CN113794826B - Light intensity modulation interference method and system for accurately pointing laser interference - Google Patents

Light intensity modulation interference method and system for accurately pointing laser interference Download PDF

Info

Publication number
CN113794826B
CN113794826B CN202111143799.6A CN202111143799A CN113794826B CN 113794826 B CN113794826 B CN 113794826B CN 202111143799 A CN202111143799 A CN 202111143799A CN 113794826 B CN113794826 B CN 113794826B
Authority
CN
China
Prior art keywords
laser
module
camera
target camera
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111143799.6A
Other languages
Chinese (zh)
Other versions
CN113794826A (en
Inventor
戴恩文
潘卫清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lover Health Science and Technology Development Co Ltd
Original Assignee
Zhejiang Lover Health Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lover Health Science and Technology Development Co Ltd filed Critical Zhejiang Lover Health Science and Technology Development Co Ltd
Priority to CN202111143799.6A priority Critical patent/CN113794826B/en
Publication of CN113794826A publication Critical patent/CN113794826A/en
Application granted granted Critical
Publication of CN113794826B publication Critical patent/CN113794826B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The invention discloses a light intensity modulation interference method and a light intensity modulation interference system for accurately pointing laser interference. Therefore, the invention has the characteristics of high interference precision, small system volume, strong concealment and high reliability. In addition, this system has 2 sets of lasers, can use invisible light to disturb night according to switching laser under daytime and the night environment, has fine disguise.

Description

Light intensity modulation interference method and system for accurately pointing laser interference
Technical Field
The invention relates to the technical field of laser interference, in particular to a light intensity modulation interference method and a light intensity modulation interference device for accurately pointing to laser interference.
Background
Along with the development of science and technology, the popularity of the camera is higher and higher in recent years, the safety and stability of the society are greatly promoted, and the camera plays an important role in protecting the property safety of people. However, the rapid popularization of the camera also brings abuse problems, and some lawless persons can use the camera to snoop the privacy of others; and placing the camera at a key position to monitor personnel such as police. This poses serious hazards and challenges to personal privacy, property security and police enforcement.
At present, the related technology of the interference camera is gradually developed, some mature interference devices are also available in the market, but most devices comprise a galvanometer, so that the devices are large in size, high in cost and not strong in concealment.
Disclosure of Invention
The invention aims to provide a light intensity modulation interference method and a light intensity modulation interference system for accurately pointing laser interference. The invention can carry out automatic pointing positioning and automatic zooming according to target cameras with different distances, and interferes the normal work of the target cameras.
The technical scheme of the invention is as follows: a light intensity modulation interference method for accurately pointing laser interference specifically comprises the following steps:
a. shooting laser to a target camera by using a laser, and shooting an image after a camera module searches for light spots of a target camera and a laser beam;
b. starting a distance measuring module, and measuring a distance value between a laser and a target camera;
c. the data processing module receives data transmitted back by the camera and the distance measuring module to obtain an angle deviation value and a distance value between the laser module and the target camera; the laser pointing control module controls the laser to adjust the emergent angle according to the angle deviation value, and the laser adjusts zooming according to the distance value;
d. the laser control module also modulates the laser according to the data received by the data processing module, and the laser beam emitted by the laser continuously irradiates the lens of the target camera, so that the target camera is interfered.
In the above light intensity modulation interference method for accurately pointing to laser interference, in step c, the laser adjusts zooming according to the distance value, so that the laser spot is zoomed and adjusted to a proper size, and the laser spot completely covers the lens of the target camera.
In the light intensity modulation interference method for accurately pointing to laser interference, in step d, the laser control module modulates the laser device, so that the laser beam emitted by the laser device is modulated by light intensity, frequency and divergence angle, and overexposure is continuously performed when the target camera shoots.
In the light intensity modulation interference method for accurately pointing to laser interference, in step c, after the laser pointing control module controls the laser to adjust the emergent angle according to the angle deviation value, the camera module shoots the image of the target camera and the laser spot again after the laser pointing control module adjusts the corresponding angle value, the angle deviation value is calculated, and the pointing and positioning error is verified.
In the light intensity modulation interference method for accurately pointing to laser interference, in step C, the calculation process of the angular deviation value between the laser module and the target camera is that the distance measuring module measures the distance value l between the laser lens P and the target camera C 1 And simultaneously the target camera C forms an image on the camera module A at the moment a 1 Can be expressed as the distance value between the optical axes of the C' camera modules, can be expressed as a 1 =n×a 0 Where n is the number of pixel points between the optical axes of C', a 0 Is the length of a single pixel pointDegree; f. of 1 The focal length value is obtained, and the angle value phi between the optical axis of the camera module and the target camera C can be obtained 1 =arctan(a 1 /f 1 ) (ii) a By phi 1 And l 1 The horizontal distance x between the laser lens P and the target camera C can be obtained by calculation 1 From the vertical y 1 Are respectively represented as x 1 =l 1 ×cosφ 1 ,y 1 =l 1 ×sinφ 1 (ii) a By the distance value y between the camera module A and the laser B 3 The horizontal distance between the laser B and the target camera C is x 1 +f 1 Finally obtaining the angle deviation value phi between the laser B and the target camera C 2 =arctan((y 1 -y 3 )/(x 1 +f 1 ))。
The system for realizing the method comprises a laser, and a camera module, a laser control module, a laser pointing control module, a distance measuring module and a data processing module which are connected with the laser;
the camera module comprises a long-focus camera and is used for searching a target camera and a light spot of a laser beam;
the laser control module modulates the light intensity, frequency and divergence angle of the laser;
and the pointing control module is used for controlling the change of the irradiation angle of the laser.
The distance measuring module comprises a distance measuring machine which is used for measuring the distance between the system and the target camera and transmitting the data of the measuring result to the data processing module.
The data processing module comprises a processor and is used for receiving data and sending out instructions. The distance measuring device is used for receiving image information shot by the camera and the measured value of the distance measuring machine and carrying out correlation calculation.
In the system, the pointing control module further comprises a closed-loop feedback module, and after the camera module adjusts the corresponding angle value in the laser pointing control module, the closed-loop feedback module drives the camera module to shoot the image of the target camera and the laser spot again, calculates the angle deviation value, and verifies the pointing positioning error.
In the system, the lasers comprise 2 sets of lasers, 1 set of lasers used in the daytime and 1 set of lasers used in the night, wherein the lasers used in the night use invisible light for interference and have good concealment.
Compared with the prior art, the method has the advantages that after the camera module and the distance measuring module are started to obtain the accurate position of the target camera, the laser pointing control module controls the laser to adjust the emergent angle according to the angle deviation value, the laser adjusts the zooming according to the distance value and simultaneously modulates the laser, and the laser beam emitted by the laser continuously irradiates the lens of the target camera, so that the target camera is interfered. Therefore, the invention has the characteristics of high interference precision, small system volume, strong concealment and high reliability. In addition, this system has 2 sets of lasers, can use invisible light to disturb according to switching over the laser under daytime and the night environment, has fine disguise night.
Drawings
FIG. 1 is a schematic flow chart of a method in example 1 of the present invention;
FIG. 2 is a schematic diagram illustrating calculation of an angular deviation value between a laser module and a target camera.
Detailed Description
The invention is further described with reference to the following figures and examples, which are not to be construed as limiting the invention.
Example 1: an optical intensity modulation interference method for accurately pointing to laser interference is disclosed, as shown in fig. 1, and specifically comprises the following steps:
a. shooting laser to a target camera by using a laser, and shooting an image after a camera module searches for a light spot between the target camera and a laser beam;
b. starting a distance measuring module, and measuring a distance value between a laser and a target camera;
c. the data processing module receives data transmitted back by the camera and the distance measuring module to obtain an angle deviation value and a distance value between the laser module and the target camera; the laser pointing control module controls the laser to adjust the emergent angle according to the angle deviation value, and the laser adjusts zooming according to the distance value, so that the laser spot is zoomed and adjusted to a proper size to completely cover the lens of the target camera;
d. the laser control module is also used for modulating the laser according to the data received by the data processing module, so that the laser beam emitted by the laser is modulated by light intensity, frequency and divergence angle, and the laser beam emitted by the laser continuously irradiates the lens of the target camera, so that the target camera is continuously overexposed during shooting, and the interference of the target camera is realized.
In the step c, after the laser pointing control module controls the laser to adjust the emergent angle according to the angle deviation value, the camera module shoots the image of the target camera and the laser spot again after the laser pointing control module adjusts the corresponding angle value, the angle deviation value is calculated, and the pointing positioning error is verified.
Specifically, as shown in fig. 2, in step C, the calculation process of the angular deviation value between the laser module and the target camera is that the distance measuring module measures the distance value l between the laser lens P and the target camera C 1 And simultaneously the target camera C forms an image on the camera module A at the moment a 1 Can be expressed as the distance value between the optical axes of the C' camera modules, can be expressed as a 1 =n×a 0 Where n is the number of pixel points between the optical axes of C', a 0 Is the length of a single pixel point; f. of 1 The focal length value is obtained, and the angle value phi between the optical axis of the camera module and the target camera C can be obtained 1 =arctan(a 1 /f 1 ) (ii) a By phi 1 And l 1 The horizontal distance x between the laser lens P and the target camera C can be obtained by calculation 1 From the vertical y 1 Are respectively represented as x 1 =l 1 ×cosφ 1 ,y 1 =l 1 ×sinφ 1 (ii) a By the distance value y between the camera module A and the laser B 3 The horizontal distance between the laser B and the target camera C is x 1 +f 1 Finally, the angular deviation value phi between the laser B and the target camera C is obtained 2 =arctan((y 1 -y 3 )/(x 1 +f 1 ))。
The system for realizing the method comprises 2 sets of lasers, 1 set of lasers used in daytime and 1 set of lasers used in night, wherein the lasers used in night use invisible light for interference and have good concealment; the camera module, the laser control module, the laser pointing control module, the distance measuring module and the data processing module are connected with the laser;
the camera module comprises a long-focus camera and is used for searching a target camera and a light spot of a laser beam;
the laser control module modulates the light intensity, frequency and divergence angle of the laser;
the pointing control module comprises a pointing motor and is used for controlling the change of the irradiation angle of the laser.
The distance measurement module comprises a distance measuring machine and is used for measuring the distance between the system and the target camera and transmitting the data of the measurement result to the data processing module.
The data processing module comprises a processor and is used for receiving data and sending out instructions. The distance measuring device is used for receiving image information shot by the camera and the measured value of the distance measuring machine and carrying out correlation calculation.
The pointing control module further comprises a closed-loop feedback module, after the camera module adjusts the corresponding angle value in the laser pointing control module, the closed-loop feedback module drives the camera module to shoot the image of the target camera and the laser spot again, the angle deviation value is calculated, and the pointing positioning error is verified.

Claims (7)

1. A light intensity modulation interference method for accurately pointing laser interference is characterized in that: the method specifically comprises the following steps:
a. shooting laser to a target camera by a laser, and shooting an image after a camera module connected with the laser searches for light spots of a target camera and a laser beam;
b. starting a distance measuring module, and measuring a distance value between a laser and a target camera;
c. the camera module comprises a long-focus camera, and the data processing module receives data transmitted back by the camera and the distance measuring module to obtain an angle deviation value and a distance value between the laser module and the target camera; the laser pointing control module controls the laser to adjust the emergent angle according to the angle deviation value, and the laser adjusts zooming according to the distance value;
d. the laser control module also modulates the laser according to the data received by the data processing module, and the laser beam emitted by the laser continuously irradiates the lens of the target camera, so that the target camera is interfered;
in the step c, the calculation process of the angle deviation value between the laser module and the target camera is that the distance measurement module measures the lens of the laser devicePTarget cameraCValue of the distance betweenl 1 And simultaneous target cameraCOn-camera moduleAForm an image onC At this timea 1 Can be expressed asC The distance between the optical axes of the camera modules can be expressed asa 1 =n×a 0 ,WhereinnIs composed ofC The number of pixel points between the optical axes,a 0 is the length of a single pixel point;f 1 if the focal length is the same, the optical axis of the camera module and the target camera can be obtainedCValue of angle therebetweenϕ 1 =arctan(a 1 /f 1 ) (ii) a Byϕ 1 Andl 1 laser lens can be obtained through calculationPWith target cameraCHorizontal distance ofx 1 Distance from verticaly 1 Are respectively represented asx 1 =l 1 ×cosϕ 1 ,y 1 =l 1 ×sinϕ 1 By camera moduleAAnd a laserBValue of the distance betweeny 3 Laser deviceBWith target cameraCIs a horizontal distance ofx 1 +f 1 Finally, the laser is obtainedBWith target cameraCAngle deviation value therebetweenϕ 2 =arctan((y 1 -y 3 )/(x 1 +f 1 ))。
2. The optical intensity modulation interference method for accurately pointing to laser interference according to claim 1, wherein: in the step c, the laser device adjusts zooming according to the distance value, namely the laser facula is zoomed and adjusted to a proper size, and the lens of the target camera is completely covered.
3. The optical intensity modulation interference method for accurately pointing to laser interference according to claim 2, characterized in that: in the step d, the laser control module modulates the laser device to enable the laser beam emitted by the laser device to be modulated by light intensity, frequency and divergence angle, so that the target camera continuously overexposes when shooting.
4. The optical intensity modulation interference method for accurately pointing to laser interference according to claim 3, wherein: in the step c, after the laser pointing control module controls the laser to adjust the emergent angle according to the angle deviation value, the camera module shoots the image of the target camera and the laser spot again after the laser pointing control module adjusts the corresponding angle value, the angle deviation value is calculated, and the pointing positioning error is verified.
5. System for implementing the method according to any of claims 1 to 4, characterized in that: the system comprises a laser, a camera module, a laser control module, a laser pointing control module, a distance measuring module and a data processing module, wherein the camera module, the laser control module, the laser pointing control module, the distance measuring module and the data processing module are connected with the laser;
the camera module comprises a long-focus camera and is used for searching a target camera and a light spot of a laser beam;
the laser control module modulates the light intensity, frequency and divergence angle of the laser;
the pointing control module is used for controlling the change of the irradiation angle of the laser;
the distance measuring module comprises a distance measuring machine and is used for measuring the distance between the system and the target camera and transmitting the data of the measuring result to the data processing module;
the data processing module comprises a processor, a data processing module and a data processing module, wherein the processor is used for receiving data and sending an instruction; the distance measuring device is used for receiving image information shot by the camera and the measured value of the distance measuring machine and carrying out correlation calculation.
6. The system of claim 5, wherein: the pointing control module further comprises a closed-loop feedback module, after the camera module adjusts the corresponding angle value in the laser pointing control module, the closed-loop feedback module drives the camera module to shoot the image of the target camera and the laser spot again, the angle deviation value is calculated, and the pointing positioning error is verified.
7. The system of claim 5, wherein: the laser instrument include 2 sets, 1 set daytime uses the laser instrument, 1 set night uses the laser instrument, wherein night uses the laser instrument and uses invisible light to disturb, has fine disguise.
CN202111143799.6A 2021-09-28 2021-09-28 Light intensity modulation interference method and system for accurately pointing laser interference Active CN113794826B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111143799.6A CN113794826B (en) 2021-09-28 2021-09-28 Light intensity modulation interference method and system for accurately pointing laser interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111143799.6A CN113794826B (en) 2021-09-28 2021-09-28 Light intensity modulation interference method and system for accurately pointing laser interference

Publications (2)

Publication Number Publication Date
CN113794826A CN113794826A (en) 2021-12-14
CN113794826B true CN113794826B (en) 2023-03-24

Family

ID=79184740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111143799.6A Active CN113794826B (en) 2021-09-28 2021-09-28 Light intensity modulation interference method and system for accurately pointing laser interference

Country Status (1)

Country Link
CN (1) CN113794826B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116506735B (en) * 2023-06-21 2023-11-07 清华大学 Universal camera interference method and system based on active vision camera

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429885A (en) * 2017-02-13 2018-08-21 杭州海康威视数字技术股份有限公司 A kind of inter-linked controlling method, the apparatus and system of laser and video camera

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287055A (en) * 2001-03-26 2002-10-03 Fuji Xerox Co Ltd Optical scanner and image forming device
CN104406685B (en) * 2014-11-18 2016-07-06 深圳大学 Laser beam M based on transmission-type liquid crystal spatial light modulator2Factor measurement method
CN109819173B (en) * 2017-11-22 2021-12-03 浙江舜宇智能光学技术有限公司 Depth fusion method based on TOF imaging system and TOF camera
CN108957471A (en) * 2018-06-22 2018-12-07 杭州电子科技大学 Three-dimension measuring system based on FM-CW laser ranging
CN108803209A (en) * 2018-06-29 2018-11-13 广东水利电力职业技术学院(广东省水利电力技工学校) A kind of Laser-control projector system and control method, the information processing terminal
CN208833911U (en) * 2018-09-21 2019-05-07 邯郸慧龙电力设计研究有限公司 A kind of Hand-hold Distance Finder of rapid survey overhead transmission line vertical height
CN112748438A (en) * 2019-10-31 2021-05-04 傲基科技股份有限公司 Method suitable for accurate positioning of laser ranging device and laser ranging system and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429885A (en) * 2017-02-13 2018-08-21 杭州海康威视数字技术股份有限公司 A kind of inter-linked controlling method, the apparatus and system of laser and video camera

Also Published As

Publication number Publication date
CN113794826A (en) 2021-12-14

Similar Documents

Publication Publication Date Title
US9955074B2 (en) Target tracking method and system for intelligent tracking high speed dome camera
US8049812B2 (en) Camera with auto focus capability
US20130258089A1 (en) Eye Gaze Based Image Capture
JP2008541161A (en) Digital camera with triangulation autofocus system and associated method
CN108429885A (en) A kind of inter-linked controlling method, the apparatus and system of laser and video camera
CN110045383B (en) Laser active rejection system
CN113794826B (en) Light intensity modulation interference method and system for accurately pointing laser interference
CN108381034B (en) A kind of laser auto focusing obstacle eliminating system and control method
CN108234897B (en) Method and device for controlling night vision system, storage medium and processor
CN108898122A (en) A kind of Intelligent human-face recognition methods
KR102270254B1 (en) Multi-lateration laser tracking apparatus and method using initial position sensing function
CN100388760C (en) Ranging type digital camera
CN113866969B (en) Light path system for light beam tracking equipment
CN113794843B (en) Video monitoring accurate interference method and system based on coaxial light path structure
WO2021171630A1 (en) Collimator calibration apparatus and collimator calibration system
CN208765707U (en) Bidifly optical range finding apparatus
JP3381233B2 (en) Autofocus device and focus adjustment method
CN104181753A (en) Control method and control device of laser lighting uniformizing device
JP4227844B2 (en) Camera with indicator
CN108885384B (en) Image focusing system and method based on laser radar ranging
US10031400B2 (en) Orientation system for image recording device
CN116250246A (en) Image pickup module device, multi-image pickup module, image pickup system, electronic apparatus, and auto-zoom imaging method
JP3975215B2 (en) Shooting training system
JPH0526176B2 (en)
CN112748438A (en) Method suitable for accurate positioning of laser ranging device and laser ranging system and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant