始端的距离已确定,并对所有接缝从线路始端进行逐个编号,将轨道接缝编号和每个轨道接缝到线路始端的距离信息预存在信息存储模块301中。当通过横向位移误差修正模块302得到修正后的横向位移、通过沿线路运动速度计算模块303得到沿线路运动速度、通过沿线路实时位置计算模块304得到沿线路实时位置后,将时间t、垂向位移Sv、修正后的横向位移Sh′、横向加速度、垂向加速度、沿线路运动速度vi、沿线路实时位置Lt、轨道接缝编号、以及该轨道接缝编号到线路始端的距离等信息相互对应,并存储在信息存储模块301中。由于第一位移传感器102和第二位移传感器103在通过轨道接缝时会出现明显的输出特性,通过这一特征,可以将这些姿态数据与轨道接缝编号对应起来。
横向位移误差修正模块302,用于对实时检测的横向位移进行修正,修正后的横向位移的计算表达式为:
Sh′=Sh-(Sv-Sv0)·tanα (1)
其中,Sh′为修正后的横向位移,Sh为第三位移传感器105实时检测的横向位移,Sv0为垂向位移的初始值,Sv为第一位移传感器102实时检测的垂向位移和第二位移传感器103实时检测的垂向位移中的最小值,α为F型轨道内侧侧面与垂向之间的夹角,如图5所示。
如图5所示,F型导轨4内侧侧面与垂向的夹角为α,由几何关系知,当垂向位移变化ΔSv时,引起横向位移的变化量为ΔSh=ΔSv·tanα;设垂向位移的初始值为Sv0,实时检测的垂向位移数据为Sv,根据式(1)计算出修正后的横向位移Sh′,通过修正避免了垂向位移变化对横向位移造成的影响,提高了横向位移的检测精度。
沿线路运动速度计算模块303,用于根据第一位移传感器102与第二位移传感器103之间的纵向间距、通过轨道接缝时的时间计算沿线路运动速度,沿线路运动速度的计算表达式为:
Figure BDA0003293256010000081
其中,D0为第一位移传感器102与第二位移传感器103之间的纵向间距,
Figure BDA0003293256010000082
为第二位移传感器103通过第i个轨道接缝时的时间,
Figure BDA0003293256010000083
为第一位移传感器102通过第i个轨道接缝时的时间,
Figure BDA0003293256010000084
vi为悬浮电磁铁通过第i个轨道接缝时的速度,即沿线路运动速度。因为轨道是固定不动的,悬浮电磁铁与列车固定连接,信号采集组件1又按照在悬浮电磁铁上,所以悬浮电磁铁、信号采集组件1以及列车是同一个速度,即vi也可以是列车或信号采集组件1通过第i个轨道接缝时的速度。如果
Figure BDA0003293256010000085
则表示第一位移传感器102先通过第i个轨道接缝,第二位移传感器103后通过第i个轨道接缝;如果
Figure BDA0003293256010000086
则表示第二位移传感器103先通过第i个轨道接缝,第一位移传感器102后通过第i个轨道接缝。
沿线路实时位置计算模块304,用于根据通过轨道接缝时的速度和时间、以及轨道接缝到线路始端的距离计算沿线路实时位置。
横向位移误差修正模块302、沿线路运动速度计算模块303以及沿线路实时位置计算模块304进行处理的数据均来源于信号采集组件1(同一位置),且同一时间采集,经专用通道(即信号调理与传输模块2)传输至上位机3,因此,最后获得的综合姿态(即修正后的横向位移、垂向位移、横向加速度、垂向加速度、沿线路运动速度和沿线路实时位置)来源于同一位置,同一时间轴,无需因位置不同进行近似折算,避免了近似折算产生的误差,消除了综合分析时各数据相位存在的误差,大大提高了设计初期车辆动力学分析的准确度。
本实施例中,第一位移传感器102、第二位移传感器103以及第三位移传感器105均选用电涡流位移传感器,电涡流位移传感器利用电涡流效应,能够准确测量垂向位移和横向位移,具有长期工作可靠性好、灵敏度高、抗干扰能力强、非接触测量、响应速度快、不受油水等介质的影响,更进一步地提高了检测的精度。
本实施例还提供一种磁浮列车悬浮电磁铁横向位移修正方法,利用如上所述的磁浮列车悬浮电磁铁横向位移修正***,包括以下步骤:
1、通过第一位移传感器102获取悬浮电磁铁的第一垂向位移,通过第二位移传感器103获取悬浮电磁铁的第二垂向位移,通过第三位移传感器105获取悬浮电磁铁的横向位移,通过第一加速度传感器104获取悬浮电磁铁的垂向加速度以及通过第二加速度传感器106获取悬浮电磁铁的横向加速度。垂向位移、横向位移、垂向加速度和横向加速度均来自于信号采集组件1,信号采集组件1采用同一电源供电,同时启动,且通过同一通道传输,因此可保证所有数据均在同一时间轴,避免了传统方法采用不同渠道获取数据,时间轴不统一,导致综合分析时会出现较大相位误差的问题;也保证了所有数据来源于同一位置,避免了近似折算产生的误差。
2、采用信号处理模块107中的垂向位移逻辑单元1071提取第一垂向位移和第二垂向位移中的最小值作为信号采集组件1输出的垂向位移,消除了通过轨道接缝时第一位移传感器102和第二位移传感器103“正弦状”波形对垂向位移检测的影响,提高了垂向位移的检测精度;信号处理模块107还对各传感器的检测数据进行调理和滤波处理,再通过专用传输通道-信号调理与传输模块2传输给上位机3。
3、在上位机3中,根据垂向位移对横向位移进行修正,得到修正后的横向位移,修正后的横向位移的计算表达式如式(1)所示。
根据第一位移传感器102与第二位移传感器103之间的纵向间距、通过轨道接缝时的时间计算沿线路运动速度,沿线路运动速度的计算表达式如式(2)所示。
根据通过轨道接缝时的速度和时间、以及轨道接缝到线路始端的距离计算沿线路实时位置。
4、将垂向位移、修正后的横向位移、垂向加速度、横向加速度、沿线路运动速度以及沿线路实时位置与轨道接缝对应,并保存。
当通过横向位移误差修正模块302得到修正后的横向位移、通过沿线路运动速度计算模块303得到沿线路运动速度、通过沿线路实时位置计算模块304得到沿线路实时位置后,将时间t、垂向位移Sv、修正后的横向位移Sh′、横向加速度、垂向加速度、沿线路运动速度vi、沿线路实时位置Lt、轨道接缝编号、以及该轨道接缝编号到线路始端的距离等信息相互对应,并存储在信息存储模块301中。由于第一位移传感器102和第二位移传感器103在通过轨道接缝时会出现明显的输出特性,通过这一特征,可以将这些姿态数据与轨道接缝编号对应起来。
以上所揭露的仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或变型,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种磁浮列车悬浮电磁铁横向位移修正***,其特征在于:包括设于待检悬浮电磁铁端部的壳体、设于所述壳体内的第一位移传感器、第二位移传感器和第三位移传感器、以及修正模块;所述第一位移传感器、第二位移传感器分别设于所述壳体上表面的不同纵向位置,且第一位移传感器和第二位移传感器的检测方向均设置在垂向;所述第三位移传感器设于所述壳体的横向侧面,且第三位移传感器的检测方向设置在横向;其中,以列车运行方向为纵向,以垂直于地面的方向为垂向,以平行于地面且垂直于运行方向的方向为横向;
所述修正模块,用于对实时检测的横向位移进行修正,修正后的横向位移的计算表达式为:
Sh′=Sh-(Sv-Sv0)·tanα
其中,Sh′为修正后的横向位移,Sh为第三位移传感器实时检测的横向位移,Sv0为垂向位移的初始值,Sv为第一位移传感器实时检测的第一垂向位移和第二位移传感器实时检测的第二垂向位移中的最小值,α为F型轨道内侧侧面与垂向之间的夹角。
2.如权利要求1所述的磁浮列车悬浮电磁铁横向位移修正***,其特征在于:所述第一位移传感器、第二位移传感器以及第三位移传感器均选用电涡流位移传感器。
3.如权利要求1所述的磁浮列车悬浮电磁铁横向位移修正***,其特征在于:所述第三位移传感器有两个,两个所述第三位移传感器分别设于所述壳体的横向两侧。
4.一种磁浮列车悬浮电磁铁横向位移修正方法,其特征在于:利用如权利要求1~3中任一项所述的磁浮列车悬浮电磁铁横向位移修正***,包括:
获取悬浮电磁铁的第一垂向位移、第二垂向位移以及横向位移;
取第一垂向位移和第二垂向位移中的最小值作为垂向位移;
根据所述垂向位移对所述横向位移进行修正,得到修正后的横向位移,具体计算表达式为:
Sh′=Sh-(Sv-Sv0)·tanα
其中,Sh′为修正后的横向位移,Sh为第三位移传感器实时检测的横向位移,Sv0为垂向位移的初始值,Sv为第一位移传感器实时检测的第一垂向位移和第二位移传感器实时检测的第二垂向位移中的最小值,α为F型轨道内侧侧面与垂向之间的夹角。
5.一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于:所述处理器执行所述程序时实现如权利要求4所述磁浮列车悬浮电磁铁横向位移修正方法。
6.一种存储介质,其上存储有计算机程序,其特征在于:该程序被处理器执行时实现如权利要求4所述磁浮列车悬浮电磁铁横向位移修正方法。
CN202111171233.4A 2020-10-14 2020-10-14 悬浮电磁铁横向位移修正***、方法、设备及存储介质 Active CN113844274B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111171233.4A CN113844274B (zh) 2020-10-14 2020-10-14 悬浮电磁铁横向位移修正***、方法、设备及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111171233.4A CN113844274B (zh) 2020-10-14 2020-10-14 悬浮电磁铁横向位移修正***、方法、设备及存储介质
CN202011094184.4A CN112193080B (zh) 2020-10-14 2020-10-14 姿态检测***、方法、计算机设备及存储介质

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202011094184.4A Division CN112193080B (zh) 2020-10-14 2020-10-14 姿态检测***、方法、计算机设备及存储介质

Publications (2)

Publication Number Publication Date
CN113844274A CN113844274A (zh) 2021-12-28
CN113844274B true CN113844274B (zh) 2023-02-10

Family

ID=74009642

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111171233.4A Active CN113844274B (zh) 2020-10-14 2020-10-14 悬浮电磁铁横向位移修正***、方法、设备及存储介质
CN202011094184.4A Active CN112193080B (zh) 2020-10-14 2020-10-14 姿态检测***、方法、计算机设备及存储介质

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202011094184.4A Active CN112193080B (zh) 2020-10-14 2020-10-14 姿态检测***、方法、计算机设备及存储介质

Country Status (1)

Country Link
CN (2) CN113844274B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113635931B (zh) * 2021-09-02 2022-10-28 杭州中车车辆有限公司 一种车体姿态调节方法及车体姿态调节***
CN114920015B (zh) * 2022-06-14 2024-03-01 江西理工大学 磁悬浮滑轨的导向结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184012A (ja) * 1991-12-26 1993-07-23 Shinko Electric Co Ltd 磁気浮上式搬送装置
JPH11243607A (ja) * 1998-02-23 1999-09-07 Toshiba Corp 磁気浮上装置
CN103991463A (zh) * 2014-04-11 2014-08-20 西南交通大学 一种基于双传感器的低速磁浮轨道不平顺检测方法
CN104049103A (zh) * 2014-07-07 2014-09-17 南车株洲电力机车有限公司 一种磁浮列车运行速度的测量方法和装置
CN106114282A (zh) * 2016-07-01 2016-11-16 大连天亿软件有限公司 一种磁悬浮动力***
CN106595533A (zh) * 2016-12-07 2017-04-26 中车株洲电力机车有限公司 一种磁浮f轨磁极面的直线度检测装置及方法
CN107152930A (zh) * 2017-07-11 2017-09-12 中国人民解放军国防科学技术大学 一种磁悬浮列车悬浮架位姿测量方法
CN110525229A (zh) * 2019-10-10 2019-12-03 中车株洲电力机车有限公司 中低速磁浮列车悬浮间隙的补偿方法及补偿***
CN111207663A (zh) * 2020-01-17 2020-05-29 中车株洲电力机车有限公司 间隙测量单元、悬浮传感器、速度及悬浮间隙测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044774A (ja) * 2010-08-19 2012-03-01 Railway Technical Research Institute 磁気浮上式列車の超電導磁石の起磁力制御システム
CN102616248B (zh) * 2012-03-20 2014-10-29 北京控股磁悬浮技术发展有限公司 中低速磁悬浮列车接触轨的监控***及其动态检测设备
CN209120035U (zh) * 2018-12-29 2019-07-16 扬州大学 一种基于混合磁悬浮导轨的直线电机
CN110228374B (zh) * 2019-06-14 2020-09-01 西南交通大学 一种中低速磁浮列车悬浮间隙传感器安装装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184012A (ja) * 1991-12-26 1993-07-23 Shinko Electric Co Ltd 磁気浮上式搬送装置
JPH11243607A (ja) * 1998-02-23 1999-09-07 Toshiba Corp 磁気浮上装置
CN103991463A (zh) * 2014-04-11 2014-08-20 西南交通大学 一种基于双传感器的低速磁浮轨道不平顺检测方法
CN104049103A (zh) * 2014-07-07 2014-09-17 南车株洲电力机车有限公司 一种磁浮列车运行速度的测量方法和装置
CN106114282A (zh) * 2016-07-01 2016-11-16 大连天亿软件有限公司 一种磁悬浮动力***
CN106595533A (zh) * 2016-12-07 2017-04-26 中车株洲电力机车有限公司 一种磁浮f轨磁极面的直线度检测装置及方法
CN107152930A (zh) * 2017-07-11 2017-09-12 中国人民解放军国防科学技术大学 一种磁悬浮列车悬浮架位姿测量方法
CN110525229A (zh) * 2019-10-10 2019-12-03 中车株洲电力机车有限公司 中低速磁浮列车悬浮间隙的补偿方法及补偿***
CN111207663A (zh) * 2020-01-17 2020-05-29 中车株洲电力机车有限公司 间隙测量单元、悬浮传感器、速度及悬浮间隙测量方法

Also Published As

Publication number Publication date
CN112193080B (zh) 2021-12-17
CN112193080A (zh) 2021-01-08
CN113844274A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
EP1774275B1 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
CN113844274B (zh) 悬浮电磁铁横向位移修正***、方法、设备及存储介质
CN106274981B (zh) 一种轨道检测装置及检测方法
CN110203223A (zh) 一种轨道不平顺性检测装置
CN109318938B (zh) 一种磁浮列车测速测距***
CN206248039U (zh) 一种车辆超限检测***
CN112082782B (zh) 城市轨道交通列车走行部故障数字诊断***及其诊断方法
CN115388815B (zh) 一种磁悬浮***轨道功能件不平顺静态测量方法与装置
CN104005324B (zh) 一种路面构造信息的检测***
CN111114338B (zh) 一种高速磁悬浮列车测速传感器及磁悬浮列车
CN112722010A (zh) 用于轨道交通的钢轨波磨声学诊断***
CN112172535A (zh) 一种磁浮列车定位测速测高的方法
CN112810664B (zh) 轨道线路曲率在线实时测量***及方法
CN111895996A (zh) 高速轨道检测***及方法
CN111601739B (zh) 用于确定轨道车辆的轮轴的角速度的***和相应方法
KR102094105B1 (ko) 다수 개의 매개변수에 의한 철도 차량의 진단 시스템 및 그에 의한 철도 차량의 안전 진단 방법
CN105000034A (zh) 一种基于轨旁检测的机车测速装置
KR20180110783A (ko) 다수 개의 매개변수에 의한 철도 차량의 진단 시스템 및 그에 의한 철도 차량의 안전 진단 방법
CN103344445B (zh) 一种中低速磁浮走行单元检测平台
CN207029202U (zh) 一种左右轨道间距检测装置
CN113983993B (zh) 基于向心力的轨道曲率检测装置、方法及应用
CN213812376U (zh) 一种运营车车载式轨道检测***
CN115366942A (zh) 一种基于双传感器感知时延的地铁里程定位方法
CN114719812A (zh) 一种用于主动径向控制的线路曲率实时检测***及其方法
CN114454726A (zh) 一种用于磁浮列车的停车定位方法、***和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant