CN113796872B - 心电图检测设备以及检测电路 - Google Patents

心电图检测设备以及检测电路 Download PDF

Info

Publication number
CN113796872B
CN113796872B CN202010538235.1A CN202010538235A CN113796872B CN 113796872 B CN113796872 B CN 113796872B CN 202010538235 A CN202010538235 A CN 202010538235A CN 113796872 B CN113796872 B CN 113796872B
Authority
CN
China
Prior art keywords
circuit
electrode
potential
detection
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010538235.1A
Other languages
English (en)
Other versions
CN113796872A (zh
Inventor
李登
胡轶
刘域民
席毅
张昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202010538235.1A priority Critical patent/CN113796872B/zh
Priority to PCT/CN2021/099167 priority patent/WO2021249435A1/zh
Priority to KR1020237000502A priority patent/KR20230021108A/ko
Priority to EP21821452.6A priority patent/EP4151153A4/en
Priority to JP2022575818A priority patent/JP7415256B2/ja
Publication of CN113796872A publication Critical patent/CN113796872A/zh
Priority to US18/063,746 priority patent/US20230106329A1/en
Application granted granted Critical
Publication of CN113796872B publication Critical patent/CN113796872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/305Common mode rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/308Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
    • A61B2562/182Electrical shielding, e.g. using a Faraday cage

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请提供了一种心电图检测设备及检测电路,属于电子技术领域。该心电图检测设备的壳体可以采用导电材料制成,并且,该心电图检测设备可以包括用于为该壳体提供目标电位的电压保持电路。由于该电压保持电路提供的目标电位与心电图检测电路为第三电极提供的参考电位之间的电位差较小,因此即使在ECG检测过程中,用户误触碰壳体导致该壳体与第三电极导通,该壳体与第三电极之间也不会产生漏电流或者产生的漏电流较小,从而可以有效降低对ECG信号的干扰,确保ECG检测的准确性。

Description

心电图检测设备以及检测电路
技术领域
本申请涉及电子技术领域,特别涉及一种心电图检测设备以及检测电路。
背景技术
随着技术的发展,可穿戴设备的功能越来越丰富。目前,智能手表(或智能手环)等可穿戴设备通常都具有心电图(electrocardiogram,ECG)检测的功能。
相关技术中,智能手表中可以集成有ECG检测电路,该ECG检测电路可以分别与左手(left arm,LA)电极、右手(right arm,RA)电极以及右腿(right leg,RL)电极连接。该ECG检测电路可以通过LA电极和RA电极采集用户的ECG信号,并可以通过RL电极为用户提供参考电位,以确保检测的可靠性。其中,该LA电极和RL电极一般设置在智能手表的底盖的外侧,即底盖与用户皮肤接触的一侧。该RA电极一般设置在智能手表的表壳上。用户左手佩戴该智能手表时,该LA电极和RL电极可以与用户的皮肤接触。若用户需要进行ECG检测,则可以通过右手接触该RA电极,此时该ECG电路即可采集到用户的ECG信号并进行ECG检测。
在智能手表采用金属表壳时,为了保证智能手表的抗电磁干扰和抗静电的性能,会对该金属表壳进行接地处理。因此,当用户的右手接触该RA电极以进行ECG检测时,若误触碰到了金属表壳,则RL电极会通过人体与金属表壳形成电流通路,由于RL电极与金属表壳之间存在电位差,因此该RL电极与金属表壳之间会形成漏电流的通路,该漏电流会影响ECG检测的准确性。
发明内容
本申请提供了一种心电图检测设备以及检测电路,可以解决相关技术中金属壳体中产生的漏电流影响ECG检测的准确性的问题,技术方案如下:
一方面,提供了一种心电图检测设备,该设备可以包括:由导电材料制成的壳体,设置在该壳体内的心电图检测电路和电压保持电路,以及设置在该壳体之外且与该壳体绝缘的第一电极、第二电极和第三电极,该三个电极用于与用户的皮肤接触;该心电图检测电路可以分别与该第一电极、该第二电极和该第三电极连接,该心电图检测电路用于通过该第一电极和该第二电极采集心电图信号,并为该第三电极提供参考电位;该电压保持电路与该壳体连接,用于为该壳体提供目标电位,该目标电位与该参考电位的电位差小于差值阈值。由于该电压保持电路提供的目标电位与心电图检测电路为第三电极提供的参考电位之间的电位差较小,因此在ECG检测过程中,即使用户误触碰壳体导致该壳体与第三电极导通,该壳体与第三电极之间也不会产生漏电流或者产生的漏电流较小,从而可以有效降低对ECG信号的干扰,确保ECG检测的准确性。
在一种实现方式中,该电压保持电路的输出端与该壳体连接,该电压保持电路的输入端与电位提供端连接,该电压保持电路用于根据该输入端的输入信号在该输出端输出该目标电位。由于该电压保持电路可以根据其输入端输入的信号在输出端输出目标电位,且该目标电位与第三电极的参考电位之间的电位差较小,因此可以有效抑制该壳体与第三电极之间的漏电流,确保ECG检测的准确性。
在一种实现方式中,该电位提供端是该第三电极,或者该第二电极,或者该第一电极,或者供电电源输出端。当该电位提供端为第三电极时,可以确保该电压保持电路为壳体提供的目标电位与该第三电极的参考电位近似相等,从而可以有效抑制漏电流。当该电位提供端为该第二电极,或者该第一电极时,由于上述两个电极的电位与该第三电极的参考电位之间的电位差较小,也可以有效减小第三电极与壳体之间的漏电流。当该电位提供端为供电电源输出端时,可以通过合理设计该供电电源输出端的电位,使得该电压保持电路为壳体提供的目标电位与该参考电位近似相等,从而可以确保漏电流的抑制效果。
在一种实现方式中,该电位提供端是该第三电极,或者该第二电极,或者该第一电极,该电压保持电路为电压跟随电路,该电压跟随电路的输出端作为该电压保持电路的输出端与该壳体连接,该电压跟随电路的输入端作为该电压保持电路的输入端与电位提供端连接,该电压跟随电路用于控制该壳体的电位与该电位提供端的目标电位保持大体一致。通过电压跟随电路,可以使得该壳体的电位与该第三电极,或者该第二电极,或者该第一电极的目标电位保持大体一致,从而可以有效抑制漏电流。
该电压跟随电路可以包括:第一运算放大器;该第一运算放大器的同相输入端作为该电压跟随电路的输入端与该电位提供端连接,该第一运算放大器的输出端作为该电压跟随电路的输出端分别与该壳体和该第一运算放大器的反相输入端连接。将运算放大器的输出端与反相输入端连接,即可实现电压跟随的效果。并且,由于第一运算放大器的输入电阻较高(理想情况下输入电阻无穷大),因此可以避免对电位提供端的电位造成影响,确保该心电图检测电路能够正常运行。
在一种实现方式中,该电压跟随电路还可以包括多个级联的第一运算放大器。或者,该电压跟随电路可以包括多个级联的分立三极管。通过这些电路,也能够实现类似一个运放的效果,确保该心电图检测电路能够正常运行。
在一种实现方式中,该电位提供端是供电电源输出端,该电压保持电路为稳压电路;该稳压电路的输入端作为该电压保持电路的输入端与供电电源端连接,该稳压电路的输出端作为该电压保持电路的输出端与该壳体连接,该稳压电路用于在该供电电源端的驱动下,为该壳体提供该目标电位。其中,该稳压电路提供的目标电位可以与右腿驱动子电路所连接的参考电源端的电位相等。由此,可以确保该目标电位与该右腿驱动子电路提供至第三电极的参考电位的电位差较小,从而有效抑制漏电流。
在一种实现方式中,该稳压电路可以为低压差线性稳压器(low dropoutregulator,LDO)。该LDO具有噪音低和静态电流小等优势。
在一种实现方式中,该目标电位与该参考电位相等或相近,由此可以有效抑制该壳体与该第三电极之间的漏电流。
在一种实现方式中,该心电图检测设备还可以包括:串联在该壳体和该电压保持电路之间的电阻。该电阻可以进一步增大漏电流的通路上的电阻,从而可以有效减小漏电流。
在一种实现方式中,该心电图检测设备还可以包括:与该电阻并联的电容。该电容可以确保心电图检测设备抗电磁干扰和抗静电的性能。
在一种实现方式中,该心电图检测设备还可以包括:设置在该壳体内的静电保护电路;该静电保护电路的一端与该壳体连接,另一端接地。该静电保护电路可以避免心电图检测设备中的各个电子元器件被静电损坏。
其中,该静电保护电路可以包括:瞬态抑制二极管(transient voltagesuppressor,TVS);该TVS的一极与该壳体连接,该TVS的另一极接地。TVS作为一种高效能保护器件,具有响应速度快、瞬态功率大、漏电流低、击穿电压偏差小、箝位电压较易控制、无损坏极限以及体积小等优点。
在一种实现方式中,该心电图检测电路可以包括:检测子电路和右腿驱动子电路;该检测子电路的第一输入端与该第一电极连接,该检测子电路的第二输入端与该第二电极连接,该检测子电路的共模输出端与该右腿驱动子电路的第一输入端连接,该检测子电路用于采集心电图信号,并向该右腿驱动子电路输出该第一输入端与该第二输入端之间的共模电压;该右腿驱动子电路的第二输入端与参考电源端连接,该右腿驱动子电路的输出端与该第三电极连接,该右腿驱动子电路用于在该共模电压和该参考电源端的驱动下,为该第三电极提供参考电位;其中,该电位提供端可以为该第三电极,或者该第二电极,或者该第一电极,或者该共模输出端。当该电位提供端为第三电极时,可以确保该电压保持电路为壳体提供的目标电位与该第三电极的参考电位近似相等,从而可以有效抑制漏电流。当该电位提供端为该第二电极,或者该第一电极,或者该共模输出端时,由于上述三个端子的电位与该参考电位之间的电位差较小,也可以有效减小第三电极与壳体之间的漏电流。
在一种实现方式中,该检测子电路可以包括:仪表放大器、模数转换器和处理器;该右腿驱动子电路可以包括:第二运算放大器;其中,该仪表放大器的反相输入端作为检测子电路的第一输入端与该第一电极连接,该仪表放大器的同相输入端作为检测子电路的第二输入端与该第二电极连接,该仪表放大器的共模输出端作为检测子电路的共模输出端与该第二运算放大器的反相输入端连接,该仪表放大器的差模输出端与该模数转换器的输入端连接,该第二运算放大器的反相输入端为右腿驱动子电路的第一输入端;该模数转换器的输出端与该处理器连接;该第二运算放大器的同相输入端作为右腿驱动子电路的第二输入端与参考电源端连接,该第二运算放大器的输出端作为右腿驱动子电路的输出端与该第三电极连接。该仪表放大器作为差分放大器的一种改良结构,具有低直流偏移、低漂移、低噪声、高开环增益、较大的共模抑制比以及高输入阻抗等优势,可以应用于对精确性和稳定性要求较高的心电图检测电路中。
在一种实现方式中,该心电图检测设备还包括:设置在该壳体内的正电源提供电路,该正电源提供电路具有供电电源输出端,该正电源提供电路用于通过该供电电源输出端为该心电图检测电路和该电压保持电路供电。由于正电源提供电路的电路结构较为简单,成本较低,因此心电图检测设备采用该正电源提供电路,可以有效降低其电路结构的复杂度,并降低整机成本。
在一种实现方式中,该心电图检测设备还包括:电压转换电路,该电压转换电路分别与该供电电源输出端和参考电源端连接。该电压转换电路可以对供电电源输出端输出的电位进行转换后提供至该参考电源端,使得该参考电源端输出的电位等于该供电电源输出端输出的电位的二分之一。通过设置该电压转换电路可以实现对供电电源输出端输出的电压的转换,以确保参考电源端能够为第二运算放大器的同相输入端提供合适的电位。
在一种实现方式中,该心电图检测设备可以为可穿戴设备,该可穿戴设备可以为手表或者手环。采用手表或者手环等可穿戴设备作为心电图检测设备,可以便于用户实时检测其心电图信号,提高了心电图信号检测的灵活性。
另一方面,提供了一种应用于心电图检测设备的检测电路,该心电图检测设备包括由导电材料制成的壳体,该检测电路包括:第一输入引脚、第二输入引脚、第一输出引脚以及第二输出引脚;其中,该第一输入引脚用于与第一电极连接,该第二输入引脚用于与第二电极连接,该第一输出引脚用于与第三电极连接,该检测电路用于通过该第一输入引脚和该第二输入引脚采集心电图信号,并通过该第一输出引脚为该第三电极提供参考电位;其中,该第一电极、第二电极以及第三电极均位于壳体之外且与壳体绝缘;该第二输出引脚用于与心电图检测设备的壳体连接,该检测电路还用于通过该第二输出引脚为该壳体提供目标电位,该目标电位与该参考电位的电位差小于差值阈值。由于该检测电路为壳体提供的目标电位与其为第三电极提供的参考电位之间的电位差较小,因此在ECG检测过程中,该壳体与第三电极之间不会产生漏电流或者产生的漏电流较小,从而可以有效降低对ECG信号的干扰,确保ECG检测的准确性。
在一种实现方式中,该检测电路包括:电压保持电路;该电压保持电路的输出端与该第二输出引脚连接,该电压保持电路的输入端用于与电位提供端连接,该电压保持电路用于根据该输入端的输入信号在该输出端输出该目标电位。
在一种实现方式中,该电位提供端是该第三电极,或者第二电极,或者第一电极,或者供电电源输出端。
在一种实现方式中,该电位提供端是该第三电极,或者第二电极,或者第一电极,该电压保持电路为电压跟随电路,该电压跟随电路的输出端作为该电压保持电路的输出端与该第二输出引脚连接,该电压跟随电路的输入端作为该电压保持电路的输入端用于与该电位提供端连接,该电压跟随电路用于控制该第二输出引脚的电位与该电位提供端的目标电位保持大体一致。
在一种实现方式中,该电压跟随电路包括:第一运算放大器;
该第一运算放大器的同相输入端作为该电压跟随电路的输入端用于与该电位提供端连接,该第一运算放大器的输出端作为该电压跟随电路的输出端分别与该第二输出引脚和该第一运算放大器的反相输入端连接。
在一种实现方式中,该电位提供端是该供电电源输出端,该检测电路还包括:电源引脚,该电源引脚用于与该供电电源输出端连接;该电压保持电路为稳压电路;该稳压电路的输入端作为该电压保持电路的输入端与该电源引脚连接,该稳压电路的输出端作为该电压保持电路的输出端与该第二输出引脚连接,该稳压电路用于在该供电电源输出端的驱动下,为该第二输出引脚提供该目标电位。
在一种实现方式中,该稳压电路为低压差线性稳压器。
在一种实现方式中,该目标电位与该参考电位相等或相近。
在一种实现方式中,该检测电路还包括:串联在该第二输出引脚和该电压保持电路之间的电阻。
在一种实现方式中,该检测电路还包括:与该电阻并联的电容。
在一种实现方式中,该检测电路还包括:静电保护电路;该静电保护电路的一端与该第二输出引脚连接,另一端接地。
在一种实现方式中,该静电保护电路包括:瞬态抑制二极管;该瞬态抑制二极管的一极与该第二输出引脚连接,该瞬态抑制二极管的另一极接地。
在一种实现方式中,该检测电路还包括:检测子电路和右腿驱动子电路;该检测子电路的第一输入端与该第一输入引脚连接,该检测子电路的第二输入端与该第二输入引脚连接,该检测子电路的共模输出端与该右腿驱动子电路的第一输入端连接,该检测子电路用于采集心电图信号,并向该右腿驱动子电路输出该第一输入端与该第二输入端之间的共模电压;该右腿驱动子电路的第二输入端与参考电源端连接,该右腿驱动子电路的输出端与该第一输出引脚连接,该右腿驱动子电路用于在该共模电压和该参考电源端的驱动下,为该第三电极提供参考电位;其中,该电位提供端是该第三电极,或者该第二电极,或者该第一电极,或者供电电源输出端,或者该共模输出端。
本申请提供的检测电路的上述各个实现方式的有益效果可以参考心电图检测设备中对应的实现方式的有益效果,此处不再赘述。
在一种实现方式中,该检测电路为集成电路,并被封装成一个单独的芯片。将检测电路设计为集成电路并封装成芯片,可以减小该检测电路的体积,以便于应用于小型的心电图检测设备中。
本申请实施例提供了一种心电图检测设备及检测电路,该心电图检测设备的壳体可以采用导电材料制成,并且,该心电图检测设备可以包括用于为该壳体提供目标电位的电压保持电路。由于该电压保持电路提供的目标电位与心电图检测电路为第三电极提供的参考电位之间的电位差较小,因此即使在ECG检测过程中,用户误触碰壳体导致该壳体与第三电极导通,该壳体与第三电极之间也不会产生漏电流或者产生的漏电流较小,从而可以有效降低对ECG信号的干扰,确保ECG检测的准确性。
附图说明
图1是相关技术中的一种具备ECG检测功能的手表的等效电路图;
图2是本申请实施例提供的一种心电图检测设备的结构示意图;
图3是本申请实施例提供的一种心电图检测设备的等效电路图;
图4是本申请实施例提供的另一种心电图检测设备的等效电路图;
图5是本申请实施例提供的再一种心电图检测设备的等效电路图;
图6是相关技术中的另一种具备ECG检测功能的手表的等效电路图;
图7是本申请实施例提供的再一种心电图检测设备的等效电路图;
图8是本申请实施例提供的再一种心电图检测设备的等效电路图;
图9是本申请实施例提供的再一种心电图检测设备的等效电路图;
图10是本申请实施例提供的一种心电图检测电路中各个端子的电位示意图;
图11是本申请实施例提供的一种第一运算放大器的结构示意图;
图12是本申请实施例提供的另一种第一运算放大器的结构示意图;
图13是本申请实施例提供的再一种心电图检测设备的等效电路图;
图14是本申请实施例提供的再一种心电图检测设备的等效电路图;
图15是本申请实施例提供的再一种心电图检测设备的等效电路图;
图16是本申请实施例提供的另一种心电图检测设备的结构示意图;
图17是本申请实施例提供的一种应用于心电图检测设备的检测电路的结构示意图;
图18是本申请实施例提供的另一种应用于心电图检测设备的检测电路的结构示意图;
图19是本申请实施例提供的又一种应用于心电图检测设备的检测电路的结构示意图。
具体实施方式
下面结合附图详细介绍本申请实施例提供的心电图检测设备。
图1是相关技术中的一种具备ECG检测功能的手表的等效电路图,如图1所示,该手表00中的心电图检测电路01可以分别与RA电极、LA电极以及RL电极连接。图1中的R0为手表00的表壳的等效电阻,从图1可以看出,该表壳接地(ground,GND)。由于金属材料制成的表壳的表面一般会涂覆绝缘材料,以增大表壳的电阻,以及避免该金属材料被腐蚀和氧化,因此该表壳的等效电阻R0可以指该表壳中金属材料的阻值与绝缘材料的阻值之和。又由于金属材料的阻值较小可以忽略,因此该等效电阻R0可以被认为是表壳的表面涂覆的绝缘材料的电阻。
用户左手佩戴该智能手表00时,该LA电极和RL电极可以与用户的皮肤接触。若用户需要进行ECG检测,则可以通过右手接触该RA电极,此时该ECG电路即可采集到用户的ECG信号并进行ECG检测。若用户的右手接触该RA电极时误触碰到了表壳,则RL电极会与表壳导通,即相当于图1中所示的开关S闭合。由于心电图检测电路00可以为RL电极提供参考电位,该参考电位与表壳之间存在电位差,因此该RL电极与表壳之间会产生漏电流Ib的通路。该漏电流Ib流过人体后,会对心电图检测电路00检测到ECG信号造成干扰,导致心电图检测电路00生成的ECG出现基线漂移。其中,图1中所示的电阻R1可被认为是LA电极和RL电极之间的人体内阻,电阻R2可被认为是LA电极和RA电极之间的人体内阻。
本申请实施例提供了一种心电图检测设备,该心电图检测设备的壳体可以由导电材料制成,例如该壳体可以为金属材料制成的金属壳体。该心电图检测设备在进行ECG检测时,即使用户手指误触碰了心电图检测设备的壳体,也可以确保ECG检测的准确性。也即是,本申请实施例提供的心电图检测设备可以有效降低用户手指误触碰壳体对ECG检测造成的影响。
图2是本申请实施例提供的一种心电图检测设备的结构示意图,图3是本申请实施例提供的一种心电图检测设备的等效电路图。如图2和图3所示,该心电图检测设备000可以包括:由导电材料制成的壳体10,设置在该壳体10内的心电图检测电路20和电压保持电路30,以及设置在该壳体10之外且与该壳体10绝缘的第一电极P1、第二电极P2和第三电极P3。该第一电极P1、第二电极P2和第三电极P3暴露在壳体10之外,从而便于与用户的皮肤接触。
其中,该第二电极P2和第三电极P3可以位于心电图检测设备000的第一外表面,该第一电极P1可以位于该心电图检测设备000的第二外表面,并且该第一外表面和第二外表面为该心电图检测设备000的不同外表面。示例的,以心电图检测设备000为诸如图2所示的手表为例,该第一外表面可以是手表的底盖40的外表面,该第二外表面可以是手表的壳体10(即表壳)的外表面。例如,参考图2,该第一电极P1可以设置于手表的表冠上。
参考图3,该心电图检测电路20可以分别与该第一电极P1、该第二电极P2和该第三电极P3连接,该心电图检测电路20可以用于通过该第一电极P1和该第二电极P2采集心电图信号,并为该第三电极P3提供参考电位。
用户的皮肤与该第三电极P3接触后,该心电图检测电路20即可通过该第三电极P3为人体提供参考电位,从而确保心电图检测电路20通过该第一电极P1和该第二电极P2采集到的心电图信号的可靠性。
该电压保持电路30与该壳体10(该壳体10在图3中等效为电阻R0)连接,该连接可以是直接连接,也可以是间接连接,即该电压保持电路30也可以通过其他电子元器件(例如电阻)与该壳体10连接。该电压保持电路30用于为该壳体10提供目标电位,该目标电位与该参考电位的电位差小于差值阈值。也即是,该电压保持电路30可以使得壳体10的电位与该参考电位相等或近似相等。
在本申请实施例中,在不考虑工艺精度和电子元器件的性能损耗的前提下,该差值阈值越小越好。在实际应用中,可以在工艺精度允许的情况下,结合实际应用场景的需求灵活设定该差值阈值。示例的,该差值阈值的数量级可以为微伏(uv)级或者为毫伏(mv)级。
在一种实现方式中,该目标电位与该参考电位相等或相近。其中,目标电位与参考电位相等或相近是指:将目标电位与参考电位之间的电位差控制在工程指标允许的误差范围内可以相同或相近,也即可以100%相同,但由于实际难以实现,因此也可以不要求100%相同,可以允许有一定的误差。例如,如果两者相差一定的电压(如10uv),但此时已经能够取得抑制漏电流的效果,符合产品的工程指标要求,那么这种设计也是可以的。通常误差范围的数量级可以是uv级或者mv级。
综上所述,本申请实施例提供了一种心电图检测设备,该心电图检测设备的壳体可以采用导电材料制成,并且,该心电图检测设备可以包括用于为该壳体提供目标电位的电压保持电路。由于该电压保持电路提供的目标电位与心电图检测电路为第三电极提供的参考电位之间的电位差较小,因此即使在ECG检测过程中,用户误触碰壳体导致该壳体与第三电极导通,该壳体与第三电极之间也不会产生漏电流或者产生的漏电流较小,从而可以有效降低对ECG信号的干扰,确保ECG检测的准确性。
并且,本申请实施例提供的方案对心电图检测设备的壳体的绝缘性能的要求较低,即对该壳体表面涂覆的绝缘材料的绝缘性能的要求较低,因此,不需要通过更高成本的工艺来实现壳体更好的绝缘性能,从而可以避免增加该壳体的生产成本。
在本申请实施例中,该第一电极P1、第二电极P2以及第三电极P3可以均为干电极。该干电极是指无需配合导电膏使用的电极,采用干电极进行ECG检测时,用户体验较好,检测效率较高,能够适用于实时健康监测的场景。
在本申请实施例中,该电压保持电路30的可以包括一个输出端,该输出端与该壳体10相连,该电压保持电路30可以包括一个或多个输入端,该一个或多个输入端与一个或多个电位提供端一一对应连接,该电压保持电路30用于根据其输入端的输入信号在其输出端输出该目标电位。也即是,该电压保持电路30可以对接收到的一个或多个输入信号进行处理后,输出该目标电位。
在本申请实施例中,电位提供端为一个,具体可以是该第三电极P3,或者该第二电极P2,或者该第一电极P1,或者供电电源输出端。例如,参见图3,该电位提供端是该第三电极P3。
图4是本申请实施例提供的另一种心电图检测设备的等效电路图。如图4所示,该心电图检测电路20可以包括:检测子电路201和右腿驱动子电路202。
该检测子电路201的第一输入端IN11与该第一电极P1连接,该检测子电路201的第二输入端IN12与该第二电极P2连接,该检测子电路201的共模输出端O1与该右腿驱动子电路202的第一输入端IN21连接,该检测子电路201用于采集心电图信号,并向该右腿驱动子电路202输出该第一输入端IN11与该第二输入端IN22之间的共模电压Vcm。
该右腿驱动子电路202的第二输入端IN22与参考电源端VR连接,该右腿驱动子电路202的输出端O2与该第三电极P3连接,该右腿驱动子电路202用于在该共模电压Vcm和该参考电源端VR的驱动下,为该第三电极P3提供参考电位。
在本申请实施例中,右腿驱动子电路202作为一个负反馈电路,能够将接收到的共模电压反相放大后为第三电极提供参考电位,从而起到消除人体共模干扰的作用。
图5是本申请实施例提供的又一种心电图检测设备的等效电路图。参考图5,该检测子电路201可以包括:仪表放大器(instrumentation amplifier,INA)、模数转换器(analogue-to-digital conversion,ADC)和处理器2011。该右腿驱动子电路202可以包括:第二运算放大器AMP2。
该INA的反相输入端作为该检测子电路201的第一输入端IN11,可以与该第一电极P1连接,该INA的同相输入端作为该检测子电路201的第二输入端IN12,可以与该第二电极P2连接,该INA的共模输出端作为该检测子电路201的共模输出端O1可以与该第二运算放大器AMP2的反相输入端(即右腿驱动子电路202的第一输入端IN21)连接,该INA的差模输出端可以与该ADC的输入端连接。
其中,该INA可以采集其同相输入端的电位和反相输入端的电位,并可以通过差模输出端输出该同相输入端与反相输入端之间的差模电压Vdm(该差模电压Vdm即为ECG信号),以及可以通过共模输出端输出该同相输入端与反相输入端之间的共模电压Vcm。
该INA作为差分放大器的一种改良结构,具有低直流偏移、低漂移、低噪声、高开环增益、较大的共模抑制比以及高输入阻抗等优势,可以应用于对精确性和稳定性要求较高的心电图检测电路20中。
该ADC的输出端与该处理器2011连接。该ADC用于对INA输出的差模电压Vdm进行模数转换得到的数字信号,并将该数字信号发送至处理器2011。该处理器2011进而可以对该数字信号进行处理以生成ECG。
其中,该处理器2011可以为微控制单元(micro-controller unit,MCU),或者可以为数字信号处理器(digital signal processing,DSP),或者其他各种具有信号处理能力的处理电路。
该第二运算放大器AMP2的同相输入端作为右腿驱动子电路202的第二输入端IN22与参考电源端VR连接,该第二运算放大器AMP2的输出端作为右腿驱动子电路202的输出端O2与该第三电极P3连接。
需要说明的是,该检测子电路201除了INA、ADC和处理器2011之外,还可以包括其他电子元器件,例如还可以包括滤波器或其他功能电路等。该右腿驱动子电路202除了可以包括一个第二运算放大器AMP2,还可以包括电阻和电容等电子元器件,或者还可以包括与该第二运算放大器AMP2级联的其他运算放大器。本申请实施例对该检测子电路201和右腿驱动子电路202的电路结构不做限定。
在本申请实施例中,该心电图检测设备000可以采用正电源提供电路为各个电子元器件进行供电,该正电源提供电路具有用于为心电图检测电路提供***正电位Vcc的供电电源输出端VCC。相应的,每个电子元器件的电源正极可以与该供电电源输出端VCC连接,电源负极则可以直接接地。在实际一些文档或产品中,这种供电方式也被称为“单电源供电”,以区别于正负电源同时供电的方式(双电源供电)。
图6是相关技术中具备ECG检测功能的手表的等效电路图。参考图6,对于采用正电源提供电路的手表,若该正电源提供电路提供的***正电位为Vcc,则该参考电源端VR为第二运算放大器AMP2的同相输入端提供的电位Vref可以为***正电位Vcc的一半,即Vref满足:Vref=Vcc/2。假设在进行ECG检测时,该INA的反相输入端的电位为V1,该INA的同相输入端的电位为V2,则该INA的差模输出端输出的差模电压Vdm满足:Vdm=V2-V1;该INA的共模输出端向第二运算放大器AMP2的反相输入端输出的共模电压Vcm满足:Vcm=(V1+V2)/2。
由于在该第二运算放大器AMP2正常工作时,该第二运算放大器AMP2的同相输入端和反相输入端相当于短接在一起(也称为虚短),因此可以使得该共模电压Vcm与该参考电源端VR提供的电位Vref近似相等,即Vcm≈Vref=Vcc/2。也即是,即使INA的反相输入端的电位V1和同相输入端的电位V2发生波动,该第二运算放大器AMP2作为一个负反馈电路,也可以根据共模电压Vcm调节其输出端的参考电位V3,进而实现对V1和V2的调节,最终即可使得INA的同相输入端和反相输入端之间的共模电压Vcm保持在与该参考电源端VR的电位Vref近似相等的范围内。
又由于在进行ECG检测时,人体皮肤会与第一电极P1、第二电极P2和第三电极P3分别接触,因此如图6所示,人体皮肤与第一电极P1的接触面会产生接触阻抗Z1以及半电池电压e1,皮肤与第二电极P2的接触面会产生接触阻抗Z2以及半电池电压e2,皮肤与第三电极P3的接触面会产生接触阻抗Z3以及半电池电压e3。其中,由于电极为金属,而人体皮肤为非金属,因此皮肤与电极接触后,皮肤与电极之间的接触面会相互作用产生电压,该电压即为半电池电压。
假设人体的电位为V0(经实验测定,该电位V0一般约等于Vcc/2),且忽略人体产生的ECG信号以及人体的内阻R1和R2,则该INA的反相输入端的电位V1可以满足:V1=V0+e1;该INA的同相输入端的电位V2可以满足:V2=V0+e2;该第二运算放大器AMP2的输出端的参考电位V3可以满足:V3=V0+e3。
参考上述分析可知,当用户手指误触壳体导致第三电极P3与壳体导通时,若壳体接地,即该壳体的电位为0V,则由于第二运算放大器AMP2的输出端的电位为参考电位V3,其与壳体之间具有电位差,且第二运算放大器AMP2的输出端和壳体的阻值均较低,因此如6所示,第二运算放大器AMP2的输出端和壳体之间会形成漏电流Ib的通路,漏电流Ib经过人体内阻R2会在INA的同相输入端和反向输入端之间形成瞬间电压,从而导致处理器检测到心电图出现基线漂移。并且漏电流Ib越大,基线漂移越明显。
此外,当用户佩戴手表时,人体产生的汗液也可能会使得该第三电极P3与壳体导通,进而使得该第二运算放大器AMP2的输出端和壳体之间产生漏电流Ib。此时,被汗液浸润的壳体和电极,或者被汗液浸润且与该壳体电气连接的其他金属元器件(例如螺丝)将会在漏电流Ib作用下发生电化学反应,并出现腐蚀的现象。并且,漏电流Ib越大,腐蚀的速度越快。
而在本申请实施例中,通过电压保持电路30为该壳体10提供目标电位,可以使得该壳体10的电位与心电图检测电路20为第三电极P3提供的参考电位V3之间的电位差较小,因此即使由于用户误触碰或者汗液浸润导致该壳体10与第三电极P3导通,该壳体10与第三电极P3之间也不会产生漏电流或者产生的漏电流较小,从而可以确保ECG检测的准确性。
作为本申请实施例的一种实现方式,该电压保持电路30可以为电压跟随电路,该电压跟随电路30的输入端作为该电压保持电路的输入端与电位提供端连接,该电压跟随电路30的输出端作为该电压保持电路的输出端与该壳体10连接。该电压跟随电路30用于跟随其输入端(接电位提供端)的电位,使其输出端(输出到壳体)的电位尽量与输入端的电位保持一致,从而可以控制该壳体10的电位与该电位提供端的目标电位保持大体一致。
在一种实现方式中,如图4和图5所示,该电位提供端可以为该第三电极P3,也即该右腿驱动子电路202的输出端O2,也即该第二运算放大器AMP2的输出端。相应的,该电压跟随电路30即可控制该壳体10的电位与该第二运算放大器AMP2的输出端的参考电位V3保持大体一致,即该目标电位为参考电位V3。
或者,如图7所示,该电位提供端也可以为该第一电极P1,也即该检测子电路201的第一输入端IN11,也即该INA的反相输入端。相应的,该电压跟随电路30即可控制该壳体10的电位与该INA的反相输入端的电位保持大体一致,即该目标电位为V1。
又或者,如图8所示,该电位提供端也可以为该第二电极P2,也即该检测子电路201的第二输入端IN12,也即该INA的同相输入端。相应的,该电压跟随电路30即可控制该壳体10的电位与该INA的同相输入端的电位保持大体一致,即该目标电位为V2。
再或者,如图9所示,该电位提供端还可以为该检测子电路201的共模输出端O1,即该INA的共模输出端。相应的,该电压跟随电路30即可控制该壳体10的电位与该INA的共模输出端O1的电位保持大体一致,即该目标电位为Vcm。
由于该INA的共模输出端与第二运算放大器AMP2的反相输入端连接,因此该电位提供端也可以为该第二运算放大器AMP2的反相输入端。
在本申请实施例中,该电压跟随电路30具有电压跟随的功能,从而可以控制该壳体10的电位与该电位提供端的目标电位保持大体一致。其中,控制壳体10的电位与该电位提供端的目标电位保持大体一致是指:将壳体10的电位与该电位提供端的目标电位之间的电位差控制在工程指标允许的误差范围内,可以不要求100%一致,可以允许有一定的误差。例如,如果两者相差一定的电压(如10uv),但此时已经能够取得抑制漏电流的效果,符合产品的工程指标要求,那么这种设计也是可以的。通常误差范围的数量级可以是uv级或者mv级。
由于当电位提供端为第三电极P3时,即目标电位为参考电位V3时,机壳10的电位与第三电极P3的电位一致,因此即使第三电极P3与机壳10导通,第三电极P3与机壳10之间也不会产生漏电流,此时抑制漏电流的效果较好。
图10是本申请实施例提供的一种心电图检测电路中各个端子的电位示意图,图10中的纵轴表示电位大小,横轴没有实际含义。参考图10以及上文的分析可知,在该第二运算放大器AMP2正常工作时,第二运算放大器AMP2作为一个负反馈电路可以使INA的共模输出端O1输出的共模电压Vcm与参考电源端VR提供的电位Vref近似相等,而Vref=Vcc/2,因此可以推导出该共模电压Vcm满足:Vcm≈Vcc/2。又由于INA的共模输出端O1输出的共模电压Vcm为:INA的反相输入端的电位V1和同相输入端的电位V2的均值,即Vcm=(V1+V2)/2,因此可以推导出该INA的反相输入端的电位V1和同相输入端的电位V2满足:V1+V2=2Vcm=Vcc。
由于第二电极P2和第三电极P3均设置在心电图检测设备000的第一外表面,且两个电极的形状相同,因此半电池电压e2和e3比较接近,故电位V2与参考电位V3之间的电位差ΔV1比较小。由于第一电极P2设置在心电图检测设备000的第二外表面,且该第一电极P2与第三电极P3的形状一般不同,因此半电池电压e1和e3之间具有一定差异,故电位V1与参考电位V3之间的电位差ΔV2比ΔV1稍大。又由Vcm=(V1+V2)/2,因此该共模电压Vcm与参考电位V3之间的电位差ΔV3,大于电位差ΔV1且小于电位差ΔV2。
基于上文描述可以确定,电位提供端的电位分别为V1、V2、V3和Vcm时,抑制漏电流的效果最好的是电位为V3的时候,其次是电位为V2的时候,再次是电位为Vcm的时候,最后是电位为V1的时候。
在一种实现方式中,如图5,以及图7至图9所示,该电压跟随电路30可以包括:第一运算放大器AMP1,该第一运算放大器AMP1的同相输入端作为该电压跟随电路30的输入端可以与该电位提供端连接,该第一运算放大器AMP1的输出端作为该电压跟随电路30的输出端可以分别与该壳体10(即图5,以及图7至图9中所示的等效电阻R0)和该第一运算放大器AMP1的反相输入端连接。其中,该第一运算放大器AMP1的输出端可以与该壳体10间接连接,例如图5,以及图7至图9所示,第一运算放大器AMP1的输出端通过电阻R3与壳体10连接。
通过将第一运算放大器AMP1的输出端与反相输入端连接,即可使得该第一运算放大器AMP1的输出端的电位跟随同相输入端的电位变化,即可以实现电压跟随的效果。并且,由于第一运算放大器AMP1的输入电阻较高(理想情况下输入电阻无穷大),因此可以避免对电位提供端的电位造成影响,确保该检测子电路201和右腿驱动子电路202能够正常运行。
在一种实现方式中,如图11所示,该第一运算放大器AMP1在被封闭后,可以具有同相输入端、反相输入端以及输出端共三个端口。在将该第一运算放大器AMP1应用于心电图检测设备000中时,可以将该三个端口分别与对应的元器件进行连接。
在另一种实现方式中,如图12所示,该第一运算放大器AMP1也可以被封装为仅具有同相输入端和输出端共两个端口的元器件。也即是,该第一运算放大器AMP1的反相输入端在封装之前就已经与输出端连接。在该种实现方式中,该第一运算放大器AMP1也可以被称为电压缓冲器。相应的,在将该第一运算放大器AMP1应用于心电图检测设备000中时,仅需将该同相输入端和输出端分别与对应的元器件进行连接即可。
在一种实现方式中,该电压跟随电路30可以包括多个级联的第一运算放大器AMP1。或者,该电压跟随电路30可以包括多个级联的分立三极管,该多个级联的三极管能够实现运算放大器的功能,继而实现电压跟随的效果。如何具体使用多级联的三极管来实现运算放大器的功能为本领域现有技术,本申请不再赘述。
在本申请实施例中,各个元器件(如AMP、ADC等)仅用于表示具有该功能的逻辑电路,在实际产品中,可以将一个或多个电路封装到一个芯片,以增加集成度,减少体积。例如,该检测子电路201中的INA和第二运算放大器AMP2可以集成在一个芯片中,该芯片也可以称为ECG芯片。该ECG芯片的引脚至少可以包括:用于连接第一电极P1的第一输入引脚(即INA的反相输入端),用于连接第二电极P2的第二输入引脚(即INA的同相输入端)以及用于连接该第三电极P3的输出引脚(即AMP2的输出端)。当然,该ECG芯片还可以包括其他引脚,例如用于接地的引脚,以及用于连接参考电源端VR的引脚等。该第一运算放大器AMP1的同相输入端可以与该ECG芯片的第一输入引脚、第二输入引脚或者输出引脚外接。通过将第一运算放大器AMP1与ECG芯片的第一输入引脚、第二输入引脚或者输出引脚连接,使得传统的ECG芯片也可以应用于本申请实施例提供的心电图检测设备,从而有效提高了该心电图检测设备的兼容性。
或者,该检测子电路201中的INA和第二运算放大器AMP2以及该第一运算放大器AMP1也可以均集成在ECG芯片中。此时,该ECG芯片的引脚还可以包括用于与壳体10连接的输出引脚。通过将INA、AMP2以及AMP1均集成在ECG芯片中,可以有效提高该心电图检测设备中电子元器件的集成度,减小电子元器件的体积。
又或者,该检测子电路201中的INA、第二运算放大器AMP2和ADC,以及该第一运算放大器AMP1均可以均集成在ECG芯片中。
再或者,该检测子电路201中的INA、第二运算放大器AMP2、ADC和处理器2011,以及该第一运算放大器AMP1均可以均集成在ECG芯片中。
参见图13,本申请实施例提供了电压保持电路30的另一种实现方式,在本实施例中,该电压保持电路30为稳压电路,稳压电路也可被称为稳压器(regulator),即用于在输入变化的情况下,输出稳定的电压。该稳压电路30的输入端作为该电压保持电路的输入端可以与供电电源输出端VCC连接,该稳压电路30的输出端作为该电压保持电路的输出端与该壳体10(即图13中所示的等效电阻R0)连接,该稳压电路30可以用于在该供电电源输出端VCC的驱动下,为该壳体10提供该目标电位。
采用稳压电路30提供该目标电位,可以通过合理设计该供电电源输出端VCC的电位,使得该稳压电路30为壳体10提供的目标电位与该参考电位近似相等,从而可以确保漏电流的抑制效果。
由于心电图检测电路20向第三电极P3提供的参考电位V3,与该心电图检测电路20中第二运算放大器AMP2所连接的参考电源端VR的电位Vref较为接近,因此该稳压电路30为壳体10提供的目标电位可以与该参考电源端VR的电位Vref相等。也即是,如图13所示,该稳压电路30为壳体10提供的目标电位可以为Vcc/2。
图14是本申请实施例提供的再一种心电图检测设备的等效电路图,如图14所示,该稳压电路30可以为LDO。该LDO相对于线性稳压器具有噪音低和静态电流小等优势。
在一种实现方式中,参考图5,图7至图9,以及图14,该心电图检测设备000还可以包括:设置在该壳体10内,且串联在该壳体10和该电压保持电路30的输出端(例如电压跟随电路的输出端或稳压电路的输出端)之间的电阻R3。
通过在壳体10和该电压保持电路30的输出端之间串联电阻R3,可以进一步增大漏电流的通路上的电阻,从而可以有效减小该漏电流,进而可以尽量减小ECG的基线漂移,确保ECG检测的可靠性。
如图5,图7至图9,以及图14所示,该心电图检测设备000还可以包括:设置在该壳体10内,且与该电阻R3并联的电容C,该并联的电容C和电阻R2也可以称为阻容网络。该电容C可以有效抵抗电磁干扰(electromagnetic interference,EMI)以及抵抗静电释放(electro-static discharge,ESD)。
在本申请实施例中,该电阻R3的阻值和电容C的容值可以根据应用场景的需求灵活设置。例如,若该心电图检测设备000为手表或手环等可穿戴设备,则该电阻R3的阻值的数量级可以为兆欧姆(MΩ)级别,电容C的容值的数量级可以为皮法(pF)级别。示例的,该电阻R3的阻值可以为10MΩ,该电容C的容值可以为47pF。
在本申请实施例中,如图5,图7至图9,以及图14所示,该心电图检测设备000还可以包括:设置在该壳体10内的静电保护电路50。该静电保护电路50的一端可以与该壳体10连接,另一端可以接地。
该静电保护电路50可以避免心电图检测设备000中的各个元器件受静电影响而损坏,从而有效提高该心电图检测设备的抗ESD性能。
在一种实现方式中,该静电保护电路50可以包括:二极管,例如可以包括TVS,该TVS的一极可以与该壳体10连接,另一极可以接地。
该TVS作为一种高效能保护器件,具有响应速度快、瞬态功率大、漏电流低、击穿电压偏差小、箝位电压较易控制、无损坏极限以及体积小等优点。该TVS可以有效保护心电图检测设备中的各个元器件,避免各个元器件被浪涌脉冲的损坏。
在一种实现方式中,如图15所示,本申请实施例提供的心电图检测设备000还可以包括:设置在该壳体10内正电源提供电路60,该正电源提供电路60具有供电电源输出端VCC,该正电源提供电路60可以通过该供电电源输出端VCC为该心电图检测电路20和该电压保持电路30供电。
该心电图检测电路20中连接在该ADC的输入端之前的电路(例如图5,图7至图9以及图14所示的INA和第二运算放大器AMP2)可以称为模拟前端(analog front end,AFE),该AFE可以将耦合到的模拟信号(即ECG信号)进行放大,并送入ADC进行模数转换处理。本申请实施例提供的正电源提供电路60可以为该心电图检测电路20中的AFE,以及该电压保持电路30进行单电源供电。
其中,单电源供电是指用一种类型的电源(如正电源)为模拟电路供电,以区别于由正负电源组成的双电源供电。单电源供电通常是用正电源供电,并且,为了实现简单,一般使用一个正电源(如用一个1.8V或者一个2.5V来供电)。当然,实际中也不限定通过多个正电源为模拟电路同时供电,例如,正电源提供电路60可以包括两路输出,其中一个输出Vcc(如1.8V),另一路输出Vcc/2。
本申请实施例中,心电图检测电路20中的数字电路(如ADC和处理器等)的供电方式并不限定,可以用各种现有的供电方式供电。例如,也可以由该电源提供电路60供电。
在一种实现方式中,如图15所示,该正电源提供电路60包括电池601和电源管理电路602,该电源管理电路602可以为电源管理集成电路(power management integratedcircuit,PMIC)。该电源管理电路602可以将电池601提供的电位转换成***正电位Vcc后输出至该供电电源输出端VCC。例如,该电池601提供的电位可以为3.8V,该电源管理电路602可以将3.8V的电位转换成1.8V或2.5V后,提供至该供电电源输出端VCC,即该供电电源输出端VCC提供的***正电位Vcc为1.8V或2.5V。
在本申请实施例中,该心电图检测电路20还可以包括电压转换电路(图中未示出),该电压转换电路分别与该供电电源输出端VCC和参考电源端VR连接。该电压转换电路可以将供电电源输出端VCC输出的***正电位Vcc转换成Vcc/2后提供至参考电源端VR。其中,该电压转换电路可以集成在ECG芯片中。其中,电压转换电路的实现为现有技术,本申请不再赘述。
该正电源提供电路的电路结构较为简单,成本较低。因此,本申请实施例提供的心电图检测设备采用该正电源提供电路,可以有效降低其电路结构的复杂度,并降低整机成本。
示例的,参考图5,图7至图9,以及图14,该正电源提供电路60可以通过供电电源输出端VCC为该电压保持电路30中的第一运算放大器AMP1或者LDO提供***正电位Vcc,并为该心电图检测电路20中的INA提供***正电位Vcc。
在一种实现方式中,本申请实施例提供的心电图检测设备000可以为可穿戴设备。例如,可以为手表、手环或脚环等腕戴式设备,或者还可以为臂带式设备,又或者还可以为智能眼镜或头戴式显示设备。
采用手表或者手环等可穿戴设备作为心电图检测设备,可以便于用户实时检测其心电图信号,提高了心电图信号检测的灵活性。
对于该心电图检测设备为手表或者手环的场景,如图2和图16所示,该壳体10可以是指手表或者手环的表壳(也可以称为中框)。该手表或者手环还可以包括底盖40和显示屏70,该表壳10可以与底盖40和显示屏70可以围成封闭的腔体,心电图检测电路20和电压保持电路30可以设置在该腔体内。其中,该显示屏70可以为触控显示屏。
并且,该第二电极P2和第三电极P3可以设置于该底盖40的外侧,即底盖40远离该显示屏70的一侧。该第一电极P1可以设置于该表壳10的外侧。例如,参考图16,该表壳10的外侧可以设置有表冠80,该第一电极P1可以设置在该表冠80上。
用户的一只手(例如左手)佩戴该手表或手环时,该第二电极P2和第三电极P3可以与用户手腕的皮肤接触。在需要进行ECG检测时,用户可以用另一只手的手指(例如右手的手指)触摸该第一电极P1,该心电图检测电路20进而可以通过该第一电极P1和第二电极P2采集用户的心电图信号。
综上所述,本申请实施例提供了一种心电图检测设备,该心电图检测设备的壳体可以采用导电材料制成,并且,该心电图检测设备可以包括用于为该壳体提供目标电位的电压保持电路。由于该电压保持电路提供的目标电位与心电图检测电路为第三电极提供的参考电位之间的电位差较小,因此即使在ECG检测过程中,用户误触碰壳体导致该壳体与第三电极导通,该壳体与第三电极之间也不会产生漏电流或者产生的漏电流较小,从而可以有效降低对ECG信号的干扰,确保ECG检测的准确性。
本申请实施例提供的方案可以通过增加电压保持电路来减小壳体与第三电极之间的电位差,因此可以降低对心电图检测设备的壳体的绝缘性能的要求,从而能够在不改变整机壳体生产工艺以及心电图检测电路的供电架构的基础上,有效降低手指误触或汗液浸润对ECG检测的影响。
基于上述各实施例,本申请实施例还提供了一种应用于心电图检测设备的检测电路0000,该心电图检测设备包括由导电材料制成的壳体。如图17所示,该检测电路0000包括:第一输入引脚J1、第二输入引脚J2、第一输出引脚J3以及第二输出引脚J4。
该第一输入引脚J1用于与第一电极连接,该第二输入引脚J2用于与第二电极连接,该第一输出引脚J3用于与第三电极连接,该检测电路0000用于通过该第一输入引脚J1和该第二输入引脚J2采集心电图信号,并通过该第一输出引脚J3为该第三电极提供参考电位。其中,该第一电极、第二电极和第三电极均位于该心电图检测设备的壳体之外,且与该壳体绝缘。
该第二输出引脚J4用于与心电图检测设备的壳体连接,该检测电路0000还用于通过该第二输出引脚J4为该壳体提供目标电位,该目标电位与该参考电位的电位差小于差值阈值。例如,该目标电位与该参考电位相等或相近。
在本申请实施例中,该检测电路0000除了各个引脚之外,还包括用于采集心电图信号的电路,用于提供参考电位的电路,以及用于提供目标电位的电路。
在一种实现方式中,如图17所示,该检测电路0000可以包括:电压保持电路100,电压保持电路100的输出端O3与该第二输出引脚J4连接,该电压保持电路100的输入端IN3用于与电位提供端连接,该电压保持电路100用于根据该输入端IN3的输入信号在该输出端O3输出该目标电位。
在一种实现方式中,如图18所示,该检测电路0000还包括电源引脚J5,该电源引脚J5用于与供电电源输出端VCC连接。该电压保持电路100的输入端IN3所连接的电位提供端可以是该第一电极,或者该第二电极,或者该第三电极,或者该供电电源输出端VCC。
作为一种实现方式,该电位提供端是该第一电极,或者该第二电极,或者该第三电极,该电压保持电路100为电压跟随电路。该电压跟随电路100的输出端O3作为该电压保持电路的输出端与该第二输出引脚J4连接,该电压跟随电路100的输入端IN3用于与该电位提供端连接。例如图7所示的电压跟随电路100的输入端IN3作为该电压保持电路的输入端与第一输出引脚J3连接,即电压跟随电路100的输入端IN3用于与第三电极连接。该电压跟随电路100用于控制该第二输出引脚J4的电位与该电位提供端的目标电位保持大体一致。
继续参考图17,该检测电路0000还包括:心电图检测电路200,该心电图检测电路200可以包括检测子电路2001和右腿驱动子电路2002。该检测子电路2001的第一输入端IN11与该第一输入引脚J1连接,该检测子电路2001的第二输入端IN12与该第二输入引脚J2连接,该检测子电路2001的共模输出端O1与该右腿驱动电路200的第一输入端IN21连接,该检测子电路2001用于采集心电图信号,并向该右腿驱动子电路2002输出该第一输入端IN11与该第二输入端IN12之间的共模电压。
该右腿驱动子电路2002的第二输入端IN22与参考电源端VR连接,该右腿驱动子电路2002的输出端O2与第一输出引脚J3连接,该右腿驱动子电路2002用于在该共模电压和该参考电源端VR的驱动下,为该第一输出引脚J3提供参考电位。
该电压跟随电路100的输入端IN3所连接的电位提供端还可以是该检测子电路2001的共模输出端O1。
该检测子电路2001的结构可以与上述实施例中的检测子电路201的结构相同,该右腿驱动子电路2002的结构可以与上述实施例中的右腿驱动子电路202的结构相同,故此处不再赘述。
在一种实现方式中,该检测电路0000还可以包括电压转换电路,该电压转换电路分别与该电源引脚J5和该参考电源端VR连接。该电压转换电路可以将电源引脚J5所连接的供电电源输出端VCC输出的***正电位Vcc转换成Vcc/2后提供至参考电源端VR。
在一种实现方式中,该电压跟随电路100可以包括:第一运算放大器AMP1;该第一运算放大器AMP1的同相输入端作为电压跟随电路100的输入端用于与该电位提供端连接,该第一运算放大器AMP1的输出端作为电压跟随电路100的输出端与分别与该第二输出引脚J4和该第一运算放大器AMP1的反相输入端连接。该电压跟随电路100的结构可以参考上述实施例,此处不再赘述。
作为另一种实现方式,该电位提供端是该供电电源输出端VCC。该电压保持电路100为稳压电路。如图18所示,该稳压电路100的输入端IN3作为该电压保持电路的输入端与该电源引脚J5连接,该稳压电路100的输出端O3作为该电压保持电路的输出端与该第二输出引脚J4连接,该稳压电路100用于在该电源引脚J5所连接的供电电源输出端VCC的驱动下,为该第二输出引脚J4提供该目标电位。其中,该稳压电路可以为LDO。
在本申请实施例中,如图19所示,该检测电路0000还可以包括:串联在该第二输出引脚J4和该电压保持电路100之间的电阻R3。
在一种实现方式中,该检测电路0000还包括:与该电阻R3并联的电容C。
在一种实现方式中,该检测电路0000还包括:静电保护电路300;该静电保护电路300的一端与该第二输出引脚J4连接,另一端接地。
在一种实现方式中,该静电保护电路300包括:TVS;该TVS的一极与该第二输出引脚J4连接,该TVS的另一极接地。
该电阻R3、电容C以及静电保护电路300中TVS的功能均可以参考上述实施例,此处不再赘述。
在一种实现方式中,该检测电路可以为集成电路(integrated circuit,IC),并且该检测电路包括的各个电路可以封装在一个单独的芯片中。由于封装后的芯片的体积较小,因此可以避免增加采用该芯片的心电图检测设备的体积。也即是,该检测电路可以应用于小型的心电图检测设备中。
综上所述,本申请实施例提供了一种应用于心电图检测设备的检测电路,该检测电路为心电图检测设备的壳体提供的目标电位与为心电图检测设备的第三电极提供的参考电位之间的电位差较小,因此即使在ECG检测过程中,用户误触碰壳体导致该壳体与第三电极导通,该壳体与第三电极之间也不会产生漏电流或者产生的漏电流较小,从而可以有效降低对ECG信号的干扰,确保ECG检测的准确性。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

1.一种心电图检测设备,其特征在于,所述设备包括:由导电材料制成的壳体,设置在所述壳体内的心电图检测电路和电压保持电路,以及设置在所述壳体之外且与所述壳体绝缘的第一电极、第二电极和第三电极;
所述心电图检测电路分别与所述第一电极、所述第二电极和所述第三电极连接,所述心电图检测电路用于通过所述第一电极和所述第二电极采集心电图信号,并为所述第三电极提供参考电位;
所述电压保持电路与所述壳体连接,用于为所述壳体提供目标电位,所述目标电位与所述参考电位的电位差小于差值阈值。
2.根据权利要求1所述的设备,其特征在于,所述电压保持电路的输出端与所述壳体连接,所述电压保持电路的输入端与电位提供端连接,所述电压保持电路用于根据所述输入端的输入信号在所述输出端输出所述目标电位。
3.根据权利要求2所述的设备,其特征在于,所述电位提供端是所述第三电极,或者所述第二电极,或者所述第一电极,或者供电电源输出端。
4.根据权利要求3所述的设备,其特征在于,所述电位提供端是所述第三电极,或者所述第二电极,或者所述第一电极,所述电压保持电路为电压跟随电路;
所述电压跟随电路的输出端作为所述电压保持电路的输出端与所述壳体连接,所述电压跟随电路的输入端作为所述电压保持电路的输入端与所述电位提供端连接,所述电压跟随电路用于控制所述壳体的电位与所述电位提供端的目标电位保持大体一致。
5.根据权利要求4所述的设备,其特征在于,所述电压跟随电路包括:第一运算放大器;
所述第一运算放大器的同相输入端作为所述电压跟随电路的输入端与所述电位提供端连接,所述第一运算放大器的输出端作为所述电压跟随电路的输出端分别与所述壳体和所述第一运算放大器的反相输入端连接。
6.根据权利要求3所述的设备,其特征在于,所述电位提供端是所述供电电源输出端,所述电压保持电路为稳压电路;
所述稳压电路的输入端作为所述电压保持电路的输入端与所述供电电源输出端连接,所述稳压电路的输出端作为所述电压保持电路的输出端与所述壳体连接,所述稳压电路用于在所述供电电源输出端的驱动下,为所述壳体提供所述目标电位。
7.根据权利要求6所述的设备,其特征在于,所述稳压电路为低压差线性稳压器。
8.根据权利要求1至7任一所述的设备,其特征在于,所述目标电位与所述参考电位相等或相近。
9.根据权利要求1至7任一所述的设备,其特征在于,所述设备还包括:串联在所述壳体和所述电压保持电路之间的电阻。
10.根据权利要求9所述的设备,其特征在于,所述设备还包括:与所述电阻并联的电容。
11.根据权利要求1至7任一所述的设备,其特征在于,所述设备还包括:静电保护电路;
所述静电保护电路的一端与所述壳体连接,另一端接地。
12.根据权利要求11所述的设备,其特征在于,所述静电保护电路包括:瞬态抑制二极管;
所述瞬态抑制二极管的一极与所述壳体连接,所述瞬态抑制二极管的另一极接地。
13.根据权利要求2至7任一所述的设备,其特征在于,所述心电图检测电路包括:检测子电路和右腿驱动子电路;
所述检测子电路的第一输入端与所述第一电极连接,所述检测子电路的第二输入端与所述第二电极连接,所述检测子电路的共模输出端与所述右腿驱动子电路的第一输入端连接,所述检测子电路用于采集心电图信号,并向所述右腿驱动子电路输出所述第一输入端与所述第二输入端之间的共模电压;
所述右腿驱动子电路的第二输入端与参考电源端连接,所述右腿驱动子电路的输出端与所述第三电极连接,所述右腿驱动子电路用于在所述共模电压和所述参考电源端的驱动下,为所述第三电极提供参考电位;
其中,所述电位提供端为所述第三电极,或者所述第二电极,或者所述第一电极,或者所述共模输出端。
14.根据权利要求13所述的设备,其特征在于,所述检测子电路包括:仪表放大器、模数转换器和处理器;所述右腿驱动子电路包括:第二运算放大器;
所述仪表放大器的反相输入端作为所述检测子电路的第一输入端与所述第一电极连接,所述仪表放大器的同相输入端作为所述检测子电路的第二输入端与所述第二电极连接,所述仪表放大器的共模输出端作为所述检测子电路的共模输出端与所述第二运算放大器的反相输入端连接,所述仪表放大器的差模输出端与所述模数转换器的输入端连接,所述第二运算放大器的反相输入端为所述右腿驱动子电路的第一输入端;
所述模数转换器的输出端与所述处理器连接;
所述第二运算放大器的同相输入端作为所述右腿驱动子电路的第二输入端与所述参考电源端连接,所述第二运算放大器的输出端作为所述右腿驱动子电路的输出端与所述第三电极连接。
15.根据权利要求1至7任一所述的设备,其特征在于,所述设备还包括:设置在所述壳体内的正电源提供电路,所述正电源提供电路具有供电电源输出端,所述正电源提供电路用于通过所述供电电源输出端为所述心电图检测电路和所述电压保持电路供电。
16.根据权利要求1至7任一所述的设备,其特征在于,所述心电图检测设备为可穿戴设备。
17.根据权利要求16所述的设备,其特征在于,所述可穿戴设备为手表或者手环。
18.一种应用于心电图检测设备的检测电路,其特征在于,所述心电图检测设备包括由导电材料制成的壳体,所述检测电路包括:第一输入引脚、第二输入引脚、第一输出引脚以及第二输出引脚;
其中,所述第一输入引脚用于与第一电极连接,所述第二输入引脚用于与第二电极连接,所述第一输出引脚用于与第三电极连接,所述检测电路用于通过所述第一输入引脚和所述第二输入引脚采集心电图信号,并通过所述第一输出引脚为所述第三电极提供参考电位;所述第一电极、所述第二电极以及所述第三电极均位于所述壳体之外且与所述壳体绝缘;
所述第二输出引脚用于与所述壳体连接,所述检测电路还用于通过所述第二输出引脚为所述壳体提供目标电位,所述目标电位与所述参考电位的电位差小于差值阈值。
19.根据权利要求18所述的检测电路,其特征在于,所述检测电路包括电压保持电路,所述电压保持电路的输出端与所述第二输出引脚连接,所述电压保持电路的输入端用于与电位提供端连接,所述电压保持电路用于根据所述输入端的输入信号在所述输出端输出所述目标电位。
20.根据权利要求19所述的检测电路,其特征在于,所述电位提供端是所述第三电极,或者所述第二电极,或者所述第一电极,或者供电电源输出端。
21.根据权利要求20所述的检测电路,其特征在于,所述电位提供端是所述第三电极,或者所述第二电极,或者所述第一电极,所述电压保持电路为电压跟随电路;
所述电压跟随电路的输出端作为所述电压保持电路的输出端与所述第二输出引脚连接,所述电压跟随电路的输入端作为所述电压保持电路的输入端用于与所述电位提供端连接,所述电压跟随电路用于控制所述第二输出引脚的电位与所述电位提供端的目标电位保持大体一致。
22.根据权利要求21所述的检测电路,其特征在于,所述电压跟随电路包括:第一运算放大器;
所述第一运算放大器的同相输入端作为所述电压跟随电路的输入端用于与所述电位提供端连接,所述第一运算放大器的输出端作为所述电压跟随电路的输出端分别与所述第二输出引脚和所述第一运算放大器的反相输入端连接。
23.根据权利要求20所述的检测电路,其特征在于,所述电位提供端是所述供电电源输出端,所述电压保持电路为稳压电路;
所述稳压电路的输入端作为所述电压保持电路的输入端用于与所述供电电源输出端连接,所述稳压电路的输出端作为所述电压保持电路的输出端与所述第二输出引脚连接,所述稳压电路用于在所述供电电源输出端的驱动下,为所述壳体提供所述目标电位。
24.根据权利要求23所述的检测电路,其特征在于,所述稳压电路为低压差线性稳压器。
25.根据权利要求18至24任一所述的检测电路,其特征在于,所述目标电位与所述参考电位相等或相近。
26.根据权利要求19至24任一所述的检测电路,其特征在于,所述检测电路还包括:串联在所述第二输出引脚和所述电压保持电路之间的电阻。
27.根据权利要求26所述的检测电路,其特征在于,所述检测电路还包括:与所述电阻并联的电容。
28.根据权利要求18至24任一所述的检测电路,其特征在于,所述检测电路还包括:静电保护电路;
所述静电保护电路的一端与所述第二输出引脚连接,另一端接地。
29.根据权利要求28所述的检测电路,其特征在于,所述静电保护电路包括:瞬态抑制二极管;
所述瞬态抑制二极管的一极与所述第二输出引脚连接,所述瞬态抑制二极管的另一极接地。
30.根据权利要求19至24任一所述的检测电路,其特征在于,所述检测电路还包括:检测子电路和右腿驱动子电路;
所述检测子电路的第一输入端与所述第一输入引脚连接,所述检测子电路的第二输入端与所述第二输入引脚连接,所述检测子电路的共模输出端与所述右腿驱动子电路的第一输入端连接,所述检测子电路用于采集心电图信号,并向所述右腿驱动子电路输出所述第一输入端与所述第二输入端之间的共模电压;
所述右腿驱动子电路的第二输入端与参考电源端连接,所述右腿驱动子电路的输出端与所述第一输出引脚连接,所述右腿驱动子电路用于在所述共模电压和所述参考电源端的驱动下,为所述第三电极提供参考电位;
其中,所述电位提供端是所述第三电极,或者所述第二电极,或者所述第一电极,或者供电电源输出端,或者所述共模输出端。
31.根据权利要求18至24任一所述的检测电路,其特征在于,所述检测电路为集成电路,并被封装成一个单独的芯片。
CN202010538235.1A 2020-06-12 2020-06-12 心电图检测设备以及检测电路 Active CN113796872B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202010538235.1A CN113796872B (zh) 2020-06-12 2020-06-12 心电图检测设备以及检测电路
PCT/CN2021/099167 WO2021249435A1 (zh) 2020-06-12 2021-06-09 心电图检测设备以及检测电路
KR1020237000502A KR20230021108A (ko) 2020-06-12 2021-06-09 심전도 검출 장치 및 검출 회로
EP21821452.6A EP4151153A4 (en) 2020-06-12 2021-06-09 ELECTROCARDIOGRAM MONITORING DEVICE AND MONITORING CIRCUIT
JP2022575818A JP7415256B2 (ja) 2020-06-12 2021-06-09 心電図検出デバイスおよび検出回路
US18/063,746 US20230106329A1 (en) 2020-06-12 2022-12-09 Electrocardiogram detection device and detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010538235.1A CN113796872B (zh) 2020-06-12 2020-06-12 心电图检测设备以及检测电路

Publications (2)

Publication Number Publication Date
CN113796872A CN113796872A (zh) 2021-12-17
CN113796872B true CN113796872B (zh) 2022-12-30

Family

ID=78845367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010538235.1A Active CN113796872B (zh) 2020-06-12 2020-06-12 心电图检测设备以及检测电路

Country Status (6)

Country Link
US (1) US20230106329A1 (zh)
EP (1) EP4151153A4 (zh)
JP (1) JP7415256B2 (zh)
KR (1) KR20230021108A (zh)
CN (1) CN113796872B (zh)
WO (1) WO2021249435A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204192613U (zh) * 2014-11-07 2015-03-11 秦皇岛市惠斯安普医学***有限公司 一种人体心电检测电路
US9345414B1 (en) * 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
WO2016126931A1 (en) * 2015-02-04 2016-08-11 Bardy Diagnostics, Inc. Efficiently encoding and compressing ecg data optimized for use in an ambulatory ecg monitor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597942B1 (en) * 2000-08-15 2003-07-22 Cardiac Pacemakers, Inc. Electrocardiograph leads-off indicator
CA2567118A1 (en) 2004-06-10 2005-12-22 Unilever Plc Apparatus and method for reducing interference
US7894888B2 (en) * 2008-09-24 2011-02-22 Chang Gung University Device and method for measuring three-lead ECG in a wristwatch
US9408545B2 (en) * 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
CN107233085A (zh) * 2017-07-21 2017-10-10 京东方科技集团股份有限公司 一种电子手表及其血压测量方法
ES2963483T3 (es) * 2017-09-05 2024-03-27 Apple Inc Dispositivo electrónico usable con electrodos para detectar parámetros biológicos
CN208693280U (zh) * 2017-10-13 2019-04-05 深圳市阿尔法通讯技术有限公司 一种心电监测手环
JP2019213663A (ja) 2018-06-12 2019-12-19 株式会社東海理化電機製作所 ステアリング装置
CN211293787U (zh) * 2018-08-24 2020-08-18 苹果公司 电子表
CN209898453U (zh) * 2019-04-22 2020-01-07 深圳仙苗科技有限公司 一种监测心率心电血压智能手环
JP7388198B2 (ja) 2020-01-10 2023-11-29 オムロンヘルスケア株式会社 生体情報計測装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345414B1 (en) * 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
CN204192613U (zh) * 2014-11-07 2015-03-11 秦皇岛市惠斯安普医学***有限公司 一种人体心电检测电路
WO2016126931A1 (en) * 2015-02-04 2016-08-11 Bardy Diagnostics, Inc. Efficiently encoding and compressing ecg data optimized for use in an ambulatory ecg monitor

Also Published As

Publication number Publication date
WO2021249435A1 (zh) 2021-12-16
EP4151153A1 (en) 2023-03-22
CN113796872A (zh) 2021-12-17
JP2023528664A (ja) 2023-07-05
JP7415256B2 (ja) 2024-01-17
KR20230021108A (ko) 2023-02-13
US20230106329A1 (en) 2023-04-06
EP4151153A4 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
US9886104B2 (en) Stylus for capacitive touchscreen
US9519363B2 (en) Stylus and stylus circuitry for capacitive touch screens
US7466148B2 (en) Sensor system for measuring an electric potential signal of an object
KR102632067B1 (ko) 소음 검출 회로, 자기 정전용량 검출방법, 터치 칩 및 전자기기
CN106419894A (zh) 一种用于生理电信号采集前端处理电路
CN107980208B (zh) 信号转换电路、心率传感器和电子设备
CN113796872B (zh) 心电图检测设备以及检测电路
EP2693936A1 (en) Low leakage esd structure for non-contact bio-signal sensors
CN104865297A (zh) 一种湿度检测电路及移动终端
KR20200053984A (ko) 2 전극 기반 심전도 측정 장치
CN216876378U (zh) 一种生理电信号采集***
CN108710400A (zh) 一种可用于负电压输出的使能电路
EP2269504A1 (en) Circuit for conditioning small electrical signals and method for controlling said circuit
CN204260740U (zh) 一种微型偶发心率失常记录仪
CN219145046U (zh) 一种充电控制开关电路及穿戴设备
CN110638443A (zh) 一种心电信号读出电路
US20220369987A1 (en) Signal acquisition circuit and physiological detection apparatus
CN203811566U (zh) 一种湿度检测电路及移动终端
CN105322921A (zh) 一种单极性ad采样调理电路
Pablo et al. A chopped front-end system with common-mode feedback for real time ECG applications
CN115001117B (zh) 一种充电电路、电池模组、电池和电子设备
CN216252671U (zh) 一种挠性陀螺仪的信号放大器
CN218870306U (zh) 心电信号前级保护和滤波电路
CN209315864U (zh) 一种心率芯片防静电干扰电路及可穿戴设备
CN219085662U (zh) 自动启动电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant