CN113807347A - 一种基于目标检测技术的厨余垃圾杂质识别方法 - Google Patents

一种基于目标检测技术的厨余垃圾杂质识别方法 Download PDF

Info

Publication number
CN113807347A
CN113807347A CN202110958644.1A CN202110958644A CN113807347A CN 113807347 A CN113807347 A CN 113807347A CN 202110958644 A CN202110958644 A CN 202110958644A CN 113807347 A CN113807347 A CN 113807347A
Authority
CN
China
Prior art keywords
image
target detection
kitchen waste
impurities
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110958644.1A
Other languages
English (en)
Inventor
杜永萍
刘杨
彭治
牛晋宇
韩红桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110958644.1A priority Critical patent/CN113807347A/zh
Publication of CN113807347A publication Critical patent/CN113807347A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于目标检测技术的厨余垃圾杂质识别方法,属于计算机视觉领域,面向厨余垃圾图像数据,基于卷积神经网络进行建模,利用卷积神经网络提取有效特征,再利用分类层和回归计算层进行杂质分类和定位。主要包括:建立并预处理厨余垃圾图像库,采用数据增强的方式扩大数据规模;构建基于卷积神经网络的目标检测模型;利用厨余垃圾图像库训练目标检测模型;将目标图像输入至训练好的目标检测模型中进行判断,最终输出目标图像中所含杂质的位置以及所属类别,实现厨余垃圾中的杂质的自动识别。

Description

一种基于目标检测技术的厨余垃圾杂质识别方法
技术领域
本发明属于计算机视觉领域,具体涉及一种基于目标检测技术的厨余垃圾杂质识别方法。
背景技术
随着人们生活水平的提高,垃圾产生的速度也日益变快,对垃圾进行分类管理,能最大限度的实现垃圾资源回收利用。厨余垃圾是日常生活中常见的垃圾类型,对其经过处理之后可以作为肥料、饲料等,实现资源循环再利用。日常生活中投递厨余垃圾时,容易混投其他类型的杂质,如塑料瓶、玻璃瓶、易拉罐、纸盒等。通过厨余垃圾杂质分拣回收,可以提高厨余垃圾的资源价值和经济价值。
传统的垃圾中杂质的分拣依靠人工手动分类,这需要耗费大量的人力物力,并且分类效率低。目标检测技术是实现厨余垃圾种杂质识别的有效方法,基于神经网络模型的目标检测技术具有准确度高,泛化性能好等优点。
近年来,在计算机视觉领域,卷积神经网络应用十分广泛,数据充足时,在图像分类与目标检测任务中,卷积神经网络已经被证明能取得优异的表现。目标检测技术是一种与计算机视觉和图像处理相关的技术,用于检测数字图像或者视频种的某个类别(例如建筑物或汽车)的语义对象的实例,是计算机视觉领域最重要也是最具有挑战性的方向之一。它在人们生活中得到了广泛的应用,如监控安全、自动驾驶等。随着深度学习技术的快速发展,目标检测模型的性能得到了极大的提高。
本项目将基于深度学习的目标检测技术应用于厨余垃圾杂质识别场景,针对厨余垃圾中的杂质进行识别和定位,提出解决方案,改变目前人工监督分类成本高的难题,提高垃圾分类管理效能、减少分类管理成本。
发明内容
本发明的目的是提供一种基于目标检测技术的厨余垃圾杂质识别方法,实现在垃圾分类过程中的智能辅助化操作,缓解厨余垃圾杂质识别依靠人力资源解决的问题,改善厨余垃圾投递现状。目标检测是一种与计算机视觉和图像处理相关的计算机技术,用于检测数字图像和视频中某一类语义对象的实例。厨余垃圾投递场景中,往往容易混入多个不同类别的杂质,例如塑料袋、纸巾等。相比基于图像分类的杂质检测算法只能检测出是否包含杂质,基于目标检测的算法检测方法能够识别出处于垃圾中是否含有多个不同类别的杂质,并对他们进行定位。这对于改善厨余垃圾投递现状提供了更进一步的帮助。
为达到上述发明目的,本发明提出了一种基于目标检测技术的厨余垃圾杂质识别方法,如附图1所示。
首先,建立包含杂质的厨余垃圾图像库,且保证各类杂质数目均有一定规模,主要包括如下方面:
(1)通过多种渠道采集厨余垃圾图像,例如通过互联网采集,或者进行实地采集。
(2)将收集到的厨余垃圾图像进行筛选,获取含有杂质的图像,杂质主要包括以下类别:塑料瓶、纸盒、玻璃、金属、其他(如塑料袋、餐盒、纸巾等)。
(3)将筛选完毕的厨余垃圾图像使用标注工具进行标注,通过标注,使每张图像包含有其中所含杂质的位置以及类别。
其次对厨余垃圾图像数据集进行预处理,主要工作如下:
(1)将标注好的厨余垃圾图像按照一定比例划分为训练集与测试集。
(2)统一输入厨余垃圾图像的图像大小。
(3)使用方法一进行数据增强:对输入的厨余垃圾图像进行随机裁剪,不仅能够增加图像数据,同时弱化数据噪声,增强模型的稳定性。
(4)使用方法二进行数据增强:将厨余垃圾图像分别进行垂直翻转和水平翻转,以及随机旋转一定角度,该方法能够提升模型的泛化能力,使模型对各种形状的垃圾图像均能有效的提取图像特征。
(5)使用方法三进行数据增强:对厨余垃圾图像进行颜色变换,随机添加一些噪声。最常见的方法是高斯噪声,或者在面积大小可选定、位置随机的矩形区域上丢弃像素产生黑色矩形块,从而产生彩色噪声,还可以在图片上随机选取一块区域并擦除图像信息。
(6)对旋转变换后的厨余垃圾图像进行归一化,让输入的分布更利于模型学习。
第三,构建基于卷积神经网络的目标检测模型,主要工作如下:
(1)使用卷积神经网络进行学习,其结构图如图2所示,包括输入层,卷积层,批归一化层,激活函数层,全连接层,构建特征提取网络。
(2)使用sigmoid分类层和回归计算层,计算杂质的类别以及位置。
第四,利用厨余垃圾图像训练集训练基于卷积神经网络的目标检测模型,
具体工作如下:
将预处理后的训练集图像利用搭建的卷积神经网络模型进行训练,模型通过卷积神经网络进行特征提取,再利用线性回归层和sigmoid层进行位置计算和分类。通过在训练集上的学习过程,目标检测模型对厨余垃圾图像中的杂质具有了较强的识别能力。
(1)将待识别的厨余垃圾图像输入至训练好的目标检测模型中,模型通过卷积神经网络提取图像的关键特征,根据提取到的关键特征判断目标图像是否包含杂质,如果检测到含有杂质,则计算其位置以及对应杂质类别。
(2)使用测试集进行验证。通过测试集的验证可计算得到模型对厨余垃圾图像中杂质的定位和分类的准确率。
本发明的有益效果是:本发明提供了一种基于目标检测技术的厨余垃圾中杂质识别的方法,通过采集图像,标记数据,构建模型以及训练模型的过程,实现了较为准确的厨余垃圾杂质定位和识别,使得厨余垃圾分类更智能化,减轻了人工操作。
附图说明
图1为本发明提出的一种基于目标检测技术的厨余垃圾杂质智能识别方法流程图;
图2为本发明中卷积神经网络结构示意图;
具体实施方式
下面结合附图对本发明进行进一步说明。
如图1所示,一种基于目标检测技术的厨余垃圾杂质识别方法,包括以下步骤:
S1.建立包含K类杂质的厨余垃圾图像库,采集厨余垃圾图像N张,保障每种杂质的实例具有一定规模;
S2.将厨余垃圾图像按比例划分训练集与测试集,并分别进行预处理;
S3.构建基于卷积神经网络的目标检测模型;
S4.利用厨余垃圾图像训练集来训练基于卷积神经网络的目标检测模型;
S5.将目标图像输入至预先训练好的目标检测模型中,最终输出目标图像中含有杂质的位置以及类别。
进一步地,所述步骤S1中构建厨余垃圾图像库的具体方法为:
首先,通过多种方式采集到数千张垃圾图像,构建厨余垃圾图像库。
基于厨余垃圾图像库,筛选出含有杂质的厨余垃圾图像。
最后,对厨余垃圾图像种的杂质按照筛选的类别进行标注,通过标注使每张图片中的杂质包含相应的类别以及位置标签。
所述步骤S2中对厨余垃圾图像进行预处理的具体方法为:
为了更好的进行说明,现介绍如下相关函数:
表1数据增强相关函数表
Figure BDA0003221305880000041
对采集到的厨余垃圾图像按8:2的比例划分为训练集与测试集并打乱顺序,训练集大约4000张图像,测试集大约1000张图像。
利用resize()函数统一输入图像大小;
利用random_crop(size)函数对输入的图像进行随机裁剪,设置裁剪的尺寸(size)为416,将输入的图像缩放为416*416的图像;
利用random_vertical_flip()和random_horizontal_flip()函数对图像分别依照默认的概率(0.5)进行垂直翻转或水平翻转;
利用random_rotation()函数对翻转后的图像进行随机旋转一定角度;
利用random_erasing()函数对图像随机删除一部分色块并使用随机像素点填充;
最后,利用normalize()和to_tensor()函数对旋转变换后的图像进行归一化,使模型训练时更加稳定。
经过数据预处理,将图像输入模型进行训练,同时训练集更加丰富,使模型具有较好的泛化能力。
如图2所示,所述步骤S3中构建基于卷积神经网络的厨余垃圾杂质识别模型,具体为:
使用卷积神经网络进行学习,包括输入层,以及卷积层(图2中conv模块),批归一化层(图2中BN模块),激活函数层(图2中Leaky模块),残差连接层(图2中add模块)等初级组件。DBL、Res unit、Resn等是由初级组件进行组合和堆叠构成的高级组件,再将他们进行组合和堆叠以提取图像高阶特征。
输入层:将预处理后的图像作为输入,输入到模型中;
卷积层(conv):卷积层由若干卷积单元组成,每个卷积单元的参数都是通过随机初始化并通过反向传播算法优化得到的。卷积运算的目的是提取输入图像的不同特征,低层的卷积层可能只能提取一些低级的特征如边缘、线条和角等,位于高层的卷积层能从低级特征中提取组合出更复杂的特征。
我们假设单一通道输入图像的空间坐标为(x,y),卷积核大小是p×q,卷积核权重为w,卷积层的输入为v,偏置为b,卷积过程就是卷积核所有权重与其在输入图像上对应像素相乘之和再加上偏置,可以表示为:
Figure BDA0003221305880000051
卷积之后,使用批归一化层(BN),批归一化能够使得输入数据的分布相对稳定,加速模型收敛速度,并且让更高层的网络的参数不那么敏感,让模型学习更稳定,并且能够缓解梯度消失问题,其含义如下。
Figure BDA0003221305880000061
Figure BDA0003221305880000062
Figure BDA0003221305880000063
Figure BDA0003221305880000064
其中,μb表示该批数据同一位置所有输出的均值,
Figure BDA0003221305880000065
表示该批数据同一位置所有输出的方差,通过批归一化,能够让该批数据的样本的输出分布趋于整批数据的分布。
激活函数层(Leaky):赋予神经网络模型非线性拟合能力,提高模型表达能力,同时对于深层网络,很容易出现梯度消失或过拟合的情况,LeakyRelu激活函数能缓解梯度消失以及过拟合问题。
在批归一化层之后,加入非线性激活函数h(),经过激活函数后,得到的结果如下,
Figure BDA0003221305880000066
Figure BDA0003221305880000067
其中,zx,y表示该卷积值经过激活函数激活之后的值,激活函数能够有效的提高模型的表达能力,提高模型预测的准确性。此处的激活函数采用的是LeakyRelu,它既具有Relu激活函数的优点,又避免了Relu容易导致神经元死亡的弊端。
残差连接层(add)是为了解决深度神经网络中的梯度消失和梯度***的问题提出的,其含义如下:
F(x)=x+f(x)
即网络的输出项中添加网络的输入项,从而使得梯度传导更加直接,缓解了梯度弥散或梯度***问题。
图2中,DBL组件由卷积层、批归一化层、激活函数层构成。
图2中,残差单元组件(Res unit)由两个DBL组件和一个残差连接层组合构成。
图2中,Resn组件则是由一个补0填充层和DBL组件以及n个残差单元组件构成。
网络通过以上组件堆叠,提取图像高阶特征,并通过三种不同的尺度来提取图像中不同大小的实体的特征,以识别不同大小的物体。
如图1所示,所述步骤S4中利用厨余垃圾图像训练集来训练基于卷积神经网络的目标检测模型,具体方法为:
(1)将预处理后的训练集输入至模型进行训练,模型通过卷积神经网络进行特征提取并计算位置和类别。传统的卷积神经网络目标检测模型提取图像的特征后通常采用softmax分类层对实例进行分类,本发明不同于传统的目标检测模型,使用sigmoid层代替传统目标检测模型的分类层中的softmax层。sigmoid本身是二分类分类器,在目标检测任务中,是为了解决同一个检测框中包含多个物体的问题,可以有效改善物体出现重叠时的识别效果。
(2)通过在训练集上的训练,目标检测模型对厨余垃圾图像中的杂质具有较强的识别能力。
所述步骤S5中将目标图像输入至预先训练好的目标检测模型中,最终输出目标图像种杂质的位置和对应类别,具体步骤为:
(1)将待识别目标图像输入至训练好的目标检测模型中,模型通过卷积神经网络提取图像的关键特征,并根据提取到的关键特征判断目标图像中是否包含杂质,以及其位置和对应杂质的类别,最后输出相应信息。
(2)使用测试集进行验证,可计算得到模型对厨余垃圾图像中杂质定位和分类的准确率。
我们采用平均准确率均值(mean Average Precision,mAP)来对测试结果进行评价,通常,mAP值越高,目标检测模型越优秀。
mAP指标的计算较为复杂,AP(Average Precision)是指平均准确率,在不同recall(recall即召回率,通常选定0,0.1,0.2,…,0.9,1共11个值)下的最高precision(准确率)的均值(一般会对各类别分别计算各自的AP),mAP则是所有类别的AP值的均值。
在计算中,TP(True positives):IoU>IoUthreshold(IoUthreshold一般设置为0.5)的检测框数量(同一个Ground Truth只计算一次,Ground Truth在此处表示标签中的真实检测框);IoU即交并比,用于度量两个检测框的交叠程度,即模型检测的结果与真实位置GroundTruth的重叠程度。
FP(False positives):IoU<IoUthreshold的检测框的数量,或者是检测到同一个Ground Truth的多余检测框的数量;
FN(False negatives):没有被检测到的Ground Truth的数量;
Figure BDA0003221305880000081

Claims (6)

1.一种基于目标检测技术的厨余垃圾杂质识别方法,其特征在于,包括以下步骤:
S1.建立厨余垃圾图像库,收集包含杂质的厨余垃圾图像N张,并利用标注工具将厨余垃圾图像中的杂质标注出位置以及类别;
S2.将标注好的厨余垃圾图像按比例划分为训练集和测试集,并分别进行预处理;
S3.构建基于卷积神经网络的目标检测模型;
S4.利用标注后的厨余垃圾图像训练集训练基于卷积神经网络的目标检测模型;
S5.将待检测的厨余垃圾图像输入至预先训练好的目标检测模型中,最终模型输出检测到的杂质位置以及类别。
2.根据权利要求1所述的基于目标检测技术的厨余垃圾杂质识别方法,其特征在于,所述步骤S1中建立包含K类杂质的厨余垃圾图像库,且每类杂质均有一定规模,包括如下方面:
(1)采集厨余垃圾图像;
(2)将收集到的厨余垃圾图像进行筛选,保留含有杂质的厨余垃圾图像,杂质类型有如下5类:玻璃、金属、塑料瓶、纸盒、其他;
(3)利用目标检测标注工具,将采集到的厨余垃圾图像按照杂质类型进行标注,分别标注出目标位置以及对应类别;使得每张图像均含有其中包含的杂质的位置以及杂质类别信息。
3.根据权利要求1所述的基于目标检测技术的厨余垃圾杂质识别方法,其特征在于,所述步骤S2中将标注好的厨余垃圾图像按比例划分为训练集和测试集,并分别进行预处理,主要包括:
(1)将标注好的厨余垃圾图像按照一定比例划分为训练集与测试集;
(2)将图像进行预处理,重新设置大小,统一输入图像尺寸;
(3)数据增强方法一:对输入的图像进行随机裁剪,通过裁剪不仅增加了图像数据,同时也弱化了数据噪声,能够增强模型的稳定性;
(4)数据增强方法二:将图像分别进行垂直翻转和水平翻转,以及随机旋转一定角度,该方法能够提升模型的泛化能力,使模型对各种形状的垃圾图像均能有效的提取图像特征;
(5)数据增强方法三:对图像进行颜色变换,随机叠加一些噪声;最常见的方法是高斯噪声,或者在面积大小可选定、位置随机的矩形区域上丢弃像素产生某种颜色矩形块,从而产生彩色噪声,在图片上随机选取一块区域并擦除图像信息;
(6)对变换后的图像进行归一化,使模型训练时更加稳定。
4.根据权利要求1所述的基于目标检测技术的厨余垃圾杂质识别方法,其特征在于,所述步骤S3中构建基于卷积神经网络的目标检测模型,主要工作如下:
(1)利用卷积神经网络进行学习,包括输入层,卷积层,批归一化层,激活函数层,残差连接层,构建特征提取网络;
(2)使用sigmoid分类层进行分类,利用回归计算层计算锚点框位置,构建基于卷积神经网络的目标检测模型。
5.根据权利要求1所述的基于目标检测技术的厨余垃圾杂质识别方法,其特征在于,所述步骤S4中利用厨余垃圾图像训练集训练基于卷积神经网络的目标检测模型,具体工作如下:
利用搭建的卷积神经网络模型,在预处理后的训练图像数据集上进行训练,模型通过卷积神经网络进行特征提取,再利用最终的回归计算层和分类层来定位和识别杂质;通过在训练集上的学习过程,目标检测模型对厨余垃圾中的杂质具有识别能力。
6.根据权利要求1所述的基于目标检测技术的厨余垃圾杂质识别方法,其特征在于,所述步骤S5中将目标图像输入至预先训练好的目标检测模型中,最终输出厨余垃圾图像中所含杂质的位置以及类别,具体过程如下:
(1)将待识别目标图像输入至训练好的目标检测模型中,模型通过卷积神经网络提取图像的关键特征,根据提取到的关键特征判断是否包含杂质,并输出杂质位置以及类别;
(2)使用测试集进行验证,通过测试集的验证可评价模型对厨余垃圾中杂质的定位准确率以及类别判断准确率。
CN202110958644.1A 2021-08-20 2021-08-20 一种基于目标检测技术的厨余垃圾杂质识别方法 Pending CN113807347A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110958644.1A CN113807347A (zh) 2021-08-20 2021-08-20 一种基于目标检测技术的厨余垃圾杂质识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110958644.1A CN113807347A (zh) 2021-08-20 2021-08-20 一种基于目标检测技术的厨余垃圾杂质识别方法

Publications (1)

Publication Number Publication Date
CN113807347A true CN113807347A (zh) 2021-12-17

Family

ID=78941595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110958644.1A Pending CN113807347A (zh) 2021-08-20 2021-08-20 一种基于目标检测技术的厨余垃圾杂质识别方法

Country Status (1)

Country Link
CN (1) CN113807347A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114724005A (zh) * 2022-03-25 2022-07-08 清华大学 基于深度神经网络的固态酿造颗粒状原料掺杂鉴别方法
CN115761259A (zh) * 2022-11-14 2023-03-07 湖南大学 基于类别平衡损失函数的厨余垃圾目标检测方法和***
CN116777843A (zh) * 2023-05-26 2023-09-19 湖南大学 一种基于动态非极大值抑制的厨余垃圾检测方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368895A (zh) * 2020-02-28 2020-07-03 上海海事大学 一种湿垃圾中垃圾袋目标检测方法及检测***
CN112733936A (zh) * 2021-01-08 2021-04-30 北京工业大学 一种基于图像识别的可回收垃圾分类方法
US20210224512A1 (en) * 2020-01-17 2021-07-22 Wuyi University Danet-based drone patrol and inspection system for coastline floating garbage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210224512A1 (en) * 2020-01-17 2021-07-22 Wuyi University Danet-based drone patrol and inspection system for coastline floating garbage
CN111368895A (zh) * 2020-02-28 2020-07-03 上海海事大学 一种湿垃圾中垃圾袋目标检测方法及检测***
CN112733936A (zh) * 2021-01-08 2021-04-30 北京工业大学 一种基于图像识别的可回收垃圾分类方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114724005A (zh) * 2022-03-25 2022-07-08 清华大学 基于深度神经网络的固态酿造颗粒状原料掺杂鉴别方法
CN115761259A (zh) * 2022-11-14 2023-03-07 湖南大学 基于类别平衡损失函数的厨余垃圾目标检测方法和***
CN115761259B (zh) * 2022-11-14 2023-11-24 湖南大学 基于类别平衡损失函数的厨余垃圾目标检测方法和***
CN116777843A (zh) * 2023-05-26 2023-09-19 湖南大学 一种基于动态非极大值抑制的厨余垃圾检测方法及***
CN116777843B (zh) * 2023-05-26 2024-02-27 湖南大学 一种基于动态非极大值抑制的厨余垃圾检测方法及***

Similar Documents

Publication Publication Date Title
CN113807347A (zh) 一种基于目标检测技术的厨余垃圾杂质识别方法
KR102207533B1 (ko) 지폐 관리 방법 및 시스템
CN108509954A (zh) 一种实时交通场景的多车牌动态识别方法
CN103049763B (zh) 一种基于上下文约束的目标识别方法
CN101944174B (zh) 车牌字符的识别方法
CN111563494A (zh) 基于目标检测的行为识别方法、装置和计算机设备
CN109711448A (zh) 基于判别关键域和深度学习的植物图像细粒度分类方法
CN105809121A (zh) 多特征协同的交通标志检测与识别方法
CN112733936A (zh) 一种基于图像识别的可回收垃圾分类方法
CN105184226A (zh) 数字识别方法和装置及神经网络训练方法和装置
CN114937179B (zh) 垃圾图像分类方法、装置、电子设备及存储介质
CN103345631A (zh) 图像特征提取、训练、检测方法及模块、装置、***
CN108764302A (zh) 一种基于颜色特征和词袋特征的票据图像分类方法
EP1583023B1 (en) Model of documents and method for automatically classifying a document
CN102867183A (zh) 一种车辆遗撒物检测方法、装置及智能交通监控***
CN114972922A (zh) 基于机器学习的煤矸分选识别方法、装置及设备
CN114581928A (zh) 一种表格识别方法及***
CN106548195A (zh) 一种基于改进型hog‑ulbp特征算子的目标检测方法
CN110378337A (zh) 金属切削刀具图纸标识信息视觉输入方法及***
CN116206155A (zh) 基于YOLOv5网络的废钢分类识别方法
CN115861956A (zh) 一种基于解耦头部的Yolov3道路垃圾检测方法
CN114241189B (zh) 一种基于深度学习的船舶黑烟识别方法
CN108460772A (zh) 基于卷积神经网络的广告骚扰传真图像检测***及方法
Rong et al. Weakly supervised text attention network for generating text proposals in scene images
Oublal et al. An advanced combination of semi-supervised Normalizing Flow & Yolo (YoloNF) to detect and recognize vehicle license plates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination