CN105809121A - 多特征协同的交通标志检测与识别方法 - Google Patents

多特征协同的交通标志检测与识别方法 Download PDF

Info

Publication number
CN105809121A
CN105809121A CN201610121846.XA CN201610121846A CN105809121A CN 105809121 A CN105809121 A CN 105809121A CN 201610121846 A CN201610121846 A CN 201610121846A CN 105809121 A CN105809121 A CN 105809121A
Authority
CN
China
Prior art keywords
traffic signs
color
traffic
local
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610121846.XA
Other languages
English (en)
Inventor
康波
蔡会祥
王琳
赵辉
李云霞
敬斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610121846.XA priority Critical patent/CN105809121A/zh
Publication of CN105809121A publication Critical patent/CN105809121A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/582Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of traffic signs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种多特征协同的交通标志检测与识别方法,通过交通标志样本图像建立各个颜色类别交通标志的颜色概率模型,选择各个颜色类别交通标志的代表颜色,计算得到各个代表颜色的概率查找表,训练得到各个形状类别交通标志的形状分类器以及识别模型;对于待检测交通图像,先使用各个代表颜色的概率查找表得到待检测交通图像的概率图,然后转换为灰度图,利用MSER算法检测各灰度图中的灰度变化稳定区域,将符合预设高宽比范围的区域作为候选窗口,将各候选窗口采用各交通标志形状分类器判定是否存在交通标志,对存在交通标志的候选窗口,采用对应形状的识别模型进行识别。本发明结合了交通标志的颜色和形状特征,可以得到更好的检测与识别效果。

Description

多特征协同的交通标志检测与识别方法
技术领域
本发明属于交通标志检测与识别技术领域,更为具体地讲,涉及一种多特征协同的交通标志检测与识别方法。
背景技术
随着经济与技术的发展,智能交通技术得到了大力的发展,交通标志的检测与识别作为智能交通技术的一个重要组成部分,得到了越来越广泛的重视。交通标志的检测与识别一般是根据所拍摄的道路图像,首先对道路图像进行预处理,然后从道路图像中检测出交通标志,最后再进行分类识别。
交通标志检测的任务是在输入的图像中检测交通标志的位置,应具有低漏检率、低误检率的特点。其中低漏检率是最关键的指标,因为交通标志检测是后续的交通标志识别的基础,前者为后者提供了识别的对象。一旦检测的过程漏掉某个标志,将会直接导致整个交通标志检测与识别***漏掉这个交通标志。针对交通标志形状规则、颜色鲜明的特点,学者们提出了很多基于形状、基于颜色、基于模板的检测方法。从2013年的德国交通标志检测大赛公布的结果来看,基于模板的方法在准确率方面具有很大的优势,对光照、遮挡等多种不利条件都有很好的适应能力。但是这类方法的运算量普遍较大,难以满足实时性的要求。
对于交通标志的识别而言,是一个多类别的分类问题,因此很多模式识别算法被引入交通标志的识别中来,包括模板匹配、稀疏编码、SupportVectorMachine(SVM),DeepNeuralNetworks(DNN),Adaboost算法等等。CNN(ConvolutionalNeuralNetwork,卷积神经网络)相对于其他机器学习算法来说,由于其具有自动提取特征的特性而被广泛关注。但是普通直线型CNN网络在交通标志识别过程中,由于后一层的输入只和前一层的输出有关,对于那些过小且模糊图像的识别能力还是有限制的。
发明内容
本发明的目的在于克服现有技术的不足,提供一种多特征协同的交通标志检测与识别方法,采用交通标志的多种特征协同完成交通标志的检测与识别,降低交通标志的漏检率和误检率,提高交通标志的识别效果。
为实现上述发明目的,本发明多特征协同的交通标志检测与识别方法,其特征在于包括:
S1:根据交通标志的颜色特点对交通标志进行分类,每个颜色类别分别获取若干张交通标志样本图像;对于每张交通标志样本图像,提取各个像素点的颜色特征,根据颜色特征对该交通标志样本图像的所有像素进行聚类,聚类数量为N+1,N为交通标志的主要颜色数量,将每类交通标志样本图像中各样本图像中对应聚类的像素点合并,得到该颜色类别的N+1个样本集,对每个样本集建立对应的高斯模型;
S2:对于每个颜色类别的交通标志,根据其对应的N+1个的颜色概率模型计算各个R,G,B值属于各颜色的概率p(ci|x),x表示像素点R,G,B值,ci表示颜色,i=1,2,…,N+1;从该颜色类别的N种主要颜色中选取一种颜色作为代表颜色,记为ci′,然后对代表颜色的概率进行归一化得到其归一化概率建立各个R,G,B值属于代表颜色的概率查找表;
S3:将交通标志根据形状分为M类,每个形状类别建立一个基于HOG特征的形状分类器,其训练方法为:对于每个形状分类器,获取两类样本图像,一类为对应形状的交通标志样本图像,另一类为其他图像;统一样本图像尺寸,提取每张样本图像的HOG特征,将HOG特征作为形状分类器的输入,是否为所属形状类别的判定值作为形状分类器的输出,训练得到对应形状类别交通标志的形状分类器;
S4:按照交通标志的形状类别数M,对每一个形状类别的交通标志分别设置一个识别模型,每个形状类别分别获取若干张交通标志样本图像;先对所有样本图像进行预处理,包括统一图像尺寸和对比度增强;采用每个形状类别预处理后的样本图像对其识别模型进行训练,每次训练完毕后将预处理后的交通标志样本图像随机排序然后分组,设置Q种畸变方式,对每组样本图像在Q种畸变方式中随机选择q种畸变方式按照随机顺序对样本图像进行畸变处理,采用畸变处理后的新样本图像对其识别模型进行训练,直到达到训练结束条件;
S5:遍历待检测的交通图像中的各个像素,根据每个代表颜色的概率查找表,计算每个像素点属于该类颜色的概率,得到待检测交通图像在每个代表颜色下的概率图,然后转换为灰度图;利用MSER算法检测各灰度图中的灰度变化稳定区域,去除稳定区域中高宽比在预设高宽比范围以外的区域,剩余的稳定区域作为候选窗口;
S6:将候选窗口尺寸调整至形状分类器输入尺寸,提取每个候选窗口对应图像块的HOG特征,输入各个交通标志形状分类器,判断该候选窗口是否为交通标志的形状类别,如果是,则说明该候选窗口存在交通标志,交通标志的形状即为对应形状分类器所进行判定的形状,否则不存在交通标志;
S7:对于步骤S6判断结果为存在交通标志的候选窗口,提取对应图像,调整至识别模型的输入图像尺寸,并按照步骤S6判定的交通标志形状,将尺寸调整后的交通标志图像输入对应形状的识别模型,得到识别结果。
本发明多特征协同的交通标志检测与识别方法,先通过交通标志样本图像建立各个颜色类别交通标志的颜色概率模型,选择各个颜色类别交通标志的代表颜色,计算得到各个代表颜色的概率查找表,同时训练得到各个形状类别交通标志的形状分类器以及识别模型,对于待检测交通图像,先使用各个代表颜色的概率查找表得到待检测交通图像的概率图,然后转换为灰度图,利用MSER算法检测各灰度图中的灰度变化稳定区域,将符合预设高宽比范围的区域作为候选窗口,将各个候选窗口采用各个交通标志形状分类器判定是否存在交通标志,对于存在交通标志的候选窗口,采用对应形状的识别模型进行交通标志识别。
本发明在交通标志的检测与识别过程中,采用了颜色和形状特征两种特征的结合来协同完成检测,从而提高了检测效率,提高了交通标志的识别效果。
附图说明
图1是本发明多特征协同的交通标志检测与识别方法的具体实施方式流程图;
图2是禁令标志的示例图;
图3是交通标志样本图像聚类结果示例图;
图4是畸变效果示例图;
图5是卷积神经网络结构图;
图6是第一卷积层的卷积核及卷积结果;
图7是第二卷积层的卷积核及卷积结果;
图8是待检测交通图像;
图9是待检测交通图像根据红色概率查找表得到的概率图;
图10是图9所示概率图对应的灰度图;
图11是MESE算法检测得到的灰度变化稳定区域结果图;
图12是待检测交通图像的候选窗口图;
图13是待检测交通图像的交通标志检测结果图;
图14是直线型卷积神经网络(网络1)与多列型卷积神经网络(网络2)的误识别率对比图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明多特征协同的交通标志检测与识别方法的具体实施方式流程图。如图1所示,本发明多特征协同的交通标志检测与识别方法包括以下步骤:
S101:建立颜色概率模型:
根据交通标志的颜色特点对交通标志进行分类,每一类分别获取若干张交通标志样本图像。对于每张交通标志样本图像,提取各个像素点的颜色特征,根据颜色特征对该交通标志样本图像的所有像素进行聚类,聚类数量为N+1,N为交通标志的主要颜色数量,也就是说交通标志的各个主要颜色分别为一类,剩下一类为背景色,聚类方法可以根据需要进行选择。将每类交通标志样本图像中各样本图像中对应聚类的像素点合并,得到该分类的N+1个样本集,对每个样本集建立对应的高斯模型,并且计算每个颜色类别下各样本集的先验概率。
对于交通标志图像来说,其颜色主要由N+1中颜色构成(前N种为构成交通标志的主要颜色,第N+1种为背景),例如除开背景色之后,警告标志的主要颜色为黄色和黑色,禁令标志的主要颜色为红色、黑色和白色,指示标志的主要颜色为蓝色和白色。图2是禁令标志的示例图。图2中的禁令标志均为限速标志。因此交通标志的颜色特点还是较为明显的。
在建立颜色概率模型时,可以根据需要选择颜色特征。由于自然场景下的交通标志受到不同条件(背光、强烈光照等)的光照影响,为了使颜色概率模型更为准确,本实施例中提出了一种采用颜色不变量(colorinvariance)作为颜色特征。
根据Geosebmek等人建立的高斯光谱模型,彩色图像各像素值(R,G,B)和高斯彩色模型的参数(E,Eλ,Eλλ)的关系为:
E E λ E λ λ = H R G B
其中H为3×3的系数矩阵,近似为
然后计算得到Cλ和Cλλ是色彩衡量,与视角、光照强度、表面朝向、照明方向无关。因此本实施例中优选色彩衡量Cλ和Cλλ作为各个像素的颜色特征。
每个颜色类别下各样本集的先验概率的计算公式为:
p ( c i ) = n c i n
其中,ci表示第i个样本集,i=1,2,…,N+1,表示属于ci的像素点个数,n表示颜色类别下所有样本像素点的个数。
图3是交通标志样本图像聚类结果示例图。如图3所示,该交通标志样本图像为禁令标志,其主要颜色有三种,因此令聚类数量为4,采用kmeans聚类方法进行聚类。可见,该交通标志样本图像中的像素点被很好地分为了4个类。对所有的红色禁令交通标志样本采用同样的方式进行聚类,将对应聚类的像素点进行合并,得到4种颜色的样本集。然后对每个样本集建立高斯模型。通过对样本集元素的分析,为了提高模型的鲁棒性,本实施例中对红色、黑色、背景样本集分别建立混合高斯模型,对白色样本集建立单高斯模型。
S102:计算交通标志颜色概率查找表:
对于每个颜色类别的交通标志,根据其对应的N+1个的颜色概率模型计算各个R,G,B值属于各颜色的概率p(ci|x),x表示像素点R,G,B值,ci表示颜色,i=1,2,…,N+1。由于各个颜色类别的交通标志,可以选择出一个代表颜色,即可以将该颜色类别与另一个颜色类别完全区分的颜色,例如警告标志的代表颜色为黄色,禁令标志的代表颜色为红色,指示标志的代表颜色为蓝色,因此从其N种主要颜色中选取一种颜色作为代表颜色,然后对代表颜色进行归一化得到其归一化概率,建立各个R,G,B值属于代表颜色的概率查找表。
对于像素点x=(r,g,b),其属于颜色ci的概率为:
p ( c i | x ) = p ( x | c i ) p ( c i ) p ( x )
在一张具体的图片中,p(x)是确定的,所以可以认为:
p(ci|x)≈p(x|ci)p(ci)
又由上一步得到的颜色概率模型,可以直接得到p(x|ci):
N ( x ; u c i j , Σ c i j ) = 1 2 π Σ c i j exp - 1 2 ( x - u c i j ) Σ c i j - 1 ( x - u c i j ) T
p ( x | c i ) = Σ j = 1 K λ k N ( x , u c i j , Σ c i j )
式中,表示颜色ci的高斯模型中第j个高斯模型的均值,表示颜色ci高斯模型中第j个高斯模型的协方差,K表示颜色ci的高斯模型数量。
由此可以确定p(ci|x)。
p ( c i | x ) = p ( x | c i ) p ( c i ) = p ( c i ) Σ j = 1 K λ k N ( x , u c i j , Σ c i j )
记代表颜色为ci′,其归一化后的概率为:
p ~ ( c i ′ | x ) = p ( c i ′ | x ) Σ i ′ = 1 N + 1 p ( c i ′ | x )
由此,就可以计算出每一个像素点属于代表颜色ci′的概率。为加快检测速度,本发明根据颜色概率模型,计算每个颜色类别的代表颜色的离线概率查找表。代表颜色就是可以将该颜色类别与其他颜色类别区分开的颜色。以红色禁令交通标志为例,针对其红色特征比较明显的特点,计算红色概率查找表,含有256^3个元素,这样对于任意一个像素点,都可以根据其R,G,B值直接查表得到其属于红色的概率。
S103:训练交通标志形状分类器:
将交通标志根据形状分为M类,每个形状类别建立一个基于HOG((HistogramofOrientedGradient,方向梯度直方图)特征的形状分类器,其训练方法为:对于每个形状分类器,采集两类样本图像,一类为对应形状的交通标志样本图像,另一类为其他图像,包括其他形状的交通标志样本图像或其他非交通标志的样本图像。统一样本图像尺寸,本实施例中将所有的样本图像归一化到20*20的大小,提取每张样本图像的HOG特征,将HOG特征作为形状分类器的输入,是否为所属类别的判定值作为形状分类器的输出,训练得到对应形状类别交通标志的形状分类器。本实施例中将交通标志按照形状分为圆形和三角形两类,所采用的分类器为SVM(SupportVectorMachine,支持向量机)分类器。
S104:训练交通标志识别模型:
为了完成交通标志的识别,需要预先训练好识别模型。为了提高识别模型的识别准确率,本发明按照交通标志的形状类别数M,对每一个形状类别的交通标志分别设置一个识别模型,每个形状类别分别获取若干张交通标志样本图像。先对所有样本图像进行预处理,包括统一图像尺寸和对比度增强。统一图像尺寸是为了避免样本尺寸大小对识别模型的训练效果产生影响。本实施例中采用限制对比度自适应直方图均衡(CLAHE)算法进行对比度增强。限制对比度自适应直方图均衡算法相对比传统的对比度自适应直方图均衡(AHE)增强图像,在增强过程中不会过度放大噪声,可以达到较为理想的处理效果。
此外,为了保证识别模型的训练效果并增加识别的鲁棒性,对于每个形状类别,每次训练完毕后将预处理后的交通标志样本图像随机排序然后分组,设置Q种畸变方式,对每组样本图像在Q种畸变方式中随机选择q种畸变方式按照随机顺序对样本图像进行畸变处理,采用畸变处理后的新样本图像对其识别模型进行训练,直到达到训练结束条件。训练结束条件即为预先设置的识别模型所要达到的要求,一般是输出误差,如果满足要求即训练结束。
本实施例中畸变方式包括添加白噪声、平移、仿射变换、旋转四种。图4是畸变效果示例图。在畸变时,可以随机选择几种畸变方式,以随机顺序进行畸变,例如选择平移和旋转两种方式,先对样本图像进行旋转,然后再进行平衡。通过畸变处理,可以大量增加样本数量与类型,可以使得最后训练得到的交通标志识别模型更加准确,从而提升交通标志识别率。
现有的识别模型有多种,本发明中采用卷积神经网络。为了提高交通标志的识别率,本实施例中重新设计了一种卷积神经网络。图5是卷积神经网络结构图。如图5所示,本实施例中的卷积神经网络的第一层为输入层,作为第一阶段--低层特征提取的输入,包括第一卷积层、第一最大池化层和第一局部归一化层,然后是第二阶段高层特征提取:第二卷积层、第二最大池化层和第二局部归一化层;再将第二局部归一化层的输出结果输入到第一局部卷积层和第二局部卷积层组成的卷积网络中;在全连接层,本发明不仅将第二局部卷积层作为全连接层的输入来训练交通标志识别模型,还与更前面层的输出(即第一局部卷积层)相结合,第一局部卷积层和第二局部卷积层具有不同层次的特征表达,所以将这两者相结合,同时输入给全连接层,作为网络最终的特征描述;最后,为了获得待识别对象属于某类别的概率数据,使用SoftMax回归作为输出层。
卷积神经网络的工作过程如下:
1)第一卷积层:
第一卷积层对输入图像进行卷积。本实施例中交通标志样本图像的尺寸都统一为32×32,将3通道彩色交通标志图像作为输入图像,输入训练数据的维度为3072维。第一卷积层采用64个大小为5×5的不同卷积核进行卷积,得到卷积层,其输出即为特征图,输出至第一最大池化层。图6是第一卷积层的卷积核及卷积结果。如图6所示,本实施例中第一卷积层得到的特征图总共64个,大小为28×28,本实施例中采用的计算公式为:
y 2 r = f ( Σ y 1 * k i j r + b j r )
其中,y1为输入的交通标志样本图像,为经卷积后得到的第r张特征图,为第r个卷积核,为相应的偏置,是需要训练的参数,f(·)为sigmoid激活函数。
2)第一最大池化层
第一最大池化层对步骤1)所得64张特征图进行最大池化。本实施例中池化方式选择最大池化,本实施例中池化核大小为2×2,得到的池化层大小为14×14,计算公式如下:
y 3 r = f ( β 2 r d o w n ( y 2 r ) + b 2 r )
其中,是池化后所得图像,为卷积层1后所得的第r个特征图,down(·)为一个下采样函数,分别为乘性偏置和加性偏置,是需要训练的参数。
3)第一局部归一化层
第一局部归一化层将2)得到的池化层进行局部归一化。第一局部响应归一化层完成一种“临近抑制”操作,对局部输入区域进行归一化。归一化公式如下:
y 4 = ( 1 + ( α / λ ) Σ x i 2 ) β
其中,y4为归一化后所得图像,λ为局部尺寸大小,α为归一化缩放因子,β为指数项,本实施例中α和β分别选1和5。
4)第二阶段高层特征提取。
第二阶段高层所涉及到的第二卷积层、第二局部归一化层、第二最大池化层的公式如前面所述,只是此时不再是如第一卷积层以输入图像为基础而是在第一阶段输出的基础上进行。图7是第二卷积层的卷积核及卷积结果。
5)第一局部卷积层和第二局部卷积层
第一局部卷积层接收池化层进行局部卷积,将得到的局部卷积层分别发送给第二局部卷积层和全连接层;第二局部卷积层接收局部卷积层继续进行局部卷积,将得到的局部卷积层输出至会连接层。通过第一局部卷积层和第二局部卷积层进一步提取特征。
6)全连接层
在多列型卷积神经网络中,全连接层的输入既包括了第二局部卷积层的输出,也包括了第一局部卷积层的输出。全连接层融合第一局部卷积层和第二局部卷积层的局部卷积层,将融合结果输出至Softmax层。通过这种方式,全连接层输入的信息是多层次的,既包括了该更高层次的抽象特征,也包括了较低层的特征输入,获得了更好的交通标志识别效果。
6)Softmax层。
使用卷积、将采样方式获取的数据,通过全连接层可以获得一个卷积神经网络下的特征描述,然后通过Softmax层将全连接层输出的融合结果(即网络提取的特征)采用SoftMax回归进行分类。输出大小根据训练时确定的子类数目决定,比如三角形识别模型就有15种类型,那么该层的最大输出就为15。
以上四个步骤完成了交通标志检测与识别的准备工作,接下来由进入实际的检测和识别。
S105:交通图像预处理:
遍历待检测的交通图像中的各个像素,根据每个颜色类别的代表颜色的概率查找表,计算每个像素点属于该类颜色的概率,得到待检测交通图像在每个代表颜色下的概率图,然后转换为灰度图。也就是说,待检测的交通图像会得到多副灰度图,每个代表颜色对应一副。图8是待检测交通图像。图9是待检测交通图像根据红色概率查找表得到的概率图。图10是图9所示概率图对应的灰度图。根据图8至图10可以看出,图中红色的区域概率较高,其在灰度图中对应的区域较亮,其他区域概率较低,其在灰度图中对应的区域较暗。
利用MSER(MaximallyStableExtremalRegions,最大稳定极值区域)算法检测各个灰度图中的灰度变化稳定区域。经过反复实验,交通标志所在的区域在灰度图中一定是灰度变化稳定的区域。因此在得到灰度变化稳定区域之后,根据交通标志的形状特点设置交通标志的高宽比范围,去除稳定区域中高宽比在所设置的高宽比范围以外的区域,剩余的稳定区域作为候选窗口。本实施例中,交通标志的高宽比范围为[0.6,1.4]。图11是MESE算法检测得到的灰度变化稳定区域结果图。图12是待检测交通图像的候选窗口图。采用以上方法来得到候选窗口,相比传统的滑动窗口检测,可以极大地减少候选窗口数量,加快检测速度。
S106:交通标志检测:
将候选窗口尺寸调整至形状分类器输入尺寸,提取每个候选窗口对应图像块的HOG特征,输入步骤S103得到的各个交通标志形状分类器,判断该候选窗口是否为交通标志的形状类别,如果是,则说明该候选窗口存在交通标志,否则不存在。可见,采用这种方式可以同时得到该交通标志的形状。图13是待检测交通图像的交通标志检测结果图。
S107:交通标志识别:
将步骤S106提取的交通标志图像调整至识别模型的输入图像尺寸,并按照步骤S106判定的交通标志形状,将尺寸调整后的交通标志图像输入识别模型,得到识别结果。
本实施例中识别模型采用多列式卷积神经网络。图14是直线型卷积神经网络(网络1)与多列型卷积神经网络(网络2)的误识别率对比图。如图14所示,多列型卷积神经网络的收敛性更快,要达到同样的误识别率,所需训练样本较少,从而降低识别模型的训练复杂度。
从以上步骤可以看出,本发明在检测阶段,利用交通标志的颜色特征建立颜色概率模型进行粗筛选,利用交通标志的形状特点搜索灰度变化稳定区域进行细筛选;在识别阶段,利用交通标志的HOG特征和图像特点进行识别。可见本发明结合了交通标志的颜色和形状特征,采用特征协同的方式来进行交通标志的检测与识别,从而得到更好的检测与识别效果。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (6)

1.一种多特征协同的交通标志检测与识别方法,其特征在于,包括以下步骤:
S1:根据交通标志的颜色特点对交通标志进行分类,每个颜色类别分别获取若干张交通标志样本图像;对于每张交通标志样本图像,提取各个像素点的颜色特征,根据颜色特征对该交通标志样本图像的所有像素进行聚类,聚类数量为N+1,N为交通标志的主要颜色数量,将每类交通标志样本图像中各样本图像中对应聚类的像素点合并,得到该颜色类别的N+1个样本集,对每个样本集建立对应的高斯模型;
S2:对于每个颜色类别的交通标志,根据其对应的N+1个的颜色概率模型计算各个R,G,B值属于各颜色的概率p(ci|x),x表示像素点R,G,B值,ci表示颜色,i=1,2,…,N+1;从该颜色类别的N种主要颜色中选取一种颜色作为代表颜色,记为c′i,然后对代表颜色的概率进行归一化得到其归一化概率建立各个R,G,B值属于代表颜色的概率查找表;
S3:将交通标志根据形状分为M类,每个形状类别建立一个基于HOG特征的形状分类器,其训练方法为:对于每个形状分类器,获取两类样本图像,一类为对应形状的交通标志样本图像,另一类为其他图像;统一样本图像尺寸,提取每张样本图像的HOG特征,将HOG特征作为形状分类器的输入,是否为所属形状类别的判定值作为形状分类器的输出,训练得到对应形状类别交通标志的形状分类器;
S4:按照交通标志的形状类别数M,对每一个形状类别的交通标志分别设置一个识别模型,每个形状类别分别获取若干张交通标志样本图像;先对所有样本图像进行预处理,包括统一图像尺寸和对比度增强;采用每个形状类别预处理后的样本图像对其识别模型进行训练,每次训练完毕后将预处理后的交通标志样本图像随机排序然后分组,设置Q种畸变方式,对每组样本图像在Q种畸变方式中随机选择q种畸变方式按照随机顺序对样本图像进行畸变处理,采用畸变处理后的新样本图像对其识别模型进行训练,直到达到训练结束条件;
S5:对于待检测交通图像,遍历待检测交通图像中各个像素,根据每个代表颜色的概率查找表,计算每个像素点属于该类颜色的概率,得到待检测交通图像在每个代表颜色下的概率图,然后转换为灰度图;利用MSER算法检测各灰度图中的灰度变化稳定区域,去除稳定区域中高宽比在预设高宽比范围以外的区域,剩余的稳定区域作为候选窗口;
S6:将候选窗口尺寸调整至形状分类器输入尺寸,提取每个候选窗口对应图像块的HOG特征,输入各个交通标志形状分类器,判断该候选窗口是否为交通标志的形状类别,如果是,则说明该候选窗口存在交通标志,交通标志的形状即为对应形状分类器所进行判定的形状,否则不存在交通标志;
S7:对于步骤S6判断结果为存在交通标志的候选窗口,提取对应图像,调整至识别模型的输入图像尺寸,并按照步骤S6判定的交通标志形状,将尺寸调整后的交通标志图像输入对应形状的识别模型,得到识别结果。
2.根据权利要求1所述的交通标志检测与识别方法,其特征在于,所述步骤S1中的颜色特征采用色彩衡量Cλ和Cλλ,其计算方法为:
记交通标志样本图像的某个像素值为(R,G,B),采用高斯光谱模型计算得到该像素对应参数(E,Eλ,Eλλ),计算公式为:
E E λ E λ λ = H R G B
其中H为3×3的系数矩阵;
该像素对应的色彩衡量Cλ和Cλλ的计算公式为:
C λ = E λ E , C λ λ = E λ λ E .
3.根据权利要求1所述的交通标志检测与识别方法,其特征在于,所述步骤S3中的分类器采用SVM分类器。
4.根据权利要求1所述的交通标志检测与识别方法,其特征在于,所述步骤S4中的对比度增强采用限制对比度自适应直方图均衡算法。
5.根据权利要求1所述的交通标志检测与检测识别方法,其特征在于,所述步骤S4中的识别模型采用多列式卷积神经网络,包括第一卷积层,第一最大池化层,第一局部归一化层,第二卷积层,第二局部归一化层,第二最大池化层,第一局部卷积层,第二局部卷积层,全连接层,Softmax层,其中:
第一卷积层接收图像进行卷积,将得到的卷积层输出至第一最大池化层;第一最大池化层对卷积层进行池化,将得到的池化层输出至第一局部归一化层;第一局部归一化层将池化层进行局部归一化,将得到的局部响应归一化层输出至第二卷积层;第二卷积层接收局部响应归一化层进行卷积,将得到的卷积层输出至第二最大池化层;第二最大池化层对卷积层进行池化,将得到的池化层输出至第一局部卷积层;第一局部卷积层接收池化层进行局部卷积,将得到的局部卷积层分别发送给第二局部卷积层和全连接层;第二局部卷积层接收局部卷积层继续进行局部卷积,将得到的局部卷积层输出至会连接层;全连接层融合第一局部卷积层和第二局部卷积层的局部卷积层,将融合结果输出至Softmax层;Softmax层采用Softmax回归对融合结果进行分类,输出分类结果。
6.根据权利要求1所述的交通标志检测与识别方法,其特征在于,所述步骤S5中高宽比范围为[0.6,1.4]。
CN201610121846.XA 2016-03-03 2016-03-03 多特征协同的交通标志检测与识别方法 Pending CN105809121A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610121846.XA CN105809121A (zh) 2016-03-03 2016-03-03 多特征协同的交通标志检测与识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610121846.XA CN105809121A (zh) 2016-03-03 2016-03-03 多特征协同的交通标志检测与识别方法

Publications (1)

Publication Number Publication Date
CN105809121A true CN105809121A (zh) 2016-07-27

Family

ID=56466069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610121846.XA Pending CN105809121A (zh) 2016-03-03 2016-03-03 多特征协同的交通标志检测与识别方法

Country Status (1)

Country Link
CN (1) CN105809121A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845528A (zh) * 2016-12-30 2017-06-13 湖北工业大学 一种基于K‑means与深度学习的图像分类算法
CN106960219A (zh) * 2017-03-10 2017-07-18 百度在线网络技术(北京)有限公司 图片识别方法及装置、计算机设备及计算机可读介质
CN107122737A (zh) * 2017-04-26 2017-09-01 聊城大学 一种道路交通标志自动检测识别方法
CN107316004A (zh) * 2017-06-06 2017-11-03 西北工业大学 基于深度学习的空间目标识别方法
CN107330463A (zh) * 2017-06-29 2017-11-07 南京信息工程大学 基于cnn多特征联合和多核稀疏表示的车型识别方法
CN107704509A (zh) * 2017-08-31 2018-02-16 北京联合大学 一种联合稳定区域与深度学习的重排序方法
CN108304785A (zh) * 2018-01-16 2018-07-20 桂林电子科技大学 基于自建神经网络的交通标志检测与识别方法
CN108520212A (zh) * 2018-03-27 2018-09-11 东华大学 基于改进的卷积神经网络的交通标志检测方法
CN109255279A (zh) * 2017-07-13 2019-01-22 深圳市凯立德科技股份有限公司 一种交通标志检测识别的方法及***
CN109325438A (zh) * 2018-09-18 2019-02-12 桂林电子科技大学 实况全景交通标志的实时识别方法
CN109409409A (zh) * 2018-09-21 2019-03-01 长沙理工大学 基于hog+cnn的交通标志的实时检测方法
CN109559536A (zh) * 2018-12-10 2019-04-02 百度在线网络技术(北京)有限公司 交通灯、交通灯识别方法、装置、设备及存储介质
CN109614843A (zh) * 2017-09-19 2019-04-12 福特全球技术公司 色彩学习
CN110097600A (zh) * 2019-05-17 2019-08-06 百度在线网络技术(北京)有限公司 用于识别交通标志牌的方法及装置
CN110909674A (zh) * 2019-11-21 2020-03-24 清华大学苏州汽车研究院(吴江) 一种交通标志识别方法、装置、设备和存储介质
CN111461039A (zh) * 2020-04-07 2020-07-28 电子科技大学 基于多尺度特征融合的地标识别方法
CN111507282A (zh) * 2020-04-21 2020-08-07 名创优品(横琴)企业管理有限公司 一种目标检测预警分析***、方法、设备及介质
CN111539470A (zh) * 2020-04-20 2020-08-14 重庆第二师范学院 图像处理方法、装置、计算机设备及存储介质
CN111989915A (zh) * 2018-04-02 2020-11-24 幻影人工智能公司 用于视觉推断的动态图像区域选择
CN113392930A (zh) * 2021-07-02 2021-09-14 西安电子科技大学 基于多层次分治网络的交通标志目标检测方法
CN113469644A (zh) * 2021-06-18 2021-10-01 深圳市点购电子商务控股股份有限公司 保质期提醒方法、自动售货装置、计算机设备和存储介质
CN113506400A (zh) * 2021-07-05 2021-10-15 深圳市点购电子商务控股股份有限公司 自动售货方法、装置、计算机设备和存储介质
CN113536943A (zh) * 2021-06-21 2021-10-22 上海赫千电子科技有限公司 一种基于图像增强的道路交通标志识别方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616021A (zh) * 2014-12-24 2015-05-13 深圳市腾讯计算机***有限公司 交通标志图像处理方法及装置
US9092696B2 (en) * 2013-03-26 2015-07-28 Hewlett-Packard Development Company, L.P. Image sign classifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9092696B2 (en) * 2013-03-26 2015-07-28 Hewlett-Packard Development Company, L.P. Image sign classifier
CN104616021A (zh) * 2014-12-24 2015-05-13 深圳市腾讯计算机***有限公司 交通标志图像处理方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YI YANG ET AL: "Real-Time Traffic Sign Detection via Color Probability Model and Integral Channel Features", 《CCPR 2014,PART II, CCIS 484》 *
周广波: "基于颜色和形状特征的交通标志检测", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
敬斌: "基于机器视觉的交通标志检测与识别算法研究", 《万方数据知识服务平台 学位论文》 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845528A (zh) * 2016-12-30 2017-06-13 湖北工业大学 一种基于K‑means与深度学习的图像分类算法
CN106960219A (zh) * 2017-03-10 2017-07-18 百度在线网络技术(北京)有限公司 图片识别方法及装置、计算机设备及计算机可读介质
CN106960219B (zh) * 2017-03-10 2021-04-16 百度在线网络技术(北京)有限公司 图片识别方法及装置、计算机设备及计算机可读介质
CN107122737A (zh) * 2017-04-26 2017-09-01 聊城大学 一种道路交通标志自动检测识别方法
CN107122737B (zh) * 2017-04-26 2020-07-31 聊城大学 一种道路交通标志自动检测识别方法
CN107316004A (zh) * 2017-06-06 2017-11-03 西北工业大学 基于深度学习的空间目标识别方法
CN107330463A (zh) * 2017-06-29 2017-11-07 南京信息工程大学 基于cnn多特征联合和多核稀疏表示的车型识别方法
CN109255279A (zh) * 2017-07-13 2019-01-22 深圳市凯立德科技股份有限公司 一种交通标志检测识别的方法及***
CN107704509A (zh) * 2017-08-31 2018-02-16 北京联合大学 一种联合稳定区域与深度学习的重排序方法
CN109614843A (zh) * 2017-09-19 2019-04-12 福特全球技术公司 色彩学习
CN108304785A (zh) * 2018-01-16 2018-07-20 桂林电子科技大学 基于自建神经网络的交通标志检测与识别方法
CN108520212A (zh) * 2018-03-27 2018-09-11 东华大学 基于改进的卷积神经网络的交通标志检测方法
CN111989915A (zh) * 2018-04-02 2020-11-24 幻影人工智能公司 用于视觉推断的动态图像区域选择
CN109325438A (zh) * 2018-09-18 2019-02-12 桂林电子科技大学 实况全景交通标志的实时识别方法
CN109325438B (zh) * 2018-09-18 2021-06-15 桂林电子科技大学 实况全景交通标志的实时识别方法
CN109409409A (zh) * 2018-09-21 2019-03-01 长沙理工大学 基于hog+cnn的交通标志的实时检测方法
CN109559536A (zh) * 2018-12-10 2019-04-02 百度在线网络技术(北京)有限公司 交通灯、交通灯识别方法、装置、设备及存储介质
CN110097600A (zh) * 2019-05-17 2019-08-06 百度在线网络技术(北京)有限公司 用于识别交通标志牌的方法及装置
CN110097600B (zh) * 2019-05-17 2021-08-06 百度在线网络技术(北京)有限公司 用于识别交通标志牌的方法及装置
CN110909674A (zh) * 2019-11-21 2020-03-24 清华大学苏州汽车研究院(吴江) 一种交通标志识别方法、装置、设备和存储介质
CN110909674B (zh) * 2019-11-21 2024-01-05 清华大学苏州汽车研究院(吴江) 一种交通标志识别方法、装置、设备和存储介质
CN111461039A (zh) * 2020-04-07 2020-07-28 电子科技大学 基于多尺度特征融合的地标识别方法
CN111461039B (zh) * 2020-04-07 2022-03-25 电子科技大学 基于多尺度特征融合的地标识别方法
CN111539470A (zh) * 2020-04-20 2020-08-14 重庆第二师范学院 图像处理方法、装置、计算机设备及存储介质
CN111507282A (zh) * 2020-04-21 2020-08-07 名创优品(横琴)企业管理有限公司 一种目标检测预警分析***、方法、设备及介质
CN111507282B (zh) * 2020-04-21 2023-06-30 创优数字科技(广东)有限公司 一种目标检测预警分析***、方法、设备及介质
CN113469644A (zh) * 2021-06-18 2021-10-01 深圳市点购电子商务控股股份有限公司 保质期提醒方法、自动售货装置、计算机设备和存储介质
CN113536943A (zh) * 2021-06-21 2021-10-22 上海赫千电子科技有限公司 一种基于图像增强的道路交通标志识别方法
CN113536943B (zh) * 2021-06-21 2024-04-12 上海赫千电子科技有限公司 一种基于图像增强的道路交通标志识别方法
CN113392930A (zh) * 2021-07-02 2021-09-14 西安电子科技大学 基于多层次分治网络的交通标志目标检测方法
CN113392930B (zh) * 2021-07-02 2024-05-14 西安电子科技大学 基于多层次分治网络的交通标志目标检测方法
CN113506400A (zh) * 2021-07-05 2021-10-15 深圳市点购电子商务控股股份有限公司 自动售货方法、装置、计算机设备和存储介质

Similar Documents

Publication Publication Date Title
CN105809121A (zh) 多特征协同的交通标志检测与识别方法
CN107729801B (zh) 一种基于多任务深度卷积神经网络的车辆颜色识别***
CN107133974B (zh) 高斯背景建模与循环神经网络相结合的车型分类方法
CN110363122A (zh) 一种基于多层特征对齐的跨域目标检测方法
CN109284669A (zh) 基于Mask RCNN的行人检测方法
CN107122776A (zh) 一种基于卷积神经网络的交通标志检测与识别方法
CN109816024A (zh) 一种基于多尺度特征融合与dcnn的实时车标检测方法
CN109359684A (zh) 基于弱监督定位和子类别相似性度量的细粒度车型识别方法
CN109684922B (zh) 一种基于卷积神经网络的多模型对成品菜的识别方法
CN109902806A (zh) 基于卷积神经网络的噪声图像目标边界框确定方法
CN108171136A (zh) 一种多任务卡口车辆以图搜图的***及方法
CN108108761A (zh) 一种基于深度特征学习的快速交通信号灯检测方法
CN107885764A (zh) 基于多任务深度学习快速哈希车辆检索方法
CN108509954A (zh) 一种实时交通场景的多车牌动态识别方法
CN106650786A (zh) 基于多列卷积神经网络模糊评判的图像识别方法
CN108009518A (zh) 一种基于快速二分卷积神经网络的层次化交通标识识别方法
CN105574550A (zh) 一种车辆识别方法及装置
CN106650731A (zh) 一种鲁棒的车牌、车标识别方法
CN109271991A (zh) 一种基于深度学习的车牌检测方法
CN106529532A (zh) 一种基于积分特征通道与灰度投影的车牌识别***
CN109635784A (zh) 基于改进的卷积神经网络的交通标志识别方法
CN108647700A (zh) 基于深度学习的多任务车辆部件识别模型、方法和***
CN109886147A (zh) 一种基于单网络多任务学习的车辆多属性检测方法
CN108268865A (zh) 一种基于级联卷积网络的自然场景下车牌识别方法及***
CN110807485B (zh) 基于高分遥感影像二分类语义分割图融合成多分类语义图的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160727